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  Abstract—Electrification of the transportation sector, which accounts for 70% of U.S. petroleum consumption, offers the 
opportunity to significantly reduce petroleum consumption. The transition to electricity as a transportation fuel will create a new 
load for electricity generation. In support of a recent U.S. Department of Energy-funded activity that analyzed a future generation 
scenario with high renewable energy technology contributions, a set of regional hourly load profiles for electrified vehicles was 
developed for the 2010 to 2050 timeframe.  These load profiles with their underlying assumptions will be presented in this paper. 
The transportation electrical energy was determined using regional population forecast data, historical vehicle per capita data, and 
market penetration growth functions to determine the number of plug-in electric vehicles (PEVs) in each analysis region. Market 
saturation scenarios of 30% of sales and 50% of sales of PEVs consuming on average ~6 kWh per day were considered. Results 
were generated for 3109 counties and were consolidated to 134 Power Control Areas (PCA) for use in the National Renewable 
Energy Laboratory’s (NREL’s) electric generation and transmission capacity expansion model, ReEDS. PEV aggregate load 
profiles from previous work were combined with vehicle population data to generate hourly loads on a regional basis. A transition 
from consumer-controlled charging toward utility-controlled charging was assumed such that by 2050 approximately 45% of the 
transportation energy demands could be delivered across four daily time slices under optimal control from the utility’s perspective. 
No other literature has addressed the potential flexibility in energy delivery to electric vehicles in connection with a regional power 
generation study. This electrified transportation analysis resulted in an estimate for both the flexible load and fixed load shapes on 
a regional basis that may evolve under two PEV market penetration scenarios.   

  Keywords—Electric vehicle, EV, PEV, plug-in hybrid, PHEV, load profile, electric power 

1. INTRODUCTION 

  Plug-in electric vehicles (PEVs), including both plug-in 
hybrid (PHEVs) and battery-only electric vehicles (EVs), 
offer the opportunity for the transportation sector to 
significantly reduce petroleum consumption through 
electrification. PEVs may have a moderately sized energy 
storage system and a combustion engine to ensure most 
miles are electrified while retaining the range capability of 
today’s vehicles. Other PEVs may be entirely battery 
dependent and provide complete petroleum displacement for 
certain vehicle sectors. As of 2010, the timeline for vehicle 
introduction will start in 2011 with several manufacturers 
adding to the options over a 2–3 year period toward market 
creation. Based on past technology markets, maturity would 
likely occur within 25–30 years from introduction. 

  Charging infrastructure for delivering electricity to these 
vehicles is also under development. For short-range vehicles, 
common 120V service outlets would generally suffice, while 
owners of vehicles with longer range will likely prefer 
moderate charge rates from 240V service. From a utility’s 
perspective, 120V or Level I (typically 1.4 kW) charging has 
limited impact on infrastructure but has less value as a 
flexible load whereas vehicles and infrastructure delivering 
240V or Level II charging (typically 6–7 kW) offers more 
opportunity for load shaping and management as individual 

vehicle needs can be delivered and scheduled optimally to 
match generation opportunities.  

  Many analyses have been conducted and papers published 
that include PEV market projections. Electric Power 
Research Institute and Natural Resources Defense Council 
collaborated on a foundational study highlighting the 
nationwide greenhouse gas and pollutant emissions impacts 
of plug-in hybrid electric vehicles on the US electricity grid 
on a regional basis [1]. The fleet makeup assumed ~40% 
PEVs by 2030 and 60% by 2050. An aggregate hourly load 
profile was assumed in which 74% of the energy was 
delivered during the off-peak period and 26% during 
daytime. Both Kintner-Meyer et al. of Pacific Northwest 
National Laboratory (PNNL) and Hadley et al. of Oak Ridge 
National Laboratory (ORNL) have assessed regional plug-in 
vehicle penetrations and future load characteristics. The 
PNNL study considers the situation in which all PEV loads 
could be managed and fit into the low points of the daily 
utility load curve [2]. The ORNL study considered a variety 
of charge levels and loading scenarios to understand the 
regional capacity and emissions impacts of the various 
scenarios [3].  

