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Abstract 

A collection of statistical and mathematical techniques referred to as 
response surface methodology was used to estimate the longitudinal 
stage separation aerodynamic characteristics of a generic, bimese, 
winged multi-stage launch vehicle configuration using data obtained on 
small-scale models at supersonic speeds in the NASA Langley Research 
Center Unitary Plan Wind Tunnel. The simulated Mach 3 staging was 
dominated by multiple shock wave interactions between the orbiter and 
booster vehicles throughout the relative spatial locations of interest. This 
motivated a partitioning of the overall inference space into several 
contiguous regions within which the separation aerodynamics were 
presumed to be well-behaved and estimable using cuboidal and spherical 
central composite designs capable of fitting full second-order response 
functions.   The primary goal was to approximate the underlying overall 
aerodynamic response surfaces of the booster vehicle in belly-to-belly 
proximity to the orbiter vehicle using relatively simple, lower-order 
polynomial functions that were piecewise-continuous across the full 
independent variable ranges of interest. The quality of fit and prediction 
capabilities of the empirical models were assessed in detail, and the 
issue of subspace boundary discontinuities was addressed.  The potential 
benefits of augmenting the central composite designs to full third-order 
using computer-generated D-optimality criteria were also evaluated.  
The usefulness of central composite designs, the subspace sizing, and the 
practicality of fitting lower-order response functions over a partitioned 
inference space dominated by highly nonlinear and possibly 
discontinuous shock-induced aerodynamics are discussed. 

Introduction 

A general discussion of response surface 
methodology (RSM) and the motivation for its 
use in aerospace research are presented in this 
section.  The specific application of RSM to 
wind tunnel testing and the experimental design 
modifications that were adopted in the current 
investigation are also discussed. 

What is RSM? 

RSM is a family of statistical and 
mathematical techniques by which response 
variables can be represented as empirical 
functions of the independent variables that 
influence them (reference 1). The term RSM is 
attributed to the graphical perspective of the 
problem environment, in which a response is 
often plotted as a surface constructed over a 
plane defined by selected independent variables 
oriented in a Cartesian coordinate system. An 
example of a response surface obtained in a low-

speed wind tunnel test of a military aircraft 
configuration is shown in figure 1, which depicts 
the aerodynamic drag coefficient (CD) response 
surface plotted as a function of the horizontal 
tail incidence angle (Tail Angle) and the vehicle 
angle of attack (AoA).  In most scientific 
applications, the underlying relationship 
between a system response and selected 
independent variables is unknown.  
Consequently, experimental data are required to 
fit an appropriate mathematical model that 
estimates the true but unknown response 
function.  Most RSM applications involve 
multiple independent variables and, as a result, 
there is a close connection between RSM and 
regression analysis, which is a branch of 
statistical model building.  The true underlying 
relationship is often suitably approximated for 
each response variable of interest with a low-
order Taylor series, or polynomial, model 
applied to a relatively small region of the 
independent variable space.  A first-order 
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polynomial function in three independent 
variables (or factors in RSM terminology) can 
be expressed as:  

The response variable, y, is expressed as a 
function of the three main factor effects          
(x1, x2, and x3), three two-factor interactions 
(x1x2, x1x3, and x2x3), and a random error 
component ().  The acquisition of experimental 
data and the application of multiple linear 
regression techniques (reference 2) featuring the 
method of least squares yield unbiased estimates 
of the unknown parameters (  s ) and the 
random error in equation (1).  The interaction 
terms represent first-order curvature in the 
system response, and their inclusion in the 
model indicates that the effect of one factor on 
the response depends on the level to which the 
other factor is set. In this example, the 
independent variable space, typically referred to 
in RSM as the inference space or design space, 
is defined as a volume (or a cube when the 
variables are coded using a linear transformation 
in the experimental design).  The response 
surface resides “above” the inference space in a 
fourth dimension, which is not easy to visualize 
graphically.  If the curvature in the true response 
surface is of a higher order, the polynomial 
function can be augmented to include second-
order curvature as depicted in the full quadratic 
model:   

 
The second-order model is very flexible and 

is an effective approximation to the true 
response surface in many applications.  The 
model in equation (2) is a linear function of the 
unknown  s , hence, it is still a linear regression 
model regardless of the shape of the response 
surface that it generates.  The quality of the 
regression model is critically dependent on the 
manner in which the data are collected, and 
RSM employs many quality assurance tactics 
and statistical experimental designs to produce 
high-quality empirical functions. A family of 

experimental designs referred to as Central 
Composite Designs (CCD) (reference 1) is used 
extensively in building second-order response 
surface models.   The first- and second-order 
models are often very effective in providing 
relatively simple and interpretable empirical 
response functions in many industrial and 
aerospace applications.  

Why Use RSM? 

