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1. Introduction 

This report extends the work of Ballistics Filtering ARL-TR-47351 by showing the process of 

realizing the ideas through a simulation.  By providing a concrete example it is hoped other 

realizations of the ideas can be pursued with a reasonable effort.  Ballistic Filtering describes the 

dynamic equations that can be used to form Extended Kalman Filters (EKF) for the estimation of 

a projectile’s trajectory.  The steps associated with initialization and implementing an EKF are 

demonstrated through a specific task.  The performance of an EKF processing Global Positioning 

System (GPS) observation is compared to the performance of an EKF processing both GPS and 

axial accelerometer observations.  Hit point prediction error is used as the measure of 

effectiveness.  Both filters use the same dynamics for state and covariance propagation. 

Commented code is included as appendix A to allow the reader to observe the details of the 

implementation.  It is assumed that the reader has examined the Ballistics Filtering report2 and 

can reference the report.  The best way to think of this implementation is as a process that 

propagates the state and state covariance that is interrupted from time to time by the task of 

processing observations.  The implementation of an extended filter is conveyed symbolically by 

the following set of equations.  All symbols represent vectors or matrices so the operations are 

those of linear algebra and are only scalar operations if the quantities represented are scalar.  It is 

assumed the reader is familiar with linear algebra; Gilbert Strang has authored many excellent 

books on linear algebra.  To develop an EKF it is necessary to have access to a set of linear 

algebra routines as an EKF is described with linear algebra operations.  Linpack and Eispack are 

two well-known linear algebra packages. 

2. The Extended Filter Overview 

2.1 Initial Conditions 

The symbol x is used to denote the state of the system and is assumed to have a normal 

distribution; the ~ denotes ―is distributed as‖ and the N(a,b) denotes a normal distribution with a 

mean of a and covariance of b.  The hat denotes, the estimate of, so x̂  symbolizes the estimate of 

the state: 

 ))0(),0(ˆ(~)0( PxNx . (1) 

The above statement indicates that to start the filter both the state, (a vector), and the state 

covariance matrix, need to be input.  The projectile state in this example contains three location 
                                                      

1 Thompson, A. Ballistics Filtering; ARL-TR-4735; U.S. Army Research Laboratory:  Aberdeen Proving Ground, MD, 2009. 

2 Ibid. 
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parameters, three velocity parameters, and one parameter representing the projectile drag 

coefficient.  The estimate of the state is based on knowledge of the initial conditions; for 

example, the estimate of the launch site’s location, the estimate of the launch velocity, and the 

estimate of the drag factor.  The state covariance can be estimated based on knowledge of the 

techniques used to estimate the initial state value.  The position variance should be based on the 

location method used to determine the launch site.  Velocity information would be based on the 

uncertainty associated with the gun tube direction, tip off at barrel exit, and muzzle velocity 

uncertainty, etc.  The uncertainty associated with the drag factor can be approximated via 

knowledge of model shortcomings or from recursively simulating a launch and then empirically 

setting the variance.  As time progresses the importance of these values diminishes; however, it 

is important to get a reasonable start, especially when using an EKF. 

2.2 Time Propagation 

The first section of code is related to change of the state and the state covariance as a result of the 

dynamics or the plant.  These can be repeated between observations to minimize the nonlinear 

effects.  For the case investigated there are 10 propagation updates per GPS observation update. 

System nonlinear dynamics plus plant noise q~N(0,Q) is represented by the following vector 

relationship. 

 )()),(ˆ()(ˆ 1 tqttxftx kk  
  (2) 

 kt ttxtxtx kkk  )(ˆ)(ˆ)(ˆ 1
  (3) 

The covariance propagation for an EKF is updated through the following matrix relationship.  

 )()),(ˆ()()()),(ˆ()( 11 kkkkkk tQttxFtPtPttxFtP  
  (4) 

 ttPtPtP kkk   )()()( 1
  (5) 

Both the state and the state covariance are updated in the manner of Euler integration; that is, the 

updated values are equal to the old value added to the time interval multiplied by the differential.  

If an observation is not available the above steps are repeated until a sensor presents an 

observation to the filter.  Also, to predict the future values of the state the above equations would 

be propagated forward in time and provide an estimate of the state and the state covariance.  

From a pragmatic perspective, the Q matrix is used to account for the shortcomings of the 

dynamic model used for the state.  It has the effect of preventing the state covariance from 

becoming very small.  If the state covariance becomes too small then it will effectively ignore 

the observations; this is referred to as the closing of the filter.  It can be amusing to think of a 

filter as being narrow minded.  

The next line defines the matrix )),(ˆ( ttxF , this matrix needs to be available each time step for 

propagation.  Computationally this is the most expensive step in the filter so it is worthy of effort 
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to find ways to minimize the number of times this computation is made.  Ideas for this can be 

based on the state value or on information related to change in the )),(ˆ( ttxF  matrix.  Ideas like 

these account for some of the variation in EKF implementations. 

 )(ˆ)(ˆ
)(ˆ

)),(ˆ(
)),(ˆ( kk txtx

tx

ttxf
ttxF 




  (6) 

Since both )),(ˆ( ttxf  and )(ˆ tx  are vector quantities the resulting matrix )),(ˆ( ttxF k  will be a 

square matrix of the same dimension as the state.  In the single element ―ij‖ notation the previous 

matrix equation can be expressed as: 

 )(ˆ)(ˆ
)(ˆ

)),(ˆ(
)),(ˆ( k

j

i

kij txtx
tx

ttxf
ttxF 




 . (7) 

2.3 The Observation Phase 

The next set of equations represents the steps taken to update the state when an observation 

becomes available for processing.  While the time propagation produces continuous change, the 

observation updates result in discontinuities in both the state and the state covariance.  There will 

be a jump in the state value and the state covariance will be instantly diminished as the 

consequence of processing an observation.  The observation and state are combined in a least 

squares fashion based on their respective covariances (see Thompson 1991 BRL-TR-33033).  It 

is worth noting that the accuracy of the estimate depends on precise values of the state and 

observation covariance.  If the covariance values are precise then the result is an optimal 

estimate.  The processing of an observation is considered to take place at a specific time step. 

There is a need to distinguish between the values of the state and the state covariance before and 

after an observation is processed.  This distinction is only needed for two formulas.  

