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Outline

• Solar – a huge success, but still a long way to go
• Key approaches to solar electricityy y

• Solar thermal
• Crystalline silicon
• Thin film – amorphous silicon CdTe CIGS• Thin film – amorphous silicon, CdTe, CIGS
• Concentrator – low- and high-concentration approaches

• Importance of reliability to success of solar
• Reliability issues specific to each approach

• Silicon – strong performance; continuous improvement; 
quantitative predictionsquantitative predictions

• Thin film – uniform, large-area deposition for product 
development and sensitivity to moisture; metastabilities

• Concentrator product development; simultaneous
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• Concentrator – product development; simultaneous 
optimization of multiple components



Growth of photovoltaic (PV) industry

Tons of Si passes

Area of Si passes 

Tons of Si passes 
microelectronics

2006 

microelectronics
2001 

0.01%-0.1% of electricity now comes from PV - extrapolates to > 5% in 2020
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competitive with conventional electricity for 0.1% - 1% of market; more in future
Rogol, PHOTON International August 2007, p 112.
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Growth of PV industry

Annual replacement of electricity capacity for 20 yr cycle
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If we can maintain the current
growth rate, PV will reach major
milestones in less than 10 yrs

If we can maintain the 
current growth rate, PV 
will reach major 
milestones in < 10 yrs
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milestones in less than 10 yrsmilestones in < 10 yrs
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Year
*www.eia.doe.gov/emeu/international/electricitycapacity.html (4012-2981 GW)/10 yr



Solar energy is abundant
Convenient truth: small area can supply our energy needsConvenient truth: small area can supply our energy needs

5-6 kWh/sq m/day
At 10% 

efficiency, y,
area needed 

for US 
electricity

>10 kWh/sq m/day>10 kWh/sq m/day
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Sunlight reaching earth in 1 hour is enough to power the world for 1 year



Solar thermal electric
Parabolic trough is the primary 
technology today
Resurgence of interest
~ 400 MW installed
Currently generates ~ 0.01% of US 
electricityy
Can generate electricity into the 
evening & use fuel into the night
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Year
4 GW planned in US by 2014



64 MW S l i P b li64 MW Solargenix Parabolic 
Trough Plant in Nevada -

2007

1-MW Arizona Trough Plant – near 
Tucson AZ 2006
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Tucson, AZ - 2006
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Three key approaches to photovoltaic (PV) panels

Two strategies to reduce 
semiconductor material 

Conventional approach

Front
Solar cell

2. Thin film

Back 1. Silicon

Reduce cost by reducing use 
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3. Concentratorof semiconductor



Many technology choices
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One “winner” or many technologies?

Nickel cadmium Nickel metal hydrideAlkaline Nickel metal hydridea e

Lithi i

Lead acid

ASTR 2009 Oct 7 – Oct 9, Jersey City, NJSarah Kurtz
PV Reliability Page 11
October 15, 2009

Lithium ion

LithiumDifferent technologies for different applications



Cost of electricity: two or three parts
2 O ti d i t
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 Upfront costs for PV and coal plants are converging
 Ongoing costs are less for PV
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 Operation only during daylight hours increases cost by ~X4
 Key remaining question is life of PV plant (30 years?) 



Importance of reliability & durability
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Those paying for upfront investment want guarantee of system life



How to satisfy the investor?

 Historically, degradation & failure mechanisms 
have been found in the field that were not found in 
accelerated testing

 Predictive models need to be validated with field 
data

 Big challenge:  How can we give 30-year 
predictions for degradation & failure rates when the 
product has only been in the field for 1-2 years?
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Silicon modules

SiliconS
Glass

Si module cross section

EVA

EVA

Backsheet

Silicon cell Tab

Common encapsulation materials
EVA Ethylene vinyl acetateEVA - Ethylene vinyl acetate
PET - polyethylene terephthalate
PVF - poly vinyl fluoride 
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History of Si module qualification test: 
JPL (Jet Propulsion Lab) Block buys