RSM is an alternative to the data-intensive   
one-factor-at-a-time (OFAT) experimental     
method (reference 3) in which all factors are 
typically held constant in an experiment except 
for one in an attempt to identify the relationship 
between the response and independent variables.  
The OFAT approach is vulnerable to the effects 
of systematic variation that occur in 
experimental investigations, and it does not 
allow a reliable estimation of interactions that 
are frequently a key to understanding the system 
response.  RSM is based on well-established 
statistical and mathematical techniques that are 
essential to the design and execution of the 
experiment and the analysis of the results. The 
pseudo three-dimensional display of response 
surfaces relative to the inference space (see 
figure 1, for example) provides a more global 
perspective of the aerodynamic responses.  
Estimates of the mean response can be obtained 
for any combination of the independent 
variables, including those combinations that 
were not physically set during the experiment.  
Each point in the experimental data set used to 
fit the regression model contributes in some 
degree to the estimates of the response and the 
uncertainty at that point.  Furthermore, every 
data point beyond some minimum threshold 
contributes to the uncertainty assessment at 
every location in the inference space.  Certain 
quality assurance tactics such as replication, 
randomization, and blocking (reference 3) can 
be invoked to defend against systematic 
experimental variation, thereby increasing the 
precision and reproducibility of the experiment.  
Testing of all combinations of the independent 
variables allows the estimation of interactions, 
which are often the key to interpreting the 
responses obtained in a complex aerodynamic 
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environment.   Furthermore, it is not necessary 
to know the mathematical form of the response 
surface a priori in order to fit it with 
experimental data, since a Taylor series model 
provides an approximation of the unknown 
relationship via regression analysis.     The 
successful application of RSM requires careful 
consideration of many issues.  The knowledge 
that is expected to be gained from an experiment 
is clearly defined during pretest planning. 
Obviously, the aerodynamic responses, 
independent variables, and variable ranges of 
interest must be identified.  The desired 
experimental precision and resolution should be 
specified, which determines the minimum 
volume of data that must be acquired.  The wind 
tunnel facility, test article, and instrumentation 
capabilities, the testing environment, and the 
available resources significantly influence the 
design and execution of an experiment.  
Furthermore, the expected aerodynamic 
response behavior within the inference space of 
interest will affect the experimental design, 
execution, model building, and analysis, 
particularly if the aerodynamic flow field 
exhibits different physical mechanisms 
throughout the inference space (e.g., linear 
versus nonlinear, symmetric versus asymmetric, 
shock-free versus shock-dominated, etc.). 

Specific Application of RSM 

The statistically-designed experimental 
approach of RSM was used in an exploratory 
wind tunnel test in the NASA Langley Research 
Center (NASA LaRC) Unitary Plan Wind 
Tunnel (UPWT) of a generic bimese wing-body 
launch vehicle configuration to develop 
empirical models of the stage separation 
aerodynamic forces and moments at supersonic 
speeds.  This work was performed in support of 
on-going NASA stage separation and ascent 
aerodynamics and aerothermodynamics research 
programs focusing on future two-stage-to-orbit 
(TSTO), fully reusable launch vehicle (RLV) 
systems (reference 4).  A generic TSTO 
configuration developed by NASA LaRC and 
referred to as the Langley Glideback Booster 
(LGBB) was selected as the test article.   The 
LGBB is a wing-body configuration, and it was 

tested in a bimese, belly-to-belly arrangement 
consisting of an orbiter and a booster as 
illustrated in figure 2.  A bimese TSTO vehicle 
is one in which both the booster and the orbiter 
have the same outer-mold-lines, that is, identical 
external geometries.  The proximity 
aerodynamics of multi-stage launch vehicle 
systems are highly configuration-dependent 
(reference 4).  The LGBB configuration was 
considered a worst-case in wing-to-wing 
proximity effects, known to provide significant 
aerodynamic interference, which was useful in 
assessing the stage separation experimental 
techniques and computational analysis tools that 
were applied in these in-house programs.  

The current application assumes a Mach 3 
staging, where the orbiter is at full thrust at 
separation, the booster is at no thrust, and the 
booster glides back to the launch site.  However, 
the wind tunnel testing was performed with 
power-off.  No sideslip or asymmetric separation 
conditions were tested, so the longitudinal 
aerodynamic forces and moments were the focus 
of this investigation.  The region within which 
supersonic flow was expected to persist during 
separation is relatively large, and the 
aerodynamic interference between the orbiter 
and booster vehicles in this region is dominated 
by multiple shock wave development and 
interactions (reference 4). These phenomena can 
introduce highly nonlinear and, possibly, 
discontinuous, changes in the stage separation 
aerodynamics, particularly for the booster 
vehicle, which remains in the influence of the 
orbiter throughout the region of interest 
(reference 4).  For example, the pressure field 
about the booster vehicle changes significantly 
as a result of the impingement of the orbiter bow 
shock. The corresponding large changes in the 
booster lift, drag, and pitching moment 
characteristics are dependent on the relative 
spatial location and attitude of the two vehicles.  
Given these conditions, a practical application of 
response surface methods in a wind tunnel 
experiment at Mach 3 was formulated.  The 
centerpiece of this RSM application was a 
central composite design capable of fitting a full 
second-order model and certain mixed cubic 
terms to each of six response variables (lift, 
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drag, and pitching moment coefficients for the 
orbiter and booster vehicles) for ranges of three 
independent variables (relative axial and vertical 
positions and relative angle of attack).  The 
sequential nature of RSM easily permitted 
design augmentation to full third-order by 
acquiring additional data, as necessary.  
However, the expectation of highly nonlinear 
aerodynamics over a broad inference space led 
to modifications of the experimental design as 
outlined in the next section.  