Although observations can be scalar quantities, they are generally considered as vectors, and z  

is assumed to be a vector.  This is the observation equation v~N(0,R) 

 )()),(()( kkkk tvttxhtz  . (8) 

In equation 8 the error is considered a sample from the normal distribution with zero mean and 

covariance R.  Obviously R represents the measurement error and it is typical to include a model 

or subroutine to calculate R for each observation.  In general the elements of the R matrix are: 

 )()()()( kjkikijkij ttttR  , (9) 

where the matrix R  is square, i represents the standard deviation of the ith observation, and the 

correlation between measurements is represented by ij .  The dimension of R is the number of 

                                                      
3 Thompson, III, A. A. Data Fusion for Least Squares; BRL-TR-3303; U.S. Army Ballistic Research Laboratory:  Aberdeen 

Proving Ground, MD, 1991. 
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measurements made by a sensor at each time step.  For GPS location measurements R can be 

treated as a constant diagonal matrix of dimension 3.  

Relinearize the observation: 

 )(ˆ)(
)(

))((
))(ˆ( kk txtx

tx

txh
txH 




 . (10) 

The dimension of this matrix will be the dimension of the observation, z , by the dimension of 

the state, )(tx .  The gain due to an observation is:  

   1'' )())(ˆ()())(ˆ())(ˆ()()(


 kkkkkkk tRtxHtPtxHtxHtPtK , (11) 

This matrix formula can be shown to be a least squares formulation for recursively processing 

observations.  Note that exponent –1 represents matrix inversion and the operation is the matrix 

transpose operator. 

2.4 Change in the State Due to Observation 

The preobservation value of the state needs to be distinguished from the value of the state after 

the observation is processed.  In this notation the minus sign (–) indicates previous to the 

observation being processed, the subscript k indicates that ktt  , and the plus sign (+) indicates 

after the observation has been processed: 

 )(ˆ)(ˆ kk txtx   (12) 

 ))),(ˆ()()(()(ˆ)(ˆ kkkkkk ttxhtztKtxtx    (13) 

 )(ˆ)(ˆ  kkk txtx . (14) 

Update the state covariance via observation, the symbol I  is used to represent the identity matrix 

for this example it would be seven dimensional or 7I .  The portion of the formula, 

)),(ˆ()( kkk ttxhtz  , is sometimes referred to as the innovation as it represents the new 

information being incorporated into the state.  For the state covariance the following matrix 

operations take place: 

 )()( kk tPtP   (15) 

   )()),(ˆ()()(   kkkkk tPttxHtKItP  (16) 

 )()(  kk tPtP . (17) 

The observation phase of the code can be repeated for different sensors or measurements; the 

observation matrix and the measurement covariance would differ for different sensors.  The 

observation cycle of the individual sensors must be considered in the design of an EKF.  It is 
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easy to envision an EKF moving along with state propagation but using an interrupt system to 

process specific observations.  The previous perception makes the design of an EKF for variable 

time steps straightforward.  Figure 1 presents a summary of an EKF in flowchart form. 

 

Figure 1.  Summary chart for a EKF. 
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3. Scenario 

The first scenario is to investigate the performance of an EKF processing GPS measurements to 

predict the hit point of a mortar trajectory.  The second scenario adds an axial accelerometer to 

the sensor suite.  The actual trajectory was generated from a 6dof model.  The points on this 

trajectory will be used to generate observations for the EKF.  By using a 6dof model, there will 

be nonlinearities in the trajectory that are not modeled by the EKF.  In this scenario a simple 

state model will be used.  Most of the variation in EKF implementation is due to the dynamics 

used.  The selection of dynamics is a tradeoff between model fidelity, functionality, and speed of 

computation. 

For this scenario the state will consist of seven dimensions location, velocity, and ballistic 

coefficient.  The down range direction is given by
1x .  The vertical direction is given by 

2x .  The 

cross range direction is given by
3x .  The only effect captured will be the drag; this is done 

through the ballistic factor using universal drag curves.  Other drag models could be used, but 

this presents a default model that works well with artillery and mortar rounds.  The uncertainty 

due to unmodeled dynamics is captured by the matrix q(t).  The following equations are used to 

model the dynamics, sometimes this is referred to as the plant.  The dynamic models used are 

taken directly from STANAG 43554 or are simplified versions of the dynamics presented 

therein.  A detailed description of the units for a more complete set of models can also be found 

in STANAG 4355. 

 41 xf   (18) 

 52 xf   (19) 

 63 xf   (20) 

 6
1

474 2 x
R

gx
VxAkxf y

e

d   (21) 

 6

5.2

3

2

1
575 2)

2

)(
1( x

R

xx
gVxAkxf x

e

d 


  (22) 

 45
3

676 22 xx
R

gx
VxAkxf yx

e

d   (23) 

 07 f  (24) 

 

                                                      
4 NATO STANAG 4355, Modified Point Mass Trajectory Model; North Atlantic Treaty Organization, January 20, 1997. 
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These equations, represented above as )),(ˆ( ttxf , incorporate drag, gravity, and Coriolis Effect; 

other elements of the dynamics such as lift and Magnus effect are ignored. 

This scenario will model a mortar round fired north from a latitude of 45 degrees north.  The shot 

elevation is 45 degrees with a speed of 220 meters per second (m/s).  The launch conditions are 

used to initialize projectile state vector )(ˆ 0tx .  The state covariance matrix )( 0tP  can be 

estimated based on knowledge of the techniques used to estimate the initial state value.  The 

position variance should be based on the location method used to determine the launch site.  

Velocity information would be based on the uncertainty associated with the gun tube direction, 

tip off at barrel exit, and muzzle velocity uncertainty, etc.  The uncertainty associated with the 

drag factor can be approximated via knowledge of model shortcomings or from recursively 

simulating a launch and then empirically setting the variance.  As time progresses the importance 

of these values diminishes; however, it is important to get a reasonable start, especially when 

using an EKF. 

Although a GPS sensor typically makes one observation a second, they can easily be 

programmed to present 5 observations a second and with some effort they can make 10 or more.  

It is assumed that the round contains a GPS sensor that can make 10 independent observations 

per second.  The ability of the filter to predict impact point will be observed.  If the filter 

performance is not adequate then it can be concluded that a GPS receiver is not adequate given 

the chosen dynamics. 

