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1. Introduction 

The continuing development of microelectromechanical systems is pointing to the possibility of 
mounting complete sensor systems on medium- and small-caliber projectiles as part of an actively 
controlled smart munition.  Two important technical challenges in achieving this goal are the 
development of small, rugged sensor suites, and control mechanisms.  With regard to the 
development of control mechanisms, several concepts have emerged that produce controllable 
impulsive lateral forces on a projectile body.  For example, Harkins and Brown (1) considered the 
use of a set of lateral pulse jets or squibs to reduce dispersion of a rocket by firing squibs to minimize 
projectile pitch and yaw rate.  For the notional cases evaluated, dispersion was reduced by a factor of 
5.  Jitpraphai and Costello (2) considered the same type of control mechanism and used a trajectory 
tracking flight control system to improve impact point performance of a direct fire rocket equipped 
with a ring of squibs.  Amitay et al. (3) considered the use of synthetic jet actuators as a control 
mechanism on lifting bodies.  For a spinning projectile incorporating a synthetic jet actuator for 
control, the synthetic jet actuator is activated over a small portion of a roll cycle leading to a train of 
lateral pulse forces acting on the projectile near the synthetic jet actuator cavity.   

The design of flight control systems for fin-stabilized configurations is well established in the missile 
community and the control response to force and moment inputs is reasonably well understood.  
Generally these configurations are treated largely in the same manner as airplanes.  While the 
uncontrolled dynamics of spinning projectiles, both fin stabilized and spin stabilized, have been 
extensively studied in the ballistics community, issues with regard to control response have received 
considerably less attention due to the lack of practical application of control technology to spinning 
projectiles.  Using projectile linear theory, this report analytically investigates several aspects of the 
response of a spinning projectile to lateral pulse forces including swerve response magnitude and 
phase angle, impulse force smearing, and yaw cycle pulse timing.  The report begins with a 
discussion of the basic projectile dynamic model followed by judicious simplifications to these 
equations that result in the projectile linear theory equations.  The solution of the projectile linear 
theory equations are used to shed light on intuitive and subtle factors that influence swerve response 
of a projectile exposed to lateral impulsive loads.  

2. Projectile Dynamic Model 

It is well known that the motion of most projectile configurations can be captured using a rigid 
body 6 degrees of freedom dynamic model (4, 5).  The degrees of freedom include three position 
components of the mass center of the projectile as well as three Euler orientation angles of the 
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body.  Figures 1 and 2 show schematics of the dynamic model degrees of freedom.  The 
equations of motion are provided in equations 1–4. 

 

II
r

 

IK
r

 

IJ
r

 

BK
r

BJ
r

BI
r

yx  

w

V  

u

v

z−

 

Figure 1.  Projectile position coordinate definition. 
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Figure 2.  Projectile orientation definition. 
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The applied forces in the body frame that appear in equation 5 contain contributions from weight 
(W), air loads (A), and lateral pulse forces (C). 
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The weight force resolved into projectile body coordinates is given by equation 6, 
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The air loads are split in two components, the standard aerodynamic forces and the Magnus 
forces, 
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Equation 8 gives the standard air loads acting at the aerodynamic center of pressure. 
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where 

 2222
a D)wvu(

8

1q π++ρ=  (9) 

and 

 222 wvuV ++= . (10) 

The Magnus aerodynamic force acts at the Magnus center of pressure. 
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The lateral pulse force is modeled as an impulse that acts on an arbitrary point on the body.  
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In equation 12, IY and IZ  represent the lateral components of the impulse.  The total magnitude 

of the impulse on the projectile is 2
I

2
II ZYF += .  The function ( )td  is a constant positive value 

when the pulse is active and is zero otherwise.  This function integrates to unity for a single 
pulse.   