Truncated Inference Subspaces 

A disadvantage of applying a single CCD to 
nonlinear responses over a broad inference space 
is that important features of the aerodynamic 
responses may not be effectively resolved.   
There is an even greater concern if different 
flow phenomena are present depending on the 
location within the inference space.  If the 
underlying response functions are not adequately 
estimated with a second-order model, the CCD 
is capable of adding a limited number of higher-
order terms.  Design augmentation will allow 
fitting even higher-order models to the 
experimental data.  The danger of this approach, 
however, is that the higher-order response 
functions can behave unrealistically between 
points and immediately outside of the inference 
space, and they have higher prediction variance, 
since the average prediction variance within the 
inference space is proportional to the number of 
model coefficients (reference 5).  In many cases, 
the response surfaces are forced to fit the 
experimental data points exactly and are, 
therefore, poor predictors of the mean responses 
at any other combinations of the independent 
variables for which data were not acquired.  An 
alternative to adding additional higher-order 
terms when the response is a complex function 
of the independent variables is to trim the 
inference space (reference 6).  Specifically, the 
overall inference space can be partitioned into 
multiple smaller contiguous regions within 
which even low-order response functions may 
be adequate, if the ranges of the independent 
variables are sufficiently limited.   As a result, 
piecewise continuous models of the overall 
responses can be developed over the full ranges 

of the independent variables. In principle, this 
method permits relatively simple and well-
behaved functions to be fitted locally and the 
resolution of different physical phenomena that 
may prevail throughout the inference space.   A 
key to the successful application of this 
approach is to define the most expansive 
subspace ranges possible within which relatively 
low-order polynomial models will adequately 
estimate the true underlying responses.   The use 
of truncated inference subspaces was the final 
element in the current investigation to estimate 
the supersonic stage separation aerodynamics of 
a bimese, like-scale, winged vehicle 
configuration using statistically-designed 
experimental methods. 

 

Previous Work 

RSM Applications to Wind Tunnel 
Testing 

RSM techniques have not been widely 
exploited in experimental aeronautics, although 
its use has increased in recent years as 
researchers have been more exposed to the 
discipline of experimental design through formal 
education and practical applications.  RSM is a 
key component of a unified design, execution, 
and analysis process of scientific research under 
development at NASA LaRC known as the 
Modern Design of Experiments (MDOE) 
(reference 6).  An exhaustive review of MDOE 
applications in wind tunnel experiments is not 
within the scope of this report.  However,  the 
following references are examples of the 
versatility of statistically-designed experiments 
in a diverse range of aerospace investigations: 
aeroelastic deformation on slender wings 
(reference 7); control surface effects on 
commercial and military aircraft (reference 8); 
assessment of aerodynamic intrusiveness of 
optical measurement techniques (reference 9); 
wind tunnel calibrations (reference 10); 
temperature measurements in supersonic 
combusters (reference 11); aerodynamics of 
micro air vehicles with flexible wings  
(reference 12); optimization of vortex flow 
control devices for tail buffet mitigation 
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(reference 13); noise reduction techniques for 
high bypass ratio turbo-fan engines      
(reference 14); proximity aerodynamics of an 
airborne-launched hypersonic research vehicle 
(reference 15); and laboratory calibrations of 
wind tunnel model instrumentation       
(reference 16).  Of particular relevance to the 
current RSM application to stage separation 
aerodynamics are the following two 
investigations.  A hybrid experimental design 
was developed in reference 17 to estimate the 
low-speed aerodynamic characteristics of a high-
performance military aircraft over a large 
inference space, which was partitioned into a 
low angle-of-attack, linear portion of the design 
space and a high angle-of-attack, nonlinear 
region characterized by stall/post-stall 
aerodynamics.  A nested, 5-level face-centered 
design was applied in each subspace and was 
developed specifically for this test to estimate 
expected higher-order control surface effects.  
The method of truncated inference subspaces 
was also applied to estimate the supersonic 
aerodynamic characteristics of a slender-wing 
fighter configuration (reference 6).  Similar to 
the experiment in reference 17, the goal was to 
permit separate empirical models to be 
developed for regions of the inference space in 
which different physical phenomena were 
expected.  The two-dimensional inference space 
in this experiment encompassed large ranges of 
the angles of attack and sideslip.  Linear 
aerodynamics were expected at low angles of 
attack and sideslip, whereas nonlinear, 
symmetric and asymmetric, vortex-dominated 
aerodynamics were anticipated at other 
combinations of the independent variables.   The 
overall inference space was partitioned into a 
total of six subregions.  The sideslip axes were 
both divided into negative and positive regions, 
and the positive region for angle of attack was 
further divided into low and high segments.  A 
spherical central composite design (reference 1) 
was applied in all subspaces, which provided 
piecewise-continuous response models for the 
six-component aerodynamic forces and 
moments over the full ranges of the independent 
variables.   This investigation included a detailed 
assessment of methods to assess the adequacy of 

the empirical models, including predictions at 
the subspace boundaries.  