  This work expands upon past activities to uniquely define 
both a transitioning fixed load for the transportation sector 
and a load portion that can be dynamically managed by 
utilities for integration with high renewable energy 
integration analyses. 
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2. APPROACH 

  In 2009, the U.S. Department of Energy funded a multi-
laboratory analysis referred to as Renewable Electricity 
Futures study to explore the electric generation mix over the 
next 40 years under a very high renewable portfolio 
constraint. As input to the Renewable Electricity Futures 
study [4], an hourly PEV load profile and the energy demand 
for the fleet of PEVs by region over time (2010 through 
2050) were developed. The approach was as follows: 

1. Use population growth forecasts and historical vehicle 
ownership trends to estimate vehicle population by 
region. 

2. Use a market penetration model to estimate the 
fraction of vehicles that will be PEVs throughout the 
study period. 

3. Develop the vehicle fleet electrical energy demand 
profile varying over time as the fleet transitions its 
charging strategy from a fully customer-controlled to 
a partially price-based or utility-controlled charging 
scheme.  

  The customer-controlled charging profiles were based on 
past fleet studies. The price-based or utility-controlled 
profiles were based on optimal electric generation dispatch 
decision by the utility or grid operator. In developing the 
electrified transportation loads and energy requirements, the 
following simplifying assumptions were made: 

1. There will be no significant change in transportation 
mode selection and miles driven. Personal vehicles 
will continue to be the mode of choice. As a result, 
loads due to mass transit are neglected. 

2. Transportation electrical energy demands will not 
vary significantly in amount or timing between 
seasons of the year.  

3. PHEVs are expected to make up the majority of the 
stock, meaning that electrical energy is likely to 
provide the majority, but not all, of the energy 
needed. The hybrid combustion engine would likely 
make up any limitations of the electric drive system 
and thus take up any variability. 

4. The PHEV fleet load shapes are based on historical 
consumer travel survey data and assume 120V, 
1.4kW charge rates from widespread infrastructure. 
Level II, 240V charging was only considered if the 
charging was under utility control. The following 
three charging profiles were considered: 
a. No-control charging (Level I): primarily home 

charging 
b. Opportunity charging (Level I): assuming 

ubiquitous charging stations and charging  
whenever vehicle is parked 

c. Utility-controlled charging (Level II): based on 
optimal dispatch generation/load dispatch by the 
grid operator. 

5. PEV load curves are based on PHEVs with 20 mi. of 
electric range (PHEV20) and urban power capability. 
On average, this results in ~6 kWh of energy per PEV 

per day. Some vehicle designs and some vehicle 
usage profiles may use more or less energy. 

6. No differentiation between car and truck vehicle 
energy needs was included.  

7. It has been assumed that there are no differences in 
regional penetration rates. 

8. There is no differentiation in the growth rate among 
counties in the same state. 

9. No vehicle-to-grid or grid service functions are 
considered.  

10. The utility-controlled charging strategy was defined 
by NREL’s ReEDS (Regional Energy Deployment 
Systems) model. The model dispatches loads and 
generators in certain time slices (blocks of time) to 
minimize the cost.  Based on the ReEDS time slice 
definition, charging would be selected at a constant 
rate during a time slices. It should be noted that 
utility-controlled charging would be very similar if 
not identical with price-based charging where the 
customer would charge his/her vehicle based on time-
varying electricity prices to minimize cost.  

3.  RESULTS ANALYSIS 

  Data on population growth projections to 2030 by state 
available from the U.S. Census Bureau provides the starting 
point for projecting the energy demands of electrified 
vehicles. Figure 1 shows the consolidated growth rates for 
the nine census regions [5]. The projections for each state 
were fit with either a linear or quadratic function, whichever 
provided the best fit, and extended to 2050. Table 1 
highlights the states with the least and greatest calculated 
rates of change in population growth between 2010 and 
2050.  