In order to propagate the state covariance the partials of the dynamic equations with respect to 

the state are needed the needed partials are: 

 114 F , (25) 

 125 F , (26) 

 136 F , (27) 

 
eR

g
F


41 , (28) 

 
2

4742
x

A
VxkxF d




 , (29) 

 



















 Vk

x

V
xk

x

k
VxAxF dd

d

4

4

4

4744 , (30) 

 




















55

4745
x

V
k

x

k
VAxxF d

d , (31) 
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 yd
d

x

V
k

x

k
VAxxF 



















 2

66

4746 , (32) 

 447 VxAkF d , (33) 

 
5.2

3

2

1
51

)(2 xx

x

R

g
F

xe 
 , (34) 

 
2

5752
x

A
VxkxF d




 , (35) 

 
5.2

3

2

3
53

)(2 xx

x

R

g
F

xe 
 , (36) 

 




















44

5754
x

V
k

x

k
VAxxF d

d , (37) 

 



















 Vk

x

V
xk

x

k
VxAxF dd

d

5

5

5

5755 , (38) 

 xd
d

x

V
k

x

k
VAxxF 



















 2

66

5756 , (39) 

 557 VxAkF d , (40) 

 
2

6762
x

A
VxkxF d




 , (41) 

 
eR

g
F


63 , (42) 

 yd
d

x

V
k

x

k
VAxxF 



















 2

44

6764 , (43) 

 xd
d

x

V
k

x

k
VAxxF 



















 2

55

6765 , (44) 

 



















 Vk

x

V
xk

x

k
VxAxF dd

d

6

6

6

6766 , (45) 

 667 VxAkF d . (46) 

The following information is also needed to obtain numerical values for the F-matrix: 
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}6,5,4{

)(

)(

5.2

6

2

5

2

4

5.2

6

2

5

2

4











i
xxx

x

x

V

xxxV

i

i

, (47) 

 

21

21

10

2

0

1

0

4071.1

223.1

xa

xa

eaa
x

A

eaA

ea

a
















, (48) 

 ))2cos(0026.1(80665.9 Latg  , (49) 

 6356766eR . (50) 

A  is the air density as a function of altitude 2x , g  is the acceleration of gravity as a function of 

altitude, and eR  is the radius of the Earth.  The drag coefficient is calculated using a fourth 

degree polynomial of Mach number m .  Mach number is the speed divided by the speed of 

sound.  Notice that in this formulation the partial of the speed of sound with respect to height is 

not included in the F-matrix. 
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
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)sin(

)cos(

52921.7

lat

lat

e

y

x







 (52) 

0s  is the speed of sound a sea level in m/s and s  is the speed of sound at altitude 2xx sl . dk  is 

the drag coefficient is calculate using a 4
th

 order polynomial fit. 1  and 2  are the Coriolis 

factor in the I=1 and I=2 directions.  
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In the example, the Q matrix is assumed to be constant in time.  There is assumed to be no 

correlation between errors so all of the off diagonal terms are zero.  All of the main diagonal 

terms are set to 0.05: 

 































05.0000000

005.000000

0005.00000

00005.0000

000005.000

0000005.00

00000005.0

Q . (53) 

 

In this example the measurements to be used are assumed to be estimates of position from a GPS 

receiver.  It has been assumed that observations are independent of one another and constant in 

time.  Neither of these assumptions is true in a real GPS but have been made here to simplify the 

calculation.  The R matrix is constant over time: 

 



















400

090

004

)( ktR , (54) 

The observation matrix H is expressed as follows: 
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In this case the simplicity is the result of the measurements being the same as the position 

portion of the state variable.  Throughout the remainder of this report a task will be mentioned 

and then the code associated with that task will be discussed. 

4. Initialization 

The initialization problem can be subdivided into two major sections:  those tasks associated 

with the dynamics being used, and those associated with the operation of the filter.  The routine 

INIT8 sets up the universal or default model for drag.  In other implementations models for lift 
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and spin may be required and this would be a logical spot to include them.  The drag model is a 

polynomial fit between breakpoints; thus, the shape of the curve is generated through these 

models.  The data gives the breakpoints and the coefficients of the fitted polynomials between 

each set of breakpoints 

The task of the routine INIT is to set up variables for the filter; most of these are related to the 

particular scenario.  Line 7 perturbs the assumed starting point from the actual starting point. 

Lines 8–12 set up the assumed original velocity.  The actual 6dof was fired at 45 degrees so there 

is 4 degrees of error included.  Line 13 initializes the value of the ballistic factor.  Line 15 sets up 

the default speed of sound.  Lines 18–21 set up the q matrix.  The q matrix represents the short 

comings of the chosen dynamics; part of designing an EKF is the process of adjusting the q 

matrix to a satisfactory value.  There is rarely a way to predetermine the q matrix; typically 

simulations or multiple runs are used to tune these values.  Lines 25–27 are the model for the 

observation error.  These models can be quite complex and may need to consider the situational 

geometry.  For this scenario GPS observations are assumed to be for position and have the same 

error structure from observation to observation; thus, the h matrix will not change from 

observation to observation.  Lines 29–30 define the h matrix; this is the observation in terms of 

the state variables.  Since GPS gives position this matrix just selects the three position variables 

and ignores the other state variables.  Line 32 is just to define an identity matrix of the same 

order as the state.  The last task of the INIT routine is to define the state uncertainty.  The p 

matrix is used to represent state covariance.  The use of ancillary knowledge and/or simulations 

can indicate good values for the initial state covariance.  In this case each position error and each 

velocity error is assumed to have a variance of 1.  The variance of the ballistic coefficient is 

assumed to be .0001.  This value was chosen by observing the variation in this parameter over 

several simulations and selecting a value that reflected the observed variation. 

4.1 Main Program:  driver7 

After initialization the main program starts.  This is basically a loop that processes the 

observations.  Typically in an EKF each observation is associated with a cycle of the filter; 

however, in this example there are 10 sub cycles associated with each observation.  These sub 

cycles can be thought of as a way to minimize the effects of linearization.  Rather than one large 

step being taken between observations the interval is subdivided to minimize the error associated 

with the assumption of linearity.  The basic time step is 1/100 of a second and the observations 

come at the rate of 10 per second.  Line 4 calls the previously discussed initialization routines.  

Line 5 sets the time step.  Line 9 loads the observations.  At this point in the program this is the 

true trajectory that was generated from a 6dof model.  Noise will be added to these values before 

they are fed to the EKF as observations.  Lines 11–12 set the earth’s latitude and radius.  In lines 

13–14 variables related to wind speed are set to zero.  Line 16 sets constants that are used for the 

standard atmosphere model so air density can be calculated.  Lines 18–30 set variables used for 

Mach number, the gravity model, and Coriolis.  Line 31 dimensions the f matrix and initializes it 

to be all zeros.  Lines 33–35 initialize a set of record keeping variables.  These are for the state, 
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the predictions, and the trace of the covariance matrix.  Line 40 initializes a counter for between 

observation updates of the state and the state covariance.  There are 10 propagation updates for 

each observation update.  Line 45 initializes a counter for observations.  