Stage Separation Wind Tunnel Testing 

Studies of the aerodynamics of separating 
bodies have been performed for decades 
(reference 4).  In the 1980s, post-Shuttle 
development, NASA continued to examine 
earth-to-orbit space transportation concepts to 
cover a wide range of mission requirements, 
which included two-stage, fully reusable 
systems.  An experimental program was initiated 
by NASA in the early 2000s to develop 
experimental tools and testing methodologies to 
apply to supersonic stage separation problems 
for future multi-stage launch vehicle systems 
(reference 4).  This program featured supersonic 
proximity testing in the NASA LaRC UPWT of 
the generic, bimese TSTO configuration 
previously shown in figure 2.  Specially 
designed stage separation support hardware and 
specifically-scaled models were fabricated to 
accomplish this testing.  Extensive modifications 
to the UPWT automated model control system 
algorithms and new support system calibration 
procedures were implemented to enable a new 
two-model proximity testing capability in this 
facility.  Proximity data were acquired within a 
two-dimensional grid of spatial locations 
representing relative axial and vertical positions 
of the orbiter and booster vehicles during the 
supersonic portion of the staging event.  
Proximity data were obtained at a total of 328 
grid points, which are illustrated in figure 3.  
The origin of the proximity matrix corresponds 
to the location of the booster model moment 
reference center (MRC) when the booster and 
orbiter model are aligned in a near-docking 
position.  The axial and vertical displacements 
of the booster model expressed in inches, x and 
z, respectively, are defined relative to this 
origin, while the orbiter model remained in a 
fixed position.  The quantities X/L and Z/L are 
also shown in figure 3, which correspond to the 
relative axial and vertical positions 
nondimensionalized by the model reference 
length, L.   An OFAT testing technique was used 
in reference 4, whereby data were acquired in a 
“sweep” of axial positions of the booster vehicle 
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while all other independent variables of interest 
were held constant.    Figure 4 shows the 
variation of the booster model normal force and 
pitching moment coefficients (CN and Cm) 
plotted against the axial displacement, Xsep, at 
fixed relative vertical position (Zsep = 1.313 
inches) and relative angle of attack ( = 0 
degrees) at Mach = 3.0. Interference increments 
are seen to be highly nonlinear, changing signs 
several times as the booster moves aft of the 
orbiter (increasing values of x).  It was 
speculated during this experiment that the flow 
field region was dominated by multiple shock 
reflections and flow separation, which 
contributed to the nonlinear aerodynamics. This 
was confirmed in the schlieren flow 
visualization images shown in figure 5 obtained 
in a complementary test program in the 14-Inch 
Tri-Sonic Tunnel at the NASA Marshall Space 
Flight Center (NASA MSFC) (reference 18).  In 
the mated conditions, mutual interference is 
characterized by a channel-like flow between the 
bodies, and the bow shock waves of each body 
impinge on the other resulting in multiple 
reflections.  As the two bodies move apart due to 
axial or vertical displacement or relative angle of 
attack ( refx l , refz l ,   respectively), the 
channel-like flow is not observed.  Instead, 
mutual interference is mainly determined by 
bow shock impingements and the reflections. 
The results from the UPWT investigation in 
reference 4 showed that the booster remained in 
the influence of the orbiter throughout the entire 
proximity matrix at Mach = 3.0.  The ability to 
leverage off of this work was the primary driver 
in the application of formal experimental design 
to estimate the stage separation aerodynamics of 
like-scale bodies in a belly-to-belly arrangement.  
The Mach 3 staging conditions, the OFAT 
proximity matrix and measured interference 
increments, and the schlieren flow visualization 
results provided guidance in the definition of the 
formal experimental design and the partitioning 
of the overall inference space. 

 

 
 

Nomenclature 

ao number of center points in  axial  
block 

Adequate 
Precision measure of the range in 

predicted response relative to its 
associated error (signal-to-noise 
ratio) 

ANOVA  analysis of variance 
Bref  reference span, 6.46 inches 
CCD  central composite design 
CD1 booster model drag force 

coefficient,    

                
 

Drag Force

q Sref
 

CL1 booster model lift force 
coefficient,    

                
 

Lift Force

q Sref
 

CM1 booster model pitching moment 
coefficient (also Cm),    

                 
 

Pitching Moment

q Sref Lref
 

CN booster model normal force 
coefficient,    

                
 

Normal Force

q Sref
 

Cooke’s D Cook’s distance, a statistic used 
to measure the global influence 
of a given observation on all 
predicted values 

D-optimal computer-generated 
experimental design defined by 
selecting design points from a 
candidate list that minimize the 
variance of the regression model 
coefficients 

DFBETAS difference in beta coefficients, a 
statistic used to assess the 
impact of any given observation 
on a particular regression model 
coefficient 

DFFITS difference in fits, a statistic used 
to detect influential 
observations, specifically, the 
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influence of an observation on 
its own predicted value 

F  number of factorial points 
FCD  face-centered design 
Fo number of center points in 

factorial block 
F-test statistical test of significance in 

ANOVA to test if the variances 
of two populations are equal 

k number of independent 
variables 

leverage numerical value between 0 and 
1 that indicates the potential for 
an observation to influence the 
regression model fit; a leverage 
of 1 means the predicted value 
at that particular case will 
exactly equal the observed value 
of the experiment 

L reference length (also, Lref or 

refl ), 13.13 inches 

LaRC Langley Research Center 

LGBB  Langley glideback booster 

m  critical binomial number 

Mach  free-stream Mach number  
MDOE  modern design of experiments 
MRC moment reference center, 8.93 

inches from model nose 
measured along the centerline 

MSFC  Marshall Space Flight Center 
n number of data points used to fit 

the regression model 
NASA       National Aeronautics and Space 

Administration 
OFAT one factor-at-a-time 
p  number of parameters in 

regression model 
p - value  probability value 

psf  pounds per square foot 
q  free stream dynamic pressure, 

357 pounds per square foot (psf) 
Re Reynolds number, 2.0 million 

per foot 
RLV  reusable launch vehicle 
RSM       response surface methodology 

(also, response surface methods) 
2

adjR  statistic providing a measure of 

the explained variance to the 

total variance adjusted for the 
number of parameters in the 
regression model 

2

predR  statistic providing a measure of 

the amount of variation in new 
data explained by the regression 
model  

Sref  reference area, 19.18 square 
inches 

t  value from the Student-t 
distribution 

S
t  critical value from the Student-t 

distribution corresponding to 
s

  

TSTO two-stage-to-orbit 
UPWT Unitary Plan Wind Tunnel 
VIF  variance inflation factor of a 

regression model coefficient, 
measures how much the lack of 
orthogonality in the 
experimental design inflates the 
variance of that model 
coefficient 