Test I II III IV V

Year 1975 1976 1977 1978 1981

Th l 100 l 50 l 50 l 50 l 200 lThermal 
Cycle (°C)

100 cycles
-40 to +90

50 cycles
-40 to +90

50 cycles
-40 to +90

50 cycles
-40 to +90

200 cycles
-40 to +90

Humidity 70 C, 90%RH, 
68 hr

5 cycles
40 C 90%RH

5 cycles
40 C 90%RH

5 cycles
54 C 90%RH

10 cycles
85 C 85%RH68 hr 40 C, 90%RH 

to 23 C
40 C, 90%RH 
to 23 C

54 C, 90%RH 
to 23 C

85 C, 85%RH 
to -40 C

Hot spots - - - - 3 cells, 100 
hrshrs

Mechanical 
load

- 100 cycles 
± 2400 Pa

100 cycles 
± 2400 Pa

10000 cyc. 
± 2400 P

10000 cyc. 
± 2400 Pa

H il 9 i t 10 i tHail - - - 9 impacts 
3/4” - 45 mph

10 impacts 
1” - 52 mph

NOCT - - - Yes Yes
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High pot - < 15 µA 
1500 V

< 50 µA 
1500 V

< 50 µA 
1500 V

< 50 µA 
2*Vs+1000



JPL Block buys led to dramatic improvements
O t d l i d (Whi l 1993)• One study claimed (Whipple, 1993):
• Pre-Block V:  45% module failure rate

P t Bl k V 0 1% d l f il t• Post-Block V: <0.1% module failure rate
• Studies of c-Si modules show that module failures 

ll (i t d i t h t i l )are small (inverters dominate when cost is low)
Unscheduled maintenance costs

 69% 

Currently, most reports imply 
that c-Si module failures are 

dominated by improper
Inverters

dominated by improper 
installation, lightning strikes, 

critters, etc.
 21% 

System

PV
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(Prog. PV 2008; 16:249)
 10% 



Today’s qualification standards 
are similar to JPLare similar to JPL

 IEC 61215 - Crystalline silicon design qualification 
includes 18 test procedures p
Thermal cycling - 200 cycles -40°C to +85°C
Humidity freeze - 10 cycles +85°C, 85% RH to -40°C
D h t 1000 h t +85°C 85% RHDamp heat - 1000 hrs at +85°C, 85% RH
Wet leakage current - Wet insulation resistance X area > 

40 MΩm2 at 500 V or system voltage
Requirement is typically to retain 95% of original power 

production

 IEC 61646 (thin film) and IEC62108 (CPV) IEC 61646 (thin film) and IEC62108 (CPV) 
are similar
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www.iec.ch



Silicon modules – remaining challenges

 New materials (reduce cost, improve performance) 
– will these have same reliability?y

 Continued quality assurance (e.g. impurities in Si 
give light-induced degradation)

 Arcing, grounding, power conditioning, other 
system-related problems

 Confident, long-term, quantitative predictions

 Typical degradation rates are 0-1%/yr (difficult to 
measure); field failure rates are often < 0.1%/yr
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 Proven module does not guarantee new products



Past success does not guarantee 
future success

C-Si

Thin filmThin film70%
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20About two-thirds of degradation rates are measured as < 1%/yr
33rd PVSC, TamizhMani, 2008



Measurement of degradation rates takes years
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Need precise measurement of 
irradiance, temperature, etc. 21

Time



Thin-film approaches on the market
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CuIn(Ga)Se CdTe Amorphous silicon



Thin-film approach

• First Solar (Toledo, OH) - 5th biggest 
PV company in world in 2007p y
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Thin-film structures

Glass

CdTe uses superstrate

Glass for protection

CuInGaSe uses substrate

Glass

ITO or TCO

Glass for protection

CdS

CdT

ZnO or TCO

CdSNot to 
scaleCdTe

Metal
CuInGaSe

scale

Molybdenum

ASTR 2009 Oct 7 – Oct 9, Jersey City, NJSarah Kurtz
PV Reliability Page 24
October 15, 2009