The main loop is controlled by the height of the projectile, once the height returns to ground 

level the simulation ends.  Lines 50–54 get the air pressure, velocity, and Mach number.  Lines 

55–56 the drag is calculated.  Line 57 calls a routine to calculate the f matrix.  This is needed for 

the covariance propagation.  Line 58 calls a routine to get the change in the state.  The state and 

state covariance are propagated in lines 59 and 60.  Line 61 increments the observation 

subinterval counter.  

The steps to account for an observation are in lines 63–79.  Lines 66 and 67 create the 

observation by adding noise to the actual location.  After this the observation subinterval counter 

is reset in line 69.  The gain of information due to the observation is represented by the matrix K; 

this is calculated in line 72.  The new state based on a least squares combination of the state and 

the observation is calculated on line 73.  The new state covariance that includes the reduction 

due to processing the observation is calculated on line74.  Line 77 calls the prediction routine. 

The remaining lines update variables associated with record keeping and closing loops. 

4.2 The Function:  getudrag 

This function is used to find the drag based on a universal drag curve.  The basic information 

was read in the routine init8.  This routine is basically a binary search to select the correct set of 

drag coefficients.  Lines 7–31 select the proper row of the drag matrix.  Once this is completed 

the interpolation polynomials are set up for the drag and the derivative of the drag and the values 

are calculated.  Lines 33–35 complete the calculation. 

4.3 The Function:  S7calcF 

The rational for the calculations in this routine are discussed in the report Ballistic Filtering.  

Basically the rows are the partials of the dynamic equations with respect to the state variables.  

Partials that are small across the entire trajectory can be dropped with small effect; of course 

doing this depends on the application.  The savings in computation time can be considerable.  

First partials of the velocity are found and then partials of the Mach number.  These are done in 

lines 8 to 16.  Line 18 states in terms of the state that the change in position is due to the velocity.  

The partials of equation 46 from Ballistic Filtering5 are calculated in lines 22–27.  The rest of the 

function performs similar calculations for the other components of velocity. 

4.4 The Function:  S7dx 

This function calculates the change in the state based upon the dynamics. 

                                                      
5 Thompson, A. Ballistics Filtering; ARL-TR-4735; U.S. Army Research Laboratory:  Aberdeen Proving Ground, MD, 2009. 
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4.5 Simulation Results:  GPS Only 

The simulation described above was used to investigate the performance of the seven state 

ballistic EKF.  Most GPS sensors give yield one sample per second; it is a minor modification to 

get five observations per second, and possible to obtain 10 per second.  A sample rate of 10 was 

chosen as this will be the best possible situation.  The results are summarized in figure 2.  After 

an initial increase the error decreases exponentially. 
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Figure 2.  Error in prediction of hit point. 

The range error grows for about 5 seconds (s) peaking at about 300 meters (m) before it starts to 

diminish to an error of –.35 m at the end of flight.  After 22 s the error is approximately  

20 m and after 28 s the error is less than 3 m.  The performance of an EKF typically provides 

estimates that other subsystems utilize; and thus directly influences system performance. 

5. Accelerometer Observations 

Next the effects of adding an accelerometer to the sensing unit are investigated.  Appendix B 

includes the additional and altered routines for this situation.  An accelerometer aligned with the 

spin axis is assumed to be aligned with the velocity.  This will never be true as precession and 

nutation result in the spin axis oscillating around the direction of motion.  The angle between the 

spin axis and the velocity vector is typically small—on the order of a few degrees.  This angle is 

also related to the spin of the projectile with lower spin being associated with larger angles.  In 
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this simulation the attainable improvement in accuracy due to including an axial accelerometer 

on a projectile that already contains GPS is investigated.  

The force seen by the accelerometer is the inner product of the force vector and the normalized 

orientation of the sensing direction of the accelerometer.  Assuming the accelerometer is on the 

spin axis and the spin axis is pointing in the direction of velocity will present the best possible 

case.  In this situation the force seen by the accelerometer is the inner product of the force and 

the normalized velocity.  The previous equations 4f , 5f , 6f  give the force vector in terms of state 

variables, and the direction of the velocity can be represented as the vector 

'

654









v

xxx
 

where v  is the magnitude of the velocity.  The inner product of these two quantities results in the 

following lengthy expression. 
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Taking the partial of the above expression with respect to each of the state variables gives the 

elements of the observation matrix for axial accelerometer measurements.  This will be a row 

rather than a column.  Note that the values of h have been simplified. 
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An examination of the values of H indicates that 7H  will have the largest magnitude; thus axial 

accelerometer measurements will have a relatively large influence on the estimate of the ballistic 

factor, or terms directly related to drag.  Since drag and an axial accelerometer both work along 

the direction of the velocity vector, this is not too surprising.  

The modification to the previous ECF to accommodate the new axial accelerometer observations 

is straightforward.  A new block is added to process the observations at the proper time intervals.  

In this situation the previously used blocks for state propagation and GPS observation processing 

remain unchanged.  The GPS observations are processed before the accelerometer readings when 

both observations are available at the same instance of time.  An examination of the routine 

driver7gpsacc demonstrates how to extend the previous EKF to process axial accelerometer 

observations.  The routine accel is used to generate the force seen by the accelerometer.  The 

routine hmatrix generates the H-matrix for each accelerometer observation.  

A comparison of figure 2 and figure 3 illustrates the change in prediction error due to including 

an axial accelerometer.  The new sensor suite has a lower maximum. 
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Figure 3.  Hit point error for an EKF processing GPS and an accelerometer error. 

The hit point prediction error is similar to the GPS only EKF after 15 s.  The advantages 

associated with adding an accelerometer can only be assessed with respect to a specific system.  

Figure 4 shows the estimate of ballistic factor as a function of time.  This figure is of interest 

because it shows the filter adjusting the overall drag based on the observations.  Given a perfect 

model of the drag this value would be constant.  The filter diminishes the ballistic factor for  
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5 s and then increases it for the remainder of the flight.  This gives an indication of some of the 

shortcomings of the seven dimensional point mass dynamics attempting to mimic the dynamics 

of a 6dof model. 

Appendix C includes additional routines that may be of interest.  Included are simplified models 

for drift and spin. These routines provide a default capability. 
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Figure 4.  Estimate of ballistic factor. 