 ˆVar y  average variance for a 
polynomial regression across all 
measured points in the inference 
space 

x1, x2, x3 main factor effects  
X/L relative axial position of the 

booster model and orbiter model 
nondimensionalized by the 
model reference length, L 

y   response variable 
ŷ   estimated response value 

Z/L relative vertical position of the 
booster model and orbiter model 
nondimensionalized by the 
model reference length, L 

2-D      two-dimensional 
3-D three-dimensional 
       angle of attack, degrees 

a      distance of axial points from 

center of CCD for orthogonal 
blocking 

s      level of statistical significance, 

acceptable probability of error 
        unknown parameter 

(coefficient) in regression model 
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        random error component 
        population standard deviation 
̂        sample standard deviation 
         precision limit 

x      axial displacement of the 
booster model MRC relative to 
the orbiter model MRC, positive 
when booster model is 
translated aft of near-docking 
position (also Delta X and 
Xsep), inches 

z      vertical displacement of the 
booster model MRC relative to 
the orbiter model MRC, positive 
when booster model is 
translated to the right of near-
docking position (also Delta Z 
and Zsep), inches 

      angle of attack of booster model 
relative to orbiter model (also 
Delta Alpha), positive when 
booster model angle of attack is 
positive, degrees 

 
Test Information 

This section will describe the wind tunnel 
facility and test conditions, the models and 
instrumentation, and the test techniques relevant 
to the current investigation. 

Wind Tunnel Facility and Test 
Conditions 

The NASA LaRC UPWT is a closed-circuit, 
continuous-flow, pressure tunnel with two test 
sections that are nominally 4-feet by 4-feet in 
cross section and 7 feet long (reference 4).  The 
nozzle throat-to-test section area ratio is varied 
by a lower asymmetric sliding nozzle block that 
provides continuous variation of the Mach 
number.  The Mach number range is nominally 
1.5 to 2.86 in Test Section 1 and 2.3 to 4.63 in 
Test Section 2.  Reynolds numbers from 1.0 to 
5.0 million per foot can be routinely run with a 
capability to attain 6.0 million per foot on a 
transient basis.  The basic model support 
mechanism is a horizontal wall-mounted strut 
that is capable of forward and aft travel of over 3 
feet in the streamwise direction.  A main sting 

support attached to the strut can traverse 
laterally +/-20 inches and can provide yaw 
capability of +/-12 degrees.  Forward of the 
main sting support is the angle-of-attack 
mechanism that provides pitch motion from -15 
degrees to +30 degrees.  A roll mechanism can 
be installed ahead of the pitch mechanism to 
provide continuous roll motion over a nearly 
360-degree range.   

Proximity testing of the LGBB 
configuration was accomplished by installing the 
booster model onto the main sting support using 
a standard straight sting and the orbiter model 
onto a fixed horizontal blade strut mounted to 
the test section sidewall.  Figure 6 shows 
photographs of the LGBB configuration 
installed in the wind tunnel test section. The 
traverse and rotational capabilities of the main 
support system allowed positioning of the 
booster model in the test section to within       
+/-0.050 inches of the relative axial and vertical 
distance setpoints and to within +/-0.1 degrees 
of the relative angle of attack setpoints.  The 
custom horizontal blade strut was mounted to 
the sidewall because of constraints in attaching 
support hardware to the ceiling or floor of the 
test section.  The standard sidewall with multiple 
optical-quality windows was replaced with a 
solid sidewall in order to install the blade strut.  
This precluded the use of the facility schlieren 
flow visualization system during the stage 
separation testing.  The fixed horizontal blade 
strut positioned the orbiter model centerline 18 
inches from the test section sidewall at pitch and 
yaw angles of 0 degrees and a roll angle of -90 
degrees (wings vertical).  A slot was machined 
into the lee side of the orbiter in place of the 
vertical tail to accommodate the blade strut entry 
into the model.    The booster model was rolled 
+90 degrees to a wings-vertical orientation to 
simulate a belly-to-belly arrangement of this 
bimese TSTO configuration. 

The experiment was conducted in Test 
Section 2 at a free-stream Mach number of 3.0, a 
Reynolds number per foot of 2.0 million, and a 
stagnation temperature of 125 degrees 
Fahrenheit.   The three independent variables 
were the relative axial distance, x, relative 
vertical distance, z, and relative angle of attack 
 of the orbiter and booster models.  Changes 
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in the independent variables were accomplished 
exclusively through the translation and rotation 
of the booster model relative to the fixed orbiter 
model.  A near-docking position of the orbiter 
and booster models was previously shown in the 
OFAT proximity grid point matrix in figure 3, 
which corresponded to x = z = 0 inches.  At 
this position, the models were axially aligned, 
and the minimum vertical spacing between the 
bellies of each model was 0.41 inches.  This 
spacing was established from static and wind-on 
verification testing as a reasonable buffer to 
account for small-amplitude model dynamics 
and booster model angles of attack up to 2.5 
degrees during the OFAT testing. A more 
conservative spacing of approximately 1.066 
inches was established for the current response 
surface investigation corresponding to z = 
0.656 inches, since the maximum booster model 
angle of attack was increased to 5 degrees. The 
relative axial distance, x, was varied from 0 
inches to 28 inches, which corresponded to a 
range of approximately 2.13 model body 
lengths.   The relative vertical distance, z, was 
varied from 0.656 inches to 13.13 inches, which 
represented a range of approximately 0.95 body 
length.  The range of  was 0 degrees to 5 
degrees.   The positioning of the booster model 
in the test section was corrected for deflections 
due to aerodynamic loads.  Flow angularity 
corrections were not applied to the data, since 
estimates of the local flow angle throughout the 
test section were not obtained in this experiment.  
A brief discussion of possible flow angle 
gradients in UPWT Test Section 2 and the 
impact on stage separation aerodynamic 
measurements is provided in reference 4.  