 
Figure 1: U.S. Census regional population projections to 2030 
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Table 1: Ten States with Least and Greatest Percent Change in 
Population between 2010 and 2050 

 
State Name 

Population Percent 
Change 2050 

Relative to 2010 
District of Columbia 65 
West Virginia 77 
Iowa 87 
Wyoming 88 
North Dakota 94 
Ohio 94 
New York 95 
Pennsylvania 105 
South Dakota 108 
Nebraska 108 

 
 

State Name 
Population Percent 

Change 2050 
Relative to 2010 

Nevada 211 
Arizona 209 
Florida 185 
Texas 166 
Utah 163 
Idaho 159 
North Carolina 159 
Washington 154 
Georgia 153 
Oregon 149 

  Using data from an RL Polk database query, 2005 county 
population measurements were extended to estimate county 
population between 2010 and 2050 using the state-level 
population growth trends [6]. It was assumed that all 
counties within a state grow at the state rate. 

 
Figure 2: Historical and projected motor vehicles per capita  

  The population estimates on a county basis were then 
scaled to estimate the number of motor vehicles on a county 
basis. Historical data from the Federal Highway 
Administration presents the number of motor vehicles per 
capita between 1960 and 2007 [7]. The last 20–30 years of 
data fit well to a logarithmic function. This trend suggests 
that between 2010 and 2050 the number of motor vehicles 

per capita is likely to grow from just over .8 to a little over .9 
motor vehicles per person. These analyses are summarized 
in Figure 2. 

  PEV market penetration model based on a logit function 
was used with the motor vehicle estimates to determine the 
number of PEVs likely to be in use on a county level over 
the time period of the study [8]. The penetration model 
represents a slow ramp toward consistent market growth and 
a final tapering of growth to saturation. The model used is 
represented by Equation 1. 

))()81ln(exp(1
)(
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t

tN
−

∆
−+

=
κ    (1) 

Where,  
κ =  the maximum market share potential 
∆t =  the time to grow from 10% to 90% of potential 

(years) 
tm =  the year in which 50% of potential is reached 

  Two scenarios, default and aggressive, were defined. In the 
default scenario, the sales of PEVs saturate at a level of 30% 
penetration over a ~35 year period. In the aggressive 
scenario, sales saturate at 50% market share after ~50 years. 
The parameter values for each scenario are shown in Table 
3. A comparison of the sales rates, vehicle stock, and 
historical HEV sales shifted by introduction year are shown 
in Figure 3. The rates in the aggressive scenario are 
consistent with results recently developed by Greene and Lin 
in 2010 [9]. 
Table 2: PEV Market Penetration Model Parameter Values 

Parameter Value–Default Value– 
Aggressive 

κ 30% 50% 

∆t 20 30 

tm 17 25 
 

 
Figure 3: PEV market penetration model comparison showing both 
annual sales and vehicle stock data. 

  Using the PEV market models, the number of vehicles per 
capita, and county population estimates, it is possible to 
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calculate the number of PEVs on a county and state basis. 
Table 3 summarizes the PEV population estimates for the 
largest growing vehicle sales markets in the United States. 
The vehicles in these 14 states highlighted compose nearly 
70% of the total U.S. PEV population. The PEV population 
growth trend for these 14 states is shown in Figure 4. The 
resulting shape is a function of both population growth and 
PEV market growth and saturation. 
Table 3: PEV Stock Distribution by State – Top 14 (millions) 

  
2010 

 
2030 

 
2050 

2050 
Percent 
of U.S. 

2050 
Cumulative 

Percent 
United States 0.283 31.07 154.43 100  

California 0.035 4.01 20.58 13.32 13.32 

Texas 0.023 2.85 15.49 10.03 23.36 

Florida 0.018 2.45 13.83 8.96 32.32 

New York 0.018 1.67 6.88 4.45 36.77 
North 

Carolina 0.009 1.04 5.55 3.59 40.36 

Georgia 0.009 1.05 5.55 3.59 43.95 

Illinois 0.012 1.17 5.33 3.45 47.41 

Arizona 0.006 0.89 5.26 3.41 50.81 

Pennsylvania 0.011 1.10 4.93 3.19 54.01 

Virginia 0.007 0.85 4.36 2.83 56.83 

Michigan 0.010 0.93 4.26 2.76 59.59 

Ohio 0.011 0.99 4.08 2.64 62.23 

New Jersey 0.008 0.84 4.01 2.60 64.83 

Washington 0.006 0.73 3.87 2.51 67.33 

 