6. Conclusions 

There is no precise step-by-step way to design a Kalman filter (KF) or an EKF.  This paper has 

demonstrated one path through the set of possible decisions to design an EKF.  It is evident that 

there are many possible settings that can and should be investigated in setting up a filter.  A 

central question is the quality of the dynamics used.  Usually this means the simplest set of 

dynamics that will allow the system to get the job done.  The sensor suite has a huge effect on 

filter performance and it is always desirable to have high quality measurements.  Also, the 

timeliness of the measurements influences filter performance in that many observations can 

offset the shortcomings of a given dynamics model.  The possibilities to investigate seem endless 

even for well defined problems; thus the design of a KF or an EKF is typically based on meeting 

system requirements.  Conceptually it is beneficial to conceive of the filter as a set of dynamic 

equations that get interrupted to receive corrections based on observations.  
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In this investigation an EKF processing GPS observations was compared to an EKF processing 

GPS and axial accelerometer observations.  The results showed little difference for the 

predictions at times exceeding 15 s.  After an EKF has achieved accurate values of the state 

additional observations will not add much value; however, additional observations will keep the 

state from drifting away from the true values.  The value of additional information depends on 

how it related to the state through the observation matrix, the covariance of the observation, and 

the accuracy of the state. 
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Appendix A.  Code for an EKF processing GPS 

Initx 

 
1 %function y=initx () 

2 %this next routine sets up the drag, lift, and spin curves 

3 inits8 

4 %the state will contain location velocity and drag 

5 %set up state variable 

6 x=zeros(7,1); 

7 x(1:3)=[.01;.01;.01]; 

8 speed=220; 

9 el=49/180*pi; 

10 x(4)=speed*cos(el); 

11 x(5)=speed*sin(el); 

12 x(6)=0; 

13 x(7)=1; 

14 %speed of sound for sea level about 53 degrees 

15 v_s=340.3; 

16 %terms for model mismatch 

17 q=zeros(7); 

18 q(1,1)=1;q(2,2)=1;q(3,3)=1; 

19 q(4,4)=1;q(5,5)=1;q(6,6)=1; 

20 q=q*.05; 

21 %error associated with the observations 

22 %this is used to simulate GPS cband 

23 %r is the observation variance 

24 r=zeros(3); 

25 r(1,1)=4;r(2,2)=9;r(3,3)=4; 

26 r_sd=[2;3;2]; 

27 %make observation matrix in terms of state 

28 h=zeros(3,7); 

29 h(1,1)=1;h(2,2)=1;h(3,3)=1; 

30 %the dimension of the state for I used in covariance propagation 

31 I=eye(7); 

32 %set up initial state uncertainty 

33 p=eye(7); 

34 p=p*.001; 

35 p(1,1)=1;p(2,2)=1;p(3,3)=1; 

36 p(4,4)=1;p(5,5)=1;p(6,6)=1; 

37 p(7,7)=.0001; 

 

Published with MATLAB® 7.5 

Inits8 

 
1 %drag coefs for polynomial to estimate drag 

2 dr1=[.27754e-4 0 0 0 0]; 

3 dr2=[.29407446e-3 -.16856609e-2 .39541129e-2 -.40706187e-2 .15497302e-2]; 

4 dr3=[-.56492074 .24140455e1 -.38636028e1 .27445913e1 -.73004070]; 

5 dr4=[.16449122e1 -.6472231e1 .95427249e1 -.62486232e1 .15332897e1]; 

6 dr5=[-.38991679e-2 .12251269e-1 -.14008227e-1 .70697832e-2 -.13323438e-2]; 
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7 dr6=[.17693159e-3 -.14042065e-3 .74643008e-4 -.21621397e-4 .26788426e-5]; 

8 %drag breakpoints for sets of coef 

9 udrag_bp=[.6 .9 .99 1.06 1.5 5]; 

10 udrag=[dr1;dr2;dr3;dr4;dr5;dr6]; 

 

Published with MATLAB® 7.5 

 

Driver7 

 
1 %function y=driver7() 

2 %do the first intialization phase 

3 initx 

4 dt=.01; 

5 %these are from the 6dof trajectory 

6 %obviously in real time they would not be known in advance 

7 %these are used as the observation feed 

8 load obsdat 

9 lat=45/180*pi;  %adefault value 

10 r_e=6378000; h0=0; 

11 x_w=0;%0 indicates no wind 

12 y_w=0; 

13 %air pressure 

14 ap_c0=1.223; ap_c2=1.071e-4; 

15 %mach number 

16 v_s0=340.3; %59F 

17 v_c=2.26e-5; 

18 %gravity 

19 g0=9.80665; 

20 g1=.0026; 

21 g=g0*(1-g1*cos(2*lat)); 

22 %corriolis 

23 omega=7.2921e-5; 

24 om_v=[omega*cos(lat);omega*sin(lat);0]; 

25 %allocate f-matrix 

26 f=zeros(7); 

27 state=[x]; 

28 pre=[]; 

29 ptrace=trace(p); 

30 %this is the counter for between observation updates 

31 %this helps minimize the effects of nonlinearity 

32 %many times these substeps can be ignored and the propagation can 

33 %be calculated in one step between observations 

34 obs=0; 

35 %the next variable just counts the observations 

36 %the observations start with count+1 

37 %note that this variable can be used to start the observation stream 

38 %at any desired point of the trajectory 

39 count=1; 

40 %main loop 

41 while x(2)>0 

42     %air preasure etc is triggered by altitude 

43     %anyhow update variables that change as the state changes 

44     air_p=ap_c0*exp(-ap_c2*x(2));  %current air pressure 

45     %velocity and mach number 



 

 21 

46     v_s=v_s0*(1-v_c*(x(2)+h0))^.5; 

47     v=sqrt((x(4)-x_w)^2+x(5)^2+(x(6)-y_w)^2); 

48     m=v/v_s;  %mach number 

49     k=getudrag(m,udrag,udrag_bp); %udrag&udrag_bp need 2b initialized 

50     kd=k(1);kd_m=k(2); 

51     f=S7calcF(x,air_p,kd,kd_m,v,m,r_e,om_v,ap_c2,g,f); 

52     dx=S7dx(x,air_p,kd,v,r_e,om_v,g); 

53     x=x+dx*dt; 

54     p=propP(dt,f,p,q); 

55     obs=obs+1; 

56     %this inside loop is triggered by a GPS observation being available 

57     if obs==10 

58         count=count+1; 

59         %add some error to the observation 

60         z_er=diag(randn(3,1))*r_sd*.1; 

61         z=obsdat(:,count)+z_er; 

62         %reset counter 

63         obs=0; 