Models and Instrumentation 

Two 0.0175-scale stainless steel force 
models of the LGBB configuration were 
fabricated for the stage separation testing in the 
NASA LaRC UPWT.  The reference dimensions 
used to calculate the aerodynamic coefficient 
data are included in the sketch of the LGBB in 
figure 2.  The MRC of each model was located 
at 68% of the distance along the reference body 
length measured from the nose.  The models 
installed in UPWT Test Section 2 were 
previously shown in figure 6.  The external 

geometries of the booster and orbiter models 
were identical with the exception of the vertical 
tail arrangement. The booster model 
accommodated a single centerline vertical tail, 
whereas the orbiter model accepted the blade 
strut in place of the vertical tail. 

The six-component aerodynamic forces and 
moments were measured simultaneously on both 
models using internally-mounted strain-gage 
balances.  Both balances were calibrated using a 
single-vector calibration system (reference 16) 
that applied MDOE to the calibration and data 
analysis processes.  Model base/chamber 
pressures were acquired, but no corrections 
based on these measurements were applied to 
the balance forces and moments. 

Grit particles were applied to both models to 
encourage boundary layer transition.  A 0.10-
inch wide ring consisting of #40 grit was applied 
1.2 inches aft of the nose.  Strips of 0.10-inch 
width #40 grit were also applied 0.28 inches aft 
of the wing leading edges.  A similar grit strip 
was applied at the same distance from the 
leading edge of the booster model vertical tail.  

Test Techniques 

Modifications were made to the facility 
calibration procedures and the automated model 
control system algorithms to ensure accurate 
positioning of the booster model relative to the 
orbiter model.  In addition, the control system 
software was modified to allow input and 
automation of the random setpoint order of the 
independent variables that were required in each 
subspace of the experimental design. These 
modifications were validated in static and wind-
on testing of two inexpensive aluminum orbiter 
and booster models installed on non-
instrumented balances (“dummy” balances) built 
specifically for this purpose.  All setpoint 
matrices were run to ensure satisfactory 
positioning of the models.  In addition, these 
check-out runs confirmed the absence of 
undesired model dynamics at all locations within 
the proximity matrix.  The booster model was 
automatically moved to a “home” position at the 
conclusion of each run that corresponded to the 
positive extreme in the relative axial location 
(x = 28 inches) and the minimum values of the 
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relative vertical location (z = 0.656 inches) and 
the relative angle of attack ( = 0 degrees).  If 
the random run order resulted in consecutive 
replicate points, the booster model was again 
moved to the home position between points.  
The gains in the automated control system were 
tailored to allow the booster model to establish a 
desired setpoint without overshooting.  Data 
were acquired in a “setpoint-pause” mode, with 
sufficient time allowed for flow stabilization 
once the setpoint was established (approximately 
2 seconds) and two seconds for data acquisition 
(30 samples per second).  The automated data 
acquisition system would acquire data only 
when the setpoints and tunnel flow conditions 
were simultaneously within prescribed 
tolerances.  The experimental design concepts of 
replication, randomization, and blocking 
(reference 1) were key components in the 
current stage separation experiment.  More 
details on these data quality assurance tactics are 
provided in the next section on experimental 
designs.  

This investigation was considered 
exploratory in nature, consequently, only 
proximity data were acquired.  That is, data were 
not acquired on the isolated booster or orbiter 
models, which would have allowed the 
estimation of aerodynamic interference 
increments.  Isolated and proximity data were 
acquired on the same LGGB configuration at 
Mach = 3.0 in prior OFAT testing (reference 4).  
Blade strut interference effects were also not 
accounted for.  Inferences regarding strut 
interference effects based on comparisons of the 
OFAT data to computational fluid dynamics 
predictions are briefly discussed in reference 4. 
 

Experimental Design 

Inference Subspace Definition 

The inference subspace boundaries were 
established with the goal of compartmentalizing 
the overall flow field into smaller regions within 
which the aerodynamic responses were 
presumably well-behaved and estimable using 
relatively low-order polynomial functions.  
Preliminary rapid screening tests can effectively 

identify the regions in the inference space where 
the linear and nonlinear aerodynamics prevail.  
Prior experience or data from similar tests and 
engineering judgment are alternative means of 
estimating the ”topography” of the overall 
inference space to characterize regions rich in 
structure or broad and featureless (reference 6).    
The prior OFAT testing (reference 4) of the 
LGBB configuration indicated that the 
interference effects of the orbiter model on the 
booster model were highly nonlinear throughout 
the entire inference space at Mach = 3.0.  These 
results suggested that a more uniform 
distribution of subspaces and design points were 
appropriate in an attempt to capture the 
nonlinear flow-field effects.  It was decided to 
align the subspaces primarily along existing 
OFAT proximity matrix grid points (figure 3) 
and to define a total of 11 contiguous, or 
adjoining, regions.  Figure 7 is a schematic 
representation of the inference space with 
subspace boundaries labeled.  The subspace 
boundaries are listed in Table I.  