Glass for strength Glass



Monolithic module integration

5 x 120 µm

Conductor

Device

Conductor

Contact
Cell

( )

Contact
Cell

(I ti )

Active Cell
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Glass
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Hurdle for thin films: uniformity of deposition
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Hurdle for thin films: uniformity of interconnections

5 x 120 µm

Conductor

Device

Conductor

Contact
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Module metastability: Reversible 
vs irreversible changes

• Amorphous silicon degrades in light and recovers 
when annealed in the dark
CIGS d CdT h t i t• CIGS and CdTe can show transients

9
Rated efficiency
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tested same day
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tested next day
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4
CIGS modulesCIGS 3-year exposure in Florida



Damp heat can cause degradation
 ZnO (and other transparent conductors) react 

with moisture, causing increase in series 
i tresistance

 CuInGaSe may react with moisture
T t C d ti O idTransparent Conductive Oxides
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Many possible failure mechanisms 

• CdTe has shown instability of back contact 
(diffusion?)( )

• Edge seal may allow water into glass/glass module
• Partial shunts or conducting diodes may be seen at 

scribe lines or other defected areas
• Adhesion to glass can be problem

Role of sodium is important in CuInGaSe modules• Role of sodium is important in CuInGaSe modules, 
but sodium can move

• Currently, the biggest effort with CuInGaSe is to try to y, gg y
put it on a flexible substrate – requires excellent 
barrier coating unless cell can be hardened to 
moisture
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moisture



Range of concentrator approaches

Amonix JX Crystals

High concentration Low concentration
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• 35% - 40% cells
• 400X – 1500 X

• 15% - 25% cells
• 2X – 100 X



CPV challenges – many interactions

 CPV can fail in many ways, but it can be difficult to 
understand where the problem is and to fix the p
problem without creating a new problem

• Tracking – optics must be aligned with the sun
• Optics – durability can be problem, soiling; optics 

affect rest of system
• Cell – must be encapsulated, but not affected by 

UV; size of cell affects rest of system
• Heat sink – must be electrically isolated, but 

excellent thermal contact
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• Modularity may be benefit!



UV transmission

Analysis of transmitted optical spectrum enabling accelerated testing of 
CPV designs

SPIE 2009 David Miller, et al

ASTR 2009 Oct 7 – Oct 9, Jersey City, NJSarah Kurtz
PV Reliability Page 33
October 15, 2009



Bonds to heat sink and optics

Optic Optical bond with 100% 
Transmission
50 W/sq cmElectrical 

Cell

H t i k

contact
Small T (<10°C)
Electrical isolation

Heat sink No voids
T cycle OK

• Borrowing experience from power electronics and 
DBC (direct bonded copper) makes this a smaller 

IR image of void in 
die attach
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issue
• Intense UV may be a substantial problem, but 
optics may not transmit UV

Bosco 34th PVSC



Concentrators – reliability challenges

• Wide variety of designs
• Qualification test is not well established• Qualification test is not well established
• Companies spend time developing their own 

l t d t t t d d taccelerated tests to speed product 
development cycles

• Very few companies have heritage with field 
testing

• Everyone wants to bring a product to market 
immediately
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Concentrator technology

CreativeCreative 
optical 
designs?designs?
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Summary

• Solar is growing rapidly and could become a 
i ifi t f l t i it ithi 10 20significant source of electricity within 10-20 yrs

• Silicon modules are performing well in the field; 
reliability testing of new designs is still importantreliability testing of new designs is still important

• CdTe and CuInGaSe modules are sensitive to 
moisture, so must be carefully sealed; only 

h Si d l il bl i fl ibl famorphous Si modules are available in flexible form
• Concentrator PV is in product development stage, but 

is benefiting from expertise in other industriesis benefiting from expertise in other industries
• In general, PV industry can benefit from the reliability 

testing experience of the microelectronics industry  
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Let’s work together to help PV grow!



Planet powered by 
renewable energygy

By year 2100 or before?
Thank you for your attention!y y
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