The applied moments about the projectile mass center are due to aerodynamic forces and 
moments (A) as well as pulse forces (C). 
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The aerodynamic moments caused by standard and Magnus air loads are computed with a cross 
product between the distance vector from the mass center to the force application point and the 
force itself.  An unsteady aerodynamic damping moment is also present, which provides a 
damping source for angular motion. 
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All aerodynamic coefficients and the center of pressures are a function of the Mach number of 
the projectile mass center.  The dynamic model previously described is highly nonlinear due to 
both three-dimensional rotational kinematics expressions and the presence of complex 
aerodynamic forces.  The applicability of the equations of motion previously shown, have been 
validated over the past 60 years at aeroballistic ranges throughout the world (5). 

3. Projectile Linear Theory 

Pressed with the need to predict the trajectory and stability of a ballistic shell so that useful 
performance data could be generated with primitive computers, early ballisticians vigorously 
investigated mathematical simplifications to the equations of motion of a projectile.  What 
emerged over time was a set of simplified and solvable, yet accurate, linear differential 
equations, which today is commonly termed “projectile linear theory.”   

The governing equations developed previously are expressed in the body reference frame.  In 
projectile linear theory, the lateral translational and rotational velocity components are 
transformed to a nonrolling reference frame.  The nonrolling frame or so-called fixed plane 
frame proceeds with only precession and nutation rotations from an inertial reference frame.  
Components of linear and angular body velocities in the fixed plane frame can be computed from 
the body frame components of the same vector through a single-axis rotational transformation.  
For example, the body frame components of the projectile mass center velocity are transformed 
to the fixed plane frame by 
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It should be noted that the ~ superscript indicates the vector components are described in the 
fixed plane reference frame.  In projectile linear theory, a change of variables from station line 
velocity component, u , to total velocity, V , is performed.  Equations 16 and 17 relate V  and u  
and their derivatives. 

 222222 w~v~uwvuV ++=++= ; (16) 
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A change of variables from time, t , to dimensionless arc length, s , is also made.  Equation 18, 
as defined by Murphy (4), gives the dimensionless arc length, 

 dtV
D
1s

t

0
∫= . (18) 

Equations 19 and 20 relate time and arc length derivatives of a given quantity ζ .  Dotted terms 
refer to time derivatives, and primed terms denote dimensionless arc length derivatives. 
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In projectile linear theory, several assumptions regarding the relative size of different quantities 
are made to simplify the analysis.  Euler yaw and pitch angles are small so that: θθ ≈)sin( , 

1)cos( ≈θ , ψ≈ψ)sin( , and 1)cos( ≈ψ  and the aerodynamic angle of attack is small so that 
Vw~=α  and Vv~=β .  The projectile is mass balanced such that 0III YZXZXY ===  and 

YZZYYYYZZ IIIII ≡=⇒= .  The projectile is aerodynamically symmetric such that 
0CC 0Z0Y == .  Quantities V  and φ  are large compared to v,r,q,ψ,θ,  and w , such that 

products of small quantities and their derivatives are negligible.  Application of these 
assumptions results in equations 21–29. 
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These equations are a coupled set of linear differential equations except for the fact that the total 
velocity, V , appears in the coefficients of many of the dynamic equations.   

4. Projectile Linear Theory Solution 

Linear theory offers physical insight into the projectile flight dynamics because closed form 
solutions can be readily obtained (4).  Using the assumption that V  changes slowly with respect 
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to the other variables, it is thus considered to be constant, 0VV ≈ , when it appears as a 
coefficient in all dynamic equations except its own.  Moreover, pitch attitude of the projectile is 
regarded as constant in the velocity equation, uncoupling the velocity equation from the system.  
The angle-of-attack dynamics or epicyclic motion in equation 29, together with the roll dynamics 
in equation 28 are uncoupled and form a linear system of differential equations.  In projectile 
linear theory, the Magnus force in equations 25 and 26 is typically regarded as small in 
comparison to the other aerodynamic forces and is shown only for completeness.  In further 
manipulation of the equations, all Magnus forces will be dropped.  Magnus moments will be 
retained however, due to the magnitude amplification resulting from the cross product between 
Magnus force and its respective moment arm.  