Precision and Resolution 
Requirements 

A high-precision response surface predicts 
response values that have a high probability of 
being within a small interval of the true 
response. Given the magnitudes of the 
interference effects observed in the prior OFAT 
testing (reference 4), precision intervals of      
+/-0.01 for lift coefficient, +/-0.001 for drag 
coefficient, and +/-0.001 for pitching moment 
coefficient were specified for the current 
exploratory investigation. The upper level of 
acceptable inference error probability was 
specified as 0.05, corresponding to 95% 
confidence.  The two elements of the precision 
requirement were combined into specifications 
of a 95% confidence interval of +/-0.01 for lift 
coefficient and 95% confidence intervals of    
+/-0.001 for drag coefficient and pitching 
moment coefficient.   Consequently, a sufficient 
volume of data was required to ensure that the 
response functions that were fit to these data 
points would predict lift coefficients that had at 
least a 95% probability of being within +/-0.01 
of the true lift coefficient, and drag coefficients 



 11

and pitching moment coefficients that had at 
least a 95% probability of being within +/-0.001 
of the true drag coefficient and pitching moment 
coefficient.   

Invoking the Central Limit Theorem 
(reference 1), it was assumed that the probability 
distribution of RSM response predictions for any 
specified combination of the independent 
variables was Gaussian, where the distribution 
was assumed to be based on models developed 
from numerous n-point data sets drawn from the 
same population (n is the sample size).  
Assuming the distribution was centered on the 
true response value, the current test required that 
the difference between the predicted and true 
responses be no greater than the specified 
precision limits with at least 95% probability.  
The precision limits, , can be expressed as the 
product of the standard deviation of this 
distribution and a constant which, for an 
“infinite” number of prior measurements, is 
1.96, if 95% confidence is specified.   The RSM 
prediction variance depends on the location in 
the inference space as well as the variance in the 
data (reference 1), with the exact distribution of 
prediction variances directly related to the 
distribution of data points throughout the 
inference space.  However, a single formula (3) 
represents the average variance for a polynomial 
regression across all measured points in the 
inference space (reference 5), independent of the 
order of the polynomial or the number of 
independent variables, where p is the number of 
parameters in the model, n is the number of data 
points used to fit the model, and ̂  is the 
estimated standard deviation:   

The square root of this quantity is the standard 
deviation of the distribution of response 
predictions, and the precision limit can then be 
expressed as 

Solving for n in equation (4) yields 

Here, the confidence interval half width, , is 
expressed as the number of standard deviations 
of the distribution of response surface 
predictions.   It depends on the acceptable 
probability of error, s, and the amount of data 
used to estimate .  Tables of values for the 

Student-t critical value, 
s

t , are found in most 
statistical texts and handbooks, and it has the 
assumed value of 1.96 as indicated earlier.  
Based on the prior OFAT testing, the estimated 
values for lift, drag, and pitching moment 
coefficients (CL1, CD1, and CM1) are .005, 
.0007, and .0007, respectively.  A full second-
order response model in three independent 
variables requires the estimation of 10 model 
parameters (p = 10).    Given the precision limits 
of  = 0.01, 0.001, and 0.001 for the lift, drag, 
and pitching moment coefficients, n is computed 
from equation (5) as follows: 

 
Lift coefficient: 

Drag coefficient: 

Pitching moment coefficient: 

These calculations reveal that if the standard 
deviation of each measurement of lift, drag, and 
pitching moment coefficient is no greater than 
0.005, 0.0007, and 0.0007, respectively, a full  
second-order model in three independent 
variables must be fitted to at least 10, 19, and 19 
points, respectively in order for the average 95% 
confidence interval half-width associated with 
predictions at those points to be no greater than 
0.01, 0.001, and 0.001, respectively.  The 
aerodynamic responses were measured 
simultaneously by the wind tunnel data 
acquisition system.  Specifying the largest 
volume of data required for any one response 
variable, in this case 19 points for the drag 
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coefficient and pitching moment coefficient, 
ensured that the minimum precision 
requirements were achieved for those variables, 
and it provided additional margin for the lift 
coefficient response.  A total of 20 points were 
actually specified in each subspace, for reasons 
discussed in the next section 

A high resolution response surface is one for 
which there is a high probability that a small 
indicated difference in response is real.  The 
probability of correctly resolving the difference 
in two response levels (typically referred to as 
the power) depends on the size of that 
difference.  This would be a consideration in the 
experimental design if, for example, the 
aerodynamic interference increments (proximity 
data minus the isolated data) were the response 
variables of interest.  Figure 8 shows a power 
curve for lift coefficient corresponding to a full 
second-order response model in three 
independent variables developed by fitting 20 
data points.  The assumed measurement standard 
deviation is 0.005 and the level of significance is 
0.05.   In this case, the response surface is 
expected to resolve changes in the lift coefficient 
of 0.0094 with 95% confidence (the precision 
requirement for lift coefficient is 0.01).  In 
contrast, figure 8 shows the power to resolve 
differences in the drag coefficient (or pitching 
moment coefficient) of 0.001 (corresponding to 
the precision requirement) is approximately 0.80 
with 95% confidence.  The power to detect a 
difference of 0.001 at 95% confidence would be 
0.95 if the number of data points was increased 
to 29. 