64         %if r is variable the routine getR should be designed to model 

65         %the observation error and included here 

66         K=getK(p,h,r); 

67         x=x+K*(z-h*x); 

68         p=(I-K*h)*p; 

69         %predict routine this will change somewhat based on specific 

70         %application 

71         %pos=predictX(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt,5); 

72         pos=predictH(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt); 

73         pre=[pre pos]; 

74     end 

75     state=[state x]; 

76     ptrace=[ptrace trace(p)]; 

77 end 

78 y=state([1 3 2],:); 

 

Published with MATLAB® 7.5 

Getudrag 

 
1 function y=getudrag(m,drag,bp) 

2 %this finds the drag based on a universal drag curve 

3 %the operations are set up under the assumptin that most of the time is 

4 %spent near m=1 can be further improved by inserting the actual values 

5 %rather than passing the breakpoints 

6 row=1; 

7 if m<bp(3) 

8         if m>bp(2) 

9             row=3; 

10         else 

11             if m>bp(1) 

12                 row=2; 

13             else 

14                 row=1; 

15             end 

16         end 

17 else 
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18     if m<bp(4) 

19         row=4; 

20     else 

21         if m<bp(5) 

22             row=5; 

23         else 

24             if m<bp(6) 

25                 row=6; 

26             else 

27                 row=0; 

28             end 

29         end 

30     end 

31 end 

32 

33 x=[1; m; m*m; m*m*m; m*m*m*m]; 

34 dx=[1;2*m;3*m*m;4*m*m*m]; 

35 y=[drag(row,:)*x drag(row,2:5)*dx]; 

 

Published with MATLAB® 7.5 

S7calcF 

 
1 function f=S7calcF(x,air_p,kd,kd_m,v,m,r_e,om_v,ap_c2,g,f) 

2 ap_x2=-ap_c2*air_p; 

3 %v=sqrt(x(4)^2+x(5)^2+x(6)^2); 

4 %m=v/v_s; 

5 %partials of velocity follow 

6 v_x4=x(4)/v; 

7 v_x5=x(5)/v; %remember x5 is velocity in height or altitude 

8 v_x6=x(6)/v; 

9 %m_x2=-v/v_s^2*vs_x2; 

10 mv_x4=m*v_x4; 

11 mv_x5=m*v_x5; 

12 mv_x6=m*v_x6; 

13 f(1,4)=1;f(2,5)=1;f(3,6)=1; 

14 %start calculation of the F matrix Iguess f will b 14d 

15 %only the 4-6 rows change each step 

16 %row 4 

17 f(4,1)=-g/r_e; 

18 f(4,2)=-x(7)*v*x(4)*ap_x2*kd; 

19 f(4,4)=-x(7)*air_p*(v*kd_m*mv_x4*x(4)+v_x4*kd*x(4)+kd*v); 

20 f(4,5)=-x(7)*air_p*x(4)*(v*kd_m*mv_x5+v_x5*kd); 

21 f(4,6)=-x(7)*air_p*x(4)*(v*kd_m*mv_x6+v_x6*kd)-2*om_v(2); 

22 f(4,7)=-air_p*kd*v*x(4); 

23 %row 5 

24 f(5,1)=g/(2*r_e)*x(1)/sqrt(x(1)*x(1)+x(3)*x(3)); 

25 f(5,2)=-x(7)*v*x(5)*ap_x2*kd; 

26 f(5,3)=g/(2*r_e)*x(3)/sqrt(x(1)*x(1)+x(3)*x(3)); 

27 f(5,4)=-x(7)*air_p*x(5)*(v*kd_m*mv_x4+v_x4*kd); 

28 f(5,5)=-x(7)*air_p*(v*kd_m*mv_x5*x(5)+v_x5*kd*x(5)+kd*v); 

29 f(5,6)=-x(7)*air_p*x(5)*(v*kd_m*mv_x6+v_x6*kd)+2*om_v(1); 

30 f(5,7)=-air_p*kd*v*x(5); 

31 %row 6 

32 f(6,2)=-x(7)*v*x(6)*ap_x2*kd; 
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33 f(6,3)=-g/r_e; 

34 f(6,4)=-x(7)*air_p*x(6)*(v*kd_m*mv_x4+v_x4*kd)+2*om_v(2); 

35 f(6,5)=-x(7)*air_p*x(6)*(v*kd_m*mv_x5*+v_x5*kd)-2*om_v(1); 

36 f(6,6)=-x(7)*air_p*(v*kd_m*mv_x6*x(6)+v_x6*kd*x(6)+kd*v); 

37 f(6,7)=-air_p*kd*v*x(6); 

 

Published with MATLAB® 7.5 

S7dx 

 
1 function dx=S7dx(x,air_p,kd,v,r_e,om_v,g) 

2 dx=zeros(7,1); 

3 dx(1)=x(4); 

4 dx(2)=x(5); 

5 dx(3)=x(6); 

6 dx(4)=-x(7)*air_p*kd*v*x(4)-g*x(1)/r_e-om_v(2)*x(6); 

7 dx(5)=-x(7)*air_p*kd*v*x(5)-g*(1-

sqrt(x(1)*x(1)+x(3)*x(3))/(2*r_e))+om_v(1)*x(6); 

8 dx(6)=-x(7)*air_p*kd*v*x(6)-g*x(3)/r_e+om_v(2)*x(4)-om_v(1)*x(5); 

 

Published with MATLAB® 7.5 

propP 

 
1 function pnew=propP(dt,f,p,q) 

2 pdot=f*p+p*f'; 

3 pnew=p+(pdot+q)*dt; 

 

Published with MATLAB® 7.5 

getK 

 
1 function k=getK(p,h,r) 

2 %calculate gain matrix for a Kalman filter 

3 %p is th ecovariance of the state 

4 %h is the observation matrix 

5 %r is the covariance of the observations 

6 v=p*h'; 

7 vi=inv(h*v+r); 

8 k=v*vi; 

 

Published with MATLAB® 7.5 

predictH 

 
1 function hitloc=predictH(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt) 

2 %t is the prediction time 

3 %the other arguments could be bundled in a structure and passed 

4 %that way but that calls for packing and unpacking 

5 h=0; 

6 %air pressure 

7 ap_c0=1.223; ap_c2=1.071e-4; 
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8 %mach number 

9 v_s0=340.3; %59F 

10 v_c=2.26e-5; 

11 %tend=t; 

12 t=dt; 

13 pos=[x]; 

14 hitloc=[0; 0]; 

15 while (x(2)>0) 