The solution to the differential equation equation 27, for the forward velocity, is 
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When 00 =θ , the velocity solution reduces to the familiar exponential decay form (4).  

The roll dynamic equation is a nonhomogeneous linear differential equation with the following 
solution: 
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In order to develop the swerve closed form solution, the epicyclic equations must first be solved 
because the lateral translation and rotational velocity components are contained in the attitude 
differential equations, and the attitudes are contained within the swerve differential equations.   

The epicyclic differential equations consist of a set of four coupled nonhomogeneous differential 
equations.  The homogeneous solution is easily formed using the free vibration modes and mode 
shapes, and the results are given by the intrinsic complex expression,   
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f

s

f

. (37) 

The sum and product of fs  and ss  give the relations found in the next expression, 

 

( ) ( )



















Φλ+Φλ−
λλ−ΦΦ
Φ+Φ
λ+λ

=





















+−
+

−

fssf

sfsf

sf

sf

BFA
CEA
F
AE

. (38) 

Two more simplifications based on size are introduced.  First, neglect the product of damping 
and secondly, the product EA  is neglected because the density ratio is assumed small.  A 
solution may now be obtained for both the fast and the slow damping factors and turning rates 
for the translational and rotational velocities. 
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
 −



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
 +

−
−

+





 −−

=λ
EAF

B2FA2
1

C4F

F12

EA

2f
; (39) 

 

 











−+=Φ C4FF2

1 2
f

; (40) 
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
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
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
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 +

−
−

−





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=λ
EAF

B2FA2
1

C4F

F12

EA

2s
; (41) 
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










−−=Φ C4FF2

1 2
s

. (42) 

5. Pulse Force and Moment Conditions 

The pulse force applied to the projectile is taken to be a lateral impulsive force, and this force is 
due to an actuator attached to the projectile body (equation 29).  For this investigation, the force 
actuator is modeled as a scaled square wave pulse so that the resulting force and moment 
components in the nonrolling frame are as follows: 

 

 
n

B
0

nnn0

I L2

sV
pDcosLsssgnsssgnVF

Y













φ+















 −−−





 −

=

∗

; (43) 

 

 
n

B
0

nnn0

I L2

sV
pDsinLsssgnsssgnVF

Z













φ+















 −−−





 −

=

∗

; (44) 

 

 
n

B
0

nnn0

I LD2
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M
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





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
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
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
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
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∗

; (45) 

 

 
n

B
0

nnn0

I LD2

sV
pDcosLsssgnsssgnVM

N













φ+












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
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
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
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=

∗

, (46) 

 
for a square wave pulse of length nL  that is initiated at ns  represented as 

 2

0

d

Vm

FDF =
∗

 (47) 

and 
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 2
0y

rd
2

VI

XFDM =
∗

. (48) 

Note that the last two expressions become equivalent to delta function impulses in the limit of 
0Ln → . 

Once the simplified mode shapes of equation 29 are obtained, the initial conditions for 
r~ and ,q~ ,w~ ,v~  are used to complete the solution.  Equations 49 and 50 are the analytical solutions 

for the fixed plane translation velocities v~  and w~ , expressed in phase-amplitude form. 
 

 

( )

( ) ( ) ( )

( ) ( ) ; 
2

1LsssgnφF

2
LsssgnsssgnφF

sΦ,sΦF

)Θssin(ΦeV)Θscos(ΦeV(s)v~

nn
B3

nnn
B2

sf1

V2S
sλ

2V1F
sλ

1
sf







 +−−

+







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+

+

−+−=

 
(49)

 

 

 
( ) ( )
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2
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2
πφF

2
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2
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2
πsΦ,

2
πsΦF

)Θscos(ΦeV)Θssin(ΦeV(s)w~
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sf1

V2S
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2V1F
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1
sf