Selection of Points 

The prediction variance distribution over the 
inference space depends on how the data points 
are distributed (reference 1).  There are a 
number of established experimental designs that 
distribute the data points to achieve good 
prediction variance properties.  A known point 
distribution called a cuboidal or face-centered 
design   (FCD) (reference 1) was selected as the 
primary design for this investigation and was 
applied in each of the 11 subspaces previously 
shown in figure 7.  In the case of three 
independent variables, the FCD specifies 15 

unique sites in a three-dimensional (3-D) 
inference space distributed in such a way that 
reveals a certain symmetry when the 
independent variables are coded by a linear 
transformation that maps them into an interval 
from -1 to +1.  Details of the 15 sites in a 3-D 
FCD are shown in figure 9.  Note that the design 
is partitioned into two cubes, which corresponds 
to the blocking scheme used in this experiment.  
One cube represents the factorial block 
containing 8 points at the cube corners or 
vertices (all combinations of the independent 
variables) and 1 point at the center of the cube.  
The factorial points allow estimation of main 
effects and first-order interaction terms as in 
equation (1).  The axial block contains the 6 
axial points at the face centers and 1 point at the 
center of the cube.  The axial points at the face 
centers allow estimation of second-order or 
quadratic terms.  Two additional center points 
were included in each block such that the total 
number of points in the FCD in each subspace 
was 20.  The three points at the center of the 
design in each block represent replicates, which 
were used to estimate the pure error in the 
experiment, to perform lack of fit tests 
(reference 1), and to contribute to the estimation 
of quadratic effects.  The location of the 
replicates at the center of the design also 
produced reasonable stability of the scaled 
prediction variance (reference 1). Blocking is a 
quality assurance tactic that defends against 
unexplained variance in the data (reference 6).  
It entails clustering the data into groups or 
blocks.  All points in one block are executed 
before any of the points in another block, and 
the blocks are executed in random order.  
Blocking was applied throughout the day in the 
current experiment, and the block boundaries 
were aligned with natural candidates for 
systematic variation, such as shift and operator 
changes and end-of-daily operations.   Setting 
the independent variable levels in a randomized 
order within blocks defended against the adverse 
impact of correlated errors and effectively 
decoupled systematic errors from the true factor 
effects (reference 6). 

Orthogonal blocking for a cuboidal design 
requires disproportionate block sizes    
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(reference 1).  If the blocking is not orthogonal, 
then the presence of significant block effects can 
affect the numerical values of the coefficients in 
the response model.  Consider the following 
equation (6) for orthogonal blocking, which 
expresses the distance of the axial points from 
the center of a CCD to the number of factorial 
points, number of independent variables, and 
number of center points in the factorial and axial 
blocks:  

In the cuboidal design used in this experiment, 
the number of factorial points, F, is eight; the 
number of independent variables, k, is three; and 
the number of center points is three in both the 
factorial and axial blocks (Fo and ao, 
respectively).    This yields an axial distance, a, 
of 1.809 for orthogonal blocking.  However, the 
axial distance in a cuboidal design is a = 1.0.  
One way of achieving orthogonal blocking in 
this case is to assign twenty four center points to 
the factorial block and two center points to the 
axial block.  This was not considered an 
acceptable option in this experiment.  A more 
detailed description of blocking, including 
orthogonal blocking, is available in the  
literature (reference 1). 

Of the 20 degrees of freedom in each 
subspace, ten were allocated to a full second-
order model in three independent variables, 
leaving ten residual degrees of freedom to assess 
the quality of the fit.  This provided a 50-50 split 
between the resources allocated to estimating the 
response models and resources allocated to 
assessing them.  Since there were 15 unique sites 
in each subspace and ten parameters to fit for a 
full second-order model, five of the ten residual 
degrees of freedom were available to assess the 
lack of fit.  Up to five additional terms could be 
added to the response model to improve fit if 
needed, without having to specify any additional 
data.  However, there would be no available 
degrees of freedom to assess lack of fit.  The 
five remaining residual degrees of freedom were 
available to assess unexplained variance in the 
data.  However, one of these was allocated to 
assessing and defending against block effects.  

The four remaining variance degrees of freedom 
per subspace were available to assess pure error, 
or random variations in the data.  Table II 
summarizes the degrees of freedom budget in 
the full second-order model applicable to the 
current experiment. 

The cuboidal design was the design of choice 
compared to the spherical CCD illustrated in 
figure 9 because of physical constraints imposed 
on the spacing of the orbiter and booster models.  
It was desired to obtain a sufficient array of 
measurements at unique sites in the inference 
space where the orbiter and booster models were 
in close proximity, within the safety constraints 
imposed by the facility.  As previously stated, 
the minimum vertical spacing for this test 
corresponded to z = 0.656 inches, which 
established the lower range of this independent 
variable. Consequently, the lower plane of the 
first row of subspaces was aligned with            
z = 0.656 inches, which yielded a desirable 
density of observations at the minimum 
allowable vertical separation distance.  The FCD 
provided additional measurements at this 
minimum separation, since the axial points in 
the cuboidal design were at the centers of the 
cube faces.  In contrast, a spherical CCD would 
require a larger displacement of the factorial 
cubes from the minimum separation location in 
order to incorporate the axial points that were 
outside of the cube faces in this design. 

The FCD could also support response surface 
models with a limited number of higher-order 
terms (e.g., mixed cubic).  A decision was made 
during the testing to augment the FCD in 
subspaces 1 through 5 (see figure 7) to 
accommodate full third-order models.  A 
computer-generated D-optimal design  
(reference 1) was defined by selecting design 
points from a candidate list that minimized the 
variance of the regression coefficients.  Fourteen 
unique design points were specified at the cube 
edges (edge centers, edge thirds) and at locations 
interior to the cube along with 3 center points in 
each subspace, and these 17 additional data 
points were run in random order in a separate 
block for each of the selected subspaces.  This 
yielded a total of 37 data points in each of the 5 
subspaces for which the D-optimal design was 
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created. Available resources also allowed the 
inclusion of spherical CCDs in four subspaces 
with trimmed ranges