16     air_p=ap_c0*exp(-ap_c2*x(2));  %current air pressure 

17     %velocity and mach number 

18     v_s=v_s0*(1-v_c*(x(2)+h0))^.5; 

19     v=sqrt((x(4)-x_w)^2+x(5)^2+(x(6)-y_w)^2); 

20     m=v/v_s; 

21     k=getudrag(m,udrag,udrag_bp); %udrag&udrag_bp need 2b initialized 

22     kd=k(1); 

23     dx=S7dx(x,air_p,kd,v,r_e,om_v,g); 

24     x=x+dx*dt; 

25     t=t+dt; 

26     pos=[pos x ]; 

27 end 

28 [r,c]=size(pos); 

29 d=pos(1:3,c)-pos(1:3,c-1); 

30 pr=-pos(2,c-1)/d(2); 

31 hitloc(1)=pos(1,c-1)+pr*d(1); 

32 hitloc(2)=pos(3,c-1)+pr*d(3); 
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Appendix B.  Additional and Altered Files to Include Accelerometer 

Measurements  

Driver7gpsacc 

 
1 %function y=driver7() 

2 %do the first intialization phase 

3 initx 

4 dt=.01; 

5 %these are from the 6dof trajectory 

6 %obviously in real time they would not be known in advance 

7 %these are used as the observation feed 

8 load obsdat 

9 lat=45/180*pi;  %adefault value 

10 r_e=6378000; h0=0; 

11 x_w=0;%0 indicates no wind 

12 y_w=0; 

13 %air pressure 

14 ap_c0=1.223; ap_c2=1.071e-4; 

15 %mach number 

16 v_s0=340.3; %59F 

17 v_c=2.26e-5; 

18 %gravity 

19 g0=9.80665; 

20 g1=.0026; 

21 g=g0*(1-g1*cos(2*lat)); 

22 %corriolis 

23 omega=7.2921e-5; 

24 om_v=[omega*cos(lat);omega*sin(lat);0]; 

25 f=zeros(7); 

26 state=[x]; 

27 pre=[]; 

28 ptrace=trace(p); 

29 %this is the counter for between observation updates 

30 %this helps minimize the effects of nonlinearity 

31 %many times these substeps can be ignored and the propagation can 

32 %be calculated in one step between observations 

33 obs=0; 

34 ac_obs=0; 

35 %the next variable just counts the observations 

36 %the observations start with count+1 

37 %note that this variable can be used to start the observation stream 

38 %at any desired point of the trajectory 

39 count=0; 

40 acount=0; 

41 %main loop 

42 while x(2)>0 

43     %air preasure etc is triggered by altitude 

44     %anyhow update variables that change as the state changes 

45     air_p=ap_c0*exp(-ap_c2*x(2));  %current air pressure 

46     %velocity and mach number 

47     v_s=v_s0*(1-v_c*(x(2)+h0))^.5; 

48     v=sqrt((x(4)-x_w)^2+x(5)^2+(x(6)-y_w)^2); 
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49     m=v/v_s;  %mach number 

50     k=getudrag(m,udrag,udrag_bp); %udrag&udrag_bp need 2b initialized 

51     kd=k(1);kd_m=k(2); 

52     f=S7calcF(x,air_p,kd,kd_m,v,m,r_e,om_v,ap_c2,g,f); 

53     dx=S7dx(x,air_p,kd,v,r_e,om_v,g); 

54     x=x+dx*dt; 

55     p=propP(dt,f,p,q); 

56     obs=obs+1; 

57     ac_obs=ac_obs+1; 

58     %this inside loop is triggered by a GPS observation being available 

59     if obs==10 

60         count=count+1; 

61         %add some error to the observation 

62         z_er=diag(randn(3,1))*r_sd*.1; 

63         z=obsdat(:,count)+z_er; 

64         %reset counter 

65         obs=0; 

66         %if r is variable the routine getR should be designed to model 

67         %the observation error and included here 

68         K=getK(p,h,r); 

69         x=x+K*(z-h*x); 

70         p=(I-K*h)*p; 

71         %predict routine this will change somewhat based on specific 

72         %application 

73         %pos=predictX(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt,5); 

74         pos=predictH(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt); 

75         pre=[pre pos]; 

76     end 

77     %note that GPS observations are processed first 

78     if ac_obs==5 

79         acount=acount+1; 

80         %first find the observation 

81         a_axis=accel(x,air_p,kd,v,r_e,om_v,g); 

82         %add some error to the observation 

83         r_a=abs(10*a_axis); 

84         za=a_axis+randn(1)*r_a; 

85         %reset counter 

86         ac_obs=0; 

87         % the H matrix needs to be calculated for each observation a call 

88         % to the routine hmatrix does this 

89         h_a=hmatrix(x,air_p,kd,v,r_e,om_v,g); 

90         %if r is variable the routine getR should be designed to model 

91         %the observation error and included here 

92         K=getK(p,h_a,r_a); 

93         x=x+K*(za-h_a*x); 

94         p=(I-K*h_a)*p; 

95         %predict routine this will change somewhat based on specific 

96         %application 

97         %pos=predictX(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt,5); 

98        % pos=predictH(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt); 

99        % pre=[pre pos]; 

100     end 

101     state=[state x]; 

102     ptrace=[ptrace trace(p)]; 

103 end 

104 y=state([1 3 2],:); 
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Published with MATLAB® 7.5 

Accel 

 
1 function a_axis=accel(x,air_p,kd,v,r_e,om_v,g) 

2 %calculates the force measured by an axial acclerometer 

3 %uses the inner product of the force and the normalized velocity 

4 %assumes the velocity is aligned with the spin axis 

5 %7 dimensional dynamics 

6 dx=zeros(3,1); 

7 dx(1)=-x(7)*air_p*kd*v*x(4)-g*x(1)/r_e-om_v(2)*x(6); 

8 dx(2)=-x(7)*air_p*kd*v*x(5)-g*(1-

sqrt(x(1)*x(1)+x(3)*x(3))/(2*r_e))+om_v(1)*x(6); 

9 dx(3)=-x(7)*air_p*kd*v*x(6)-g*x(3)/r_e+om_v(2)*x(4)-om_v(1)*x(5); 

10 a_axis=dx'*x(4:6)/v; 

 

Published with MATLAB® 7.5 

Hmatrix 

 
1 function hmatrix=hmatrix(x,air_p,kd,v,r_e,om_v,g) 

2 x13=(x(1)^2+x(3)^2)^.5; 

3 dx=zeros(7,1); 