 +−−







 −+







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





 −+







 −−+

−−−=

 (50)

 

where 
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



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


 Φ−ΦΦ


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







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
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+























 Φ−ΦΦ






 −Φ+Φ





 Φ−

=
 (51) 
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
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






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
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




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
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
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= ; (52)
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
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

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=Θ
−
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1

1V ; (53) 
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
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









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
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



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



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



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



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−

Dr~Ev~Fw~
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tan
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1

2V ; (54) 
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
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( ) ( ) ( )[ ]

( )( )

( ) ( ) ( )[ ]
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−
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 (56)
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













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














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=

∗∗∗
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−−

∗∗∗
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−−

 (57)
 

 

 
0V
pDP = ; (58) 

 

 ssP,ssP sBnssfBnff Φ−φ−




 Φ−−=ΩΦ+φ+





 Φ−=Ω ; (59) 

 snfsfnff LP,LP Ω−




 Φ−=∆Ω+





 Φ−=∆ . (60) 

 
Swerving motion is measured along the earth-fixed IJ  and IK  axes.  To an observer standing 
behind the gun tube, these axes are oriented such that positive IJ is to the right and positive IK  
is pointed downward.  The swerving motion results from a combination of the normal 
aerodynamic forces, as the projectile pitches and yaws, plus the forces and moments due to the 
applied impulse.  Differentiating equations 22 and 23 with respect to nondimensional arc length, 
generates the swerve equations such that  
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



 φ+















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



 −

=

″














∗

 (61) 

and 

 
( ) ( )( ) ( )

0n

Bnnn

V

w~AG

L2

pssinLsssgnsssgnF

D

z −
+

φ+−−−−
=

″













 ∗

. (62) 

Integrating these equations is straightforward, but the solutions are judged to be too long to be 
listed here.  However, the asymptotic limit of these solutions, ∞→s , is of special interest. 
For a stable projectile, the swerve caused by epicyclical vibration decays as the projectile 
progresses downrange and does not affect the long-term lateral motion of the projectile.  When a 
lateral pulse is applied to the projectile at arc length ns , its effect on the target impact point is 
predominantly due to induced jump, provided the target distance is sufficient to allow the 
transients to decay.  Projectile linear theory shows that the long-term center of mass solution, or 
swerve, contains terms that remain bounded with arc length s  plus terms that are linear with s , 
and if gravity is included the solution will have even higher order diverging terms.  These higher 
order terms are typically denoted as gravity drop.  The linear terms are called jump terms, which 
are caused by initial conditions at the gun muzzle, lateral pulse forces, and aerodynamic 
characteristics.  Mathematically, setting gravity to zero and subsequently evaluating the 
following limits formally defines total jump. 

 K
s

J
s

Γ
sD

z(s) and,Γ
sD

y(s) limlim ==
∞→∞→

. (63) 

The total jump vector Γ  is expressed as the sum of two vectors.  The first vector represents the 
jump attributable to muzzle conditions, and the lateral pulse is represented by the second, thus 
resulting in the following expression: 
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
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000

000
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22K

J , (64) 

for which 
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( ) ( )
( ) ( )

( ) ( )
( ) ( )

( ) ( ) 0,LasφsPYZtanφsP
2
LPYZtanΠ

,
CEABFA

MCEAAFBCECAFBAZ

,
CEABFA

FFCEBAMBFAAY

nBn
1

Bn
n1

22

22

22

→−−→−−−=

+++
+−+++

=

+++
−++

=

−−

∗∗

∗∗

 

and 

 ( )
( ) 0.LasZY

2LP
2LPsinZYΛ n

22

n

n22 →+→+=  (65) 

The quantities Λ  and Π  are the magnitude and phase angle of the jump vector attributed to the 
lateral pulse.  It is interesting to note that the jump terms induced by the lateral pulse are not 
dependent on the lateral state of the projectile ( ) ( ) ( ) ( )( )sr~ and ,sq~,sw~,sv~ , thus this particular 
contribution to jump is not coupled to the projectile’s angle of attack.  Equation 65 extends the 
work by Guidos and Cooper (6) who considered nonspinning projectiles subject to a singular 

delta function impulse.  Limiting 0P,Ln →




  in equations 64 and 65 produces expressions 

that agree with their previous predictions.   