 
Figure 4: Growth Trends of PEV Stock for the States with the 
Greatest 2050 PEV Population 

Hourly load shapes for PEVs have been presented in several 
locations [1, 2, 3]. For this study, three profiles from 
previous work based on detailed vehicle system simulations 
using second-by-second vehicle speed and trip profile 
characteristics collected using GPS units on-board a vehicle 
were used. This data was collected under a periodic 
household travel survey from the St. Louis metropolitan area 
and is based on 227 24-hr driving profiles for unique 

vehicles. Three scenarios defined in previous work [10, 11] 
were used in this study and are shown in Figure 5. 

  In the first case, the consumer is allowed to plug in and 
charge as soon as the vehicle ends the last trip for the day. 
This case is called “No Utility Control” because the vehicle 
load occurs on consumer demand and charges until complete 
or the consumer starts another trip. A second scenario is 
labeled “Opportunity”: under this case, it is assumed that 
charging infrastructure is ubiquitous and the consumer will 
choose to plug-in any time the vehicle is parked regardless 
of stop duration. This scenario leads to significantly more 
fuel savings but also increases the daytime electric vehicle 
loads, total energy demands, and potential battery wear. The 
total electric energy consumed is limited by the size of the 
battery and travel behavior. “Opportunity” charging 
demands more electric energy (kWh) indicating that PEVs 
typically exceeded the range of the moderate battery 
assumed and gained value from ubiquitous infrastructure. 
Finally, a “Valley Fill/Managed” scenario is used. Although 
this scenario is shown in Figure 5 to optimally fill the lowest 
load point of a traditional hourly utility load curve, in this 
study, with high penetration of renewables the optimal 
dispatch time for this total energy is allowed to shift between 
several defined daily time periods as needed to support the 
renewables integration. Both the “No Utility Control” and 
“Opportunity” scenarios assume 120V 1.4kW charge rates 
(Level I) while the “Valley Fill/Managed” curve allowed 
3kW (Level II) charging to best match the energy demands 
with the utility valley shape. 

 
Figure 5: Three PEV fleet charging profiles based on 227 driving 
profile vehicle simulation results 

  It was assumed that initially, all consumers would charge at 
home without utility controls and as public charging 
infrastructure is created and consumers learn to optimize 
value of their investment in vehicle technology, the growth 
of opportunity charging would occur. Furthermore, we 
assumed that over the duration of this study, PEV owners 
would migrate toward the price-based or utility-controlled 
charging strategies primarily induced by lower electricity 
cost and technology advancements that support seamless 
communications to the vehicles and automating the load 
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management and advanced charging strategies. The rate at 
which opportunity charging and price-based/utility-
controlled charging would displace home charging was 
based on our judgment. The transition between the three 
scenarios over time is summarized in Figure 6.  

 
Figure 6: Transition assumptions from no utility control to 
opportunity and managed scenarios 

 
Figure 7: Average daily per-vehicle energy demands by charging 
scenario 

  Figure 7 shows how the average per-vehicle energy 
demand grows slightly over time due to the increasing 
portion of the vehicles that are being opportunity charged. It 
also shows that the “Valley Fill/Managed” portion of the 
total vehicle energy demands grows to ~45% of the total 
PEV energy demands by 2050. 

  The ReEDS model assesses energy delivery by 134 PCAs. 
Load profiles were generated on a county basis. A total of 
3,109 counties in the contiguous United States were 
consolidated into 134 PCAs. 

 
Figure 8: 2050 PEV daily fixed energy demand by PCA region 

  Figure 8 shows a map of the regional distribution of the 
fixed portion of the daily energy demands for PEVs (no 
utility control and opportunity charging) by PCA region in 
2050. The energy shown is ~55% of the total PEV load in 
2050. PEV population growth follows general population 
growth in this analysis; therefore, highly populated areas are 
highlighted as PEV load centers. 