4 dx(1)=-g*x(4)/r_e/v+g*x(5)/(2*r_e)/x13*x(1)/v; 

5 dx(3)=-g*x(6)/r_e/v+g*x(5)*x(3)/x13/r_e/v; 

6 dx(4)=-x(7)*air_p*kd*x(4)*2-g*x(1)/r_e; 

7 dx(5)=-x(7)*2*air_p*kd*x(5)-g/v*(1-x13/(2*r_e))+om_v(1)*x(6); 

8 dx(6)=-x(7)*2*air_p*kd*v*x(6)-g*x(3)/r_e/v; 

9 dx(7)=-air_p*kd*v*v; 

10 hmatrix=dx'; 

 

Published with MATLAB® 7.5 
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INTENTIONALLY LEFT BLANK. 
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Appendix C.  Additional Routines of Potential Interest 

 

Inits8 with drag, drift, and spin 

 
1 f=zeros(8,8); 

2 f(1,4)=1; 

3 f(2,5)=1; 

4 f(3,6)=1; 

5 

6 dr1=[.27754e-4 0 0 0 0]; 

7 dr2=[.29407446e-3 -.16856609e-2 .39541129e-2 -.40706187e-2 .15497302e-2]; 

8 dr3=[-.56492074 .24140455e1 -.38636028e1 .27445913e1 -.73004070]; 

9 dr4=[.16449122e1 -.6472231e1 .95427249e1 -.62486232e1 .15332897e1]; 

10 dr5=[-.38991679e-2 .12251269e-1 -.14008227e-1 .70697832e-2 -.13323438e-2]; 

11 dr6=[.17693159e-3 -.14042065e-3 .74643008e-4 -.21621397e-4 .26788426e-5]; 

12 

13 drft1=[.94178026e-2 -.26634522e-2 .61690538e-2 -.32734184e-2 -.33347962e-

2]; 

14 drft2=[.10546990e2 -.48064499e2 .82211585e2 -.62499311e2 .17816323e2]; 

15 drft3=[.26615371e2 -.10493487e3 .15495878e3 -.10156664e3 .24936711e2]; 

16 drft4=[-.48373662 .14761935e1 -.16536581e1 .82453192 -.15394547]; 

17 drft5=[.15625846e-1 -.16050604e-1 .17887456e-1 -.69302356e-2 .96186882e-

3]; 

18 

19 dspin1=[.7e-2 -.26504608e-2 -.90103102e-3 .2528689e-2 -.11479416e-2]; 

20 dspin2=[.6724987e-2 -.24994776e-2 .71838136e-3 -.12021482e-3 .80635505e-

5]; 

21 

22 udrag_bp=[.6 .9 .99 1.06 1.5 5]; 

23 udrag=[dr1;dr2;dr3;dr4;dr5;dr6]; 

24 

25 udrft_bp=[.84 .965 1.07 1.5 4]; 

26 udrft=[drft1;drft2;drft3;drft4;drft5]; 

27 

28 uspin=[dspin1;dspin2]; 

29 uspin_bp=[.9 2.5]; 

 

Published with MATLAB® 7.5 

Getudrft gets the drift 

 
1 function y=getudrft(m,drft,bp) 

2 

3 

4 

5 

6 row=1; 

7 if m<bp(3) 

8         if m>bp(2) 

9             row=3; 
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10         else 

11             if m>bp(1) 

12                 row=2; 

13             else 

14                 row=1; 

15             end 

16         end 

17 else 

18     if m<bp(4) 

19         row=4; 

20     else 

21         if m<bp(5) 

22             row=5; 

23         else 

24             row=0; 

25         end 

26     end 

27 end 

28 

29 x=[1; m; m*m; m*m*m; m*m*m*m]; 

30 y=drft(row,:)*x; 

 

Published with MATLAB® 7.5 

Getuspin 

 
1 function y=getuspin(m,spin,bp) 

2 if m<bp(1) 

3     row=1; 

4 else 

5     row=2; 

6 end 

7 x=[1; m; m*m; m*m*m; m*m*m*m]; 

8 y=spin(row,:)*x; 

 

Published with MATLAB® 7.5 

predictX  predicted location in t time units 

 
1 function pos=predictX(x,r_e,om_v,h0,x_w,y_w,udrag,udrag_bp,g,dt,t) 

2 

3 

4 

5 h=0; 

6 

7 ap_c0=1.223; ap_c2=1.071e-4; 

8 

9 v_s0=340.3; 

10 v_c=2.26e-5; 

11 tend=t; 

12 t=dt; 

13 pos=[0;x]; 

14 while (t<tend) 

15     air_p=ap_c0*exp(-ap_c2*x(2)); 
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16 

17     v_s=v_s0*(1-v_c*(x(2)+h0))^.5; 

18     v=sqrt((x(4)-x_w)^2+x(5)^2+(x(6)-y_w)^2); 

19     m=v/v_s; 

20     k=getudrag(m,udrag,udrag_bp); 

21     kd=k(1);kd_m=k(2); 

22     dx=S7dx(x,air_p,kd,v,r_e,om_v,g); 

23     x=x+dx*dt; 

24     t=t+dt; 

25     pos=[pos [t;x] ]; 

26 end 

27 pos=x; 

 

Published with MATLAB® 7.5 
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   B BODT 
  RDRL CIN T 
   R PRESSLEY 
  RDRL SL 
   R COATES 
  RDRL SLB D 
   J COLLINS 
   L MOSS 
  RDRL WMS 
   T ROSENBERGER 
  RDRL WML A 
   M ARTHUR 
   B FLANDERS 
   T KOGLER 
   W OBERLE 
   R PEARSON 
   A THOMPSON (4 CPS) 
   D WEBB 
   P WYANT 
   R YAGER 
  RDRL WML D 
   J COLBURN 
   M NUSCA 



 

 

NO. OF  

COPIES ORGANIZATION  

 

 37 

  RDRL WML E 

   F FRESCONI 

   B GUIDOS 

   P WEINACHT 

   G COOPER 

  RDRL WML F 

   T BROWN 

   E BUKOWSKI 

   J CONDON 

   B DAVIS 

   R HALL 

   T HARKINS 

   D HEPNER 

   M ILG 

   G KATULKA 

   D LYON 

   D MCGEE 

   P MULLER 

   B PATTON 

   P PEREGINO 

  RDRL WML G 

   J BENDER 

   W DRYSDALE 

  RDRL WMP 

   B BURNS 



 

 38 

INTENTIONALLY LEFT BLANK. 