6. Lateral Pulse Smearing 

In order to better understand the swerve response due to a lateral pulse, results for a 
representative spin-stabilized 40-mm projectile configuration are calculated and discussed in this 
and the next two sections.  Nominal values for the aerodynamic coefficients, the projectile 
physical parameters, and flight characteristics are given in the Appendix.  All results presented 
use these values unless specified differently.  Diversions from these nominal values are clear 
from the context of the particular chart under examination.  

Plots showing the effect of smearing are given in Figures 3 and 4 for the applied force 
510    3.838F −∗ ×=  and moment arms 




 +→−= 635.0 to 635.0DXr .  Negative values of rX  

indicate that the application point of the pulse force is aft of the mass center while positive 
values indicate the pulse force is forward of the mass center.  To illustrate the smearing effects, 
the roll position, Nφ , of the lateral impulse force is assumed to act primarily along the nonrolling 
Y-axis.  This means the arc length, Ns , corresponding to the center of the pulse satisfies the 
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Figure 3.  Jump component-j due to lateral impulse vs. impulse duration. 
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Figure 4.  Jump component-k due to lateral impulse vs. impulse duration. 
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expression L2,1,0N,N2s BNN =π=φ+φ′=φ .  To ensure this force is acting nominally along 
the nonrolling Y-axis, the activation point begins at 2Lss nNn −=  so that the duration of the 
impulse brackets N2N π=φ .  Increasing pulse length, nL , causes the jump components to 
cyclically decay while its value at 0Ln =  corresponds to a lateral impulse that is proportional to 
the delta function ( )nss −δ .  Values of nL  where the jump is zero represent situations where the 
duration of the lateral pulse coincides with a roll cycle.  This accounts for the post multiplier, 















0

n

V2
DLpsin , in equation 65 having π2  zero crossings and causes the cyclical jump results in 

Figures 3 and 4.  Notice for the cases presented the response due to a pulse in the IJ  direction is 
predominantly along IJ ; however, a smaller out-of-phase component of swerve is also 
generated.   

7. Lateral Pulse Response Magnitude and Phase Angle 

Figure 5 has charts showing the absolute value of Λ  as a function of the pulse length nL  for the 

previous parameter values 
5

10838.3F
−∗

×=  and 




 +→−= 635.0 to 635.0DXr .  Here again 

the impulse is assumed to bracket N2N π=φ .  The maximum value occurs at 0Ln = , which is 
the delta function result, as is justified from equation 65.  Consideration of Λ  as a function of 

spin rate p  is displayed in Figure 6 for several pulse durations 




 →= 40to0Ln .  This figure 

shows that the rate at which the aerodynamic jump magnitude decreases, with spin rate, is 
strongly dependent on the pulse duration.  Again, this is attributed to cancellation (i.e., smearing) 
effects, which become more pronounced with increasing values of nL .   

Figure 7 gives the phase angle, Π , (equation 65) as a function of spin rate for the same values of 
the moment arm length DXr  previously discussed.  Notice that the phase angle linearly 
increases with spin rate, indicating that spin-stabilized projectiles are most susceptible to an  
out-of-phase swerve response due to lateral pulse forces.   

8. Target Interception  

The last topic discussed in this report examines the relationship between a given change in 

aerodynamic jump, 








Γ∆
Γ∆

K

J , and the impulse needed to create this change.  This may be desirable 
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Figure 5.  Magnitude of jump due to lateral impulse vs. impulse duration. 
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Figure 6.  Magnitude of jump due to lateral impulse vs. spin rate. 



 

 19

 

-3

-2

-1

0

1

0 100 200 300 400 500 600

Spin Rate p (1/sec.)