  By combining the hourly load profile results from previous 
work and the transition assumptions over the period from 
2010 to 2050, an aggregate per vehicle load profile that 
changes shape over time was generated (Figure 9). Figure 9 
only shows the fixed portion that is not under the control of 
the utility. This includes the “No Utility Control” profile and 
the “Opportunity” profile. The transition from a large 
fraction of the vehicles in the “No Utility Control” scheme 
in 2010 to more in the “Opportunity” scheme by 2050 is 
observed in Figure 9 by comparing the shape of the 2010 
and 2050 curves to those in Figure 5. Figure 9 only shows 
the fixed hourly load as the flexible portion is allowed to be 
different for each of the 134 PCAs. 

 
Figure 9: Shape and transition of the fixed hourly aggregate load 
profile for PEVs  

  The aggregate load shape in Figure 9 only represents the 
fixed load profile. From Figure 7, the dynamic portion under 
utility control (Valley Fill/Managed) grows from 0% of the 
load in 2010 to ~45% of the total load in 2050. 
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Figure 10: Projected PEV fixed and dynamic annual electricity 
consumption for aggressive scenario 

  In Figure 10, the total annual energy demand for PEVs is 
shown. Both the fixed and dynamic portions are highlighted. 
In 2030, the fixed demand is ~50 TWh, accounting for ~80% 
of the total load. By 2050, the total load grows to 350 TWh, 
and the fixed portion is ~180 TWh, or 55% of the total load. 
Greene and Lin predict the total annual PEV energy demand 
as ~100 TWh in 2050 in a PEV Success scenario.[9] Several 
assumptions contribute to these differences. 

• Greene and Lin assumed mostly PHEV10 with a few 
PHEV40 vehicles while this study bases the energy 
demands and load curves on a PHEV20 design. 

• Greene and Lin assumed a single daily charge per day 
while this study includes opportunity charging, which 
increases daily electrical energy consumption per 
vehicle. 

  As a result, the total annual energy for PEVs is about 3 
times greater than suggested by Greene and Lin’s work. 
However, the estimated annual electric energy demand for 
PEVs in 2050 is only about 9% of the total electricity 
consumption in the base case of the Renewable Electricity 
Futures study scenario. 

4. CONCLUSION 

  The introduction of PEVs creates opportunities for the 
reduction of petroleum and the creation of new flexible load 
that can be integrated in utility operations with a high 
penetration of renewables to achieve a long-term strategy of 
creating a more sustainable transportation system. This work 
developed energy system load characteristic forecasts on a 
regional basis from 2010 to 2050 for two PEV market 
penetration scenarios to be used in a Renewable Electricity 
Futures study. The work builds upon past travel survey data 
analysis, regional population forecasts, and assumptions 
regarding incentives of charge management scenarios. An 
aggressive market scenario achieving a vehicle stock of 
~40% PEVs by 2050 (or 50% in 2060) and a default 
scenario achieving ~30% PEVs in the fleet by 2050 were 

used. Both trends mirror historical HEV market stock thus 
far.  

  Three PEV charge scenarios were considered, including 
“No Utility Control,” “Opportunity,” and “Valley 
Fill/Managed.” The energy needed in the “Valley 
Fill/Managed” scenario was assumed to be flexible in terms 
of when it needed to be delivered throughout the day and 
thus provides the utility with an interesting flexible load that 
can be managed to improve renewable generation asset 
utilization. By 2050, 45% of the total vehicle energy demand 
of 350 TWh was under managed control while the remaining 
55% was a fixed load to be planned for and met by utility 
assets. The hourly load profile of the fixed transportation 
energy demand also shifted over the time period from 
mainly “No Utility Control” towards “Opportunity” 
charging. This is the first study to assume that a variety of 
vehicle load shapes will exist and may transition overtime 
resulting in a unique fixed load and flexible load for 
integration into utility operational planning tools. 
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