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1. Introduction 

Consider the integral  
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In the CRC Standard Mathematical Tables,1 equation 1 can require repeated integral evaluations.  
Integral 87 shows 
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Enter this integral into your favorite computer algebra system.  Maple returns 
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which involves Lerch’s Phi transcendent function, defined as  
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Similarly, Mathematica gives 
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which involves knowing the implementation of Hypergeometric functions.  In this report, we 
seek to provide a simpler evaluation for integrals of this form (equation 1).  We state up front 
that the exponent m need not be an integer.  

2. Using Infinite Sums 

The integrand of equation 1 can be rewritten as follows: 
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By long division,   

                                                 
1 Beyer, W. H., Ed.  CRC Standard Mathematical Tables.  CRC Press, Inc.:  West Palm Beach, FL, 1978. 
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which is an infinite sum in the form 
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Therefore, the integral becomes  
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for some constant C.  Noting that  
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converges for x2 < 1 allows us to rewrite equation 9 as  
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again, m need not be an integer.  However, if m = 1, 2, 3, … , then for i = m–1, x–m+i = x–1, so 
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for the i = m – 1 term, or 
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This allows us to sum past the singularity. 
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3. A Generalization 

Generalizing, consider the following: 
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From long division, the integrand can be rewritten as x-m (1 – xn + x2n – x3n + …),   
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Thus,  
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and we sum prior to integration past any singularity.  As before, m and n need not be integers, 
and this technique converges for | x | < 1.   

4. Examples 

As a first example, we consider the case with m = 3, an integer.  We start with equation 2 (shown 
previously), where m = 3, a = b = n = 1, and p = 0.  Continuing, we find that  
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which is valid for 1 < x < 1.  Using our approach and equation 9, 
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which matches the CRC’s solution.  When m is a positive integer, equation 2 is adequate.  
However, as m gets large, the CRC’s proposal will involve evaluating several integrals.  Our 
technique is much simpler.   

Now, suppose m = 
5

1
, n = 3, and we keep a = b = 1 and p = 0.  Equation 2 becomes 
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While the first integral on the right-hand side is easy enough to evaluate, the second is not trivial, 
unless the process is repeated or the integrand is expanded in a power series.  Turning to 
equation 15, we find 
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We do not offer any practical applications for the integral.  However, the proposed method 
converges for x2 < 1 or when the independent variable is normalized, to guarantee that the 
normalized value of x is less than 1 when nondimensionalized; otherwise, the series diverges.  
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