Ph
as

e 
A

ng
le

 Π
 (D

eg
re

es
)

Xr/D = -0.636

Xr/D = -0.318
Xr/D = 0.0

Xr/D = +0.635

Xr/D = +0.318

N2YZtan&10838.3F
15

π=Π−×=
−∗

Spin Rate p (1/s) 

 

Figure 7.  Phase angle of jump due to lateral impulse vs. spin rate. 

 
when the activated impulse is strong enough to force a projectile to strike its target, located at a 

relative position 








Γ∆
Γ∆

K

J , with a single impulse.  Hence, equation 64 requires  
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

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


Π
ΠΛ=








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cos
sin

K

J . (66) 

Solving this system for Π  and insisting that Π  remains real valued yields the following two 
equations for target interception:  
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


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2
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sDp
V2
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and 

 N2tan
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LDp

V
sDp

KKJJ

KJJK1

0

n
B

0

n π+







ΣΓ∆+ΣΓ∆
ΣΓ∆−ΣΓ∆

+−=φ+ − . (68) 
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Using equation 65, the impulse force IF  can be determined from equation 67, for a given 
moment arm rX , and then equation 68 solved for Bφ  will guarantee target impact, provided the 

relative target position, 








Γ∆
Γ∆

K

J , is known. 

9. Conclusions 

An analytical approach for quantifying the effect of a lateral square impulse disturbing a 
projectile during free flight has been presented.  All of the analysis was based on projectile linear 
theory, which produces simple closed form solutions for the assumed square pulse disturbance.  
These solutions are then used to calculate the projectile swerving motion, so that the long-term 
effects of the lateral impulse are readily determined.  The primary interest regarding target 
interception is the projectile’s aerodynamic jump.  Changes to aerodynamic jump caused by the 
lateral impulse forces were shown to produce easy-to-understand additive contributions to the 
usual aerodynamic jump of a free-flight projectile with no applied impulse. 

The important question concerning smearing effects originating from a finite length pulse has 
been addressed where pulse-induced control authority is shown to diminish as nL1 .  
Calculations also show the additional aerodynamic jump magnitude, Σ , decreases with spin rate 
p  when subjected to various pulse lengths nL .
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Appendix A.  Flight Coefficients for a 40-mm Projectile 

The numerical values used for the graphical presentations given in this report are shown in the 
following matrices:   

Aerodynamic coefficients:   
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Physical parameters:   
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Flight characteristics:   
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List of Symbols 

iC   Projectile aerodynamic coefficients 

D   Projectile characteristic length (diameter) 

dF   Dimensional impulse force  

∗F   Nondimensional impulse force 2

0d VmFDF =∗  

g   Gravitational constant 

G   Scaled gravitational constant 0VDgG =  

Y

X

I
I

  Mass moments of inertia 

N~
M~
L

  Applied moments about projectile mass center expressed in the no-roll frame 

m   Projectile mass 

r~
q~
p

  Angular velocity components vector of projectile in the no-roll frame 

S   Surface area 4DS
2

π=  

s   Nondimensional arch length 

( )τsgn   




=τ
≠τττ

00
0  

w
v
u

  Mass center velocity components in the body reference frame 

0V   Forward velocity of projectile 

w~
v~
u

  Mass center velocity components in the no-roll reference frame 
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rX    Dimensional moment arm length  

I

I

Z
Y

  Applied force components in the no-roll reference frame 













z
y
x

  Position vector of body center of mass in an inertial reference frame 

α   Longitudinal aerodynamic angle of attack 

β   Lateral aerodynamic angle of attack 

K

J
Λ
Λ   K

J  Components of aerodynamic jump due to lateral impulse 

Π   Phase angle of the aerodynamic jump due to lateral impulse 

ψ
θ
φ

  Euler roll, pitch and yaw angles of the projectile 

Bφ   Euler roll angle of the applied impulse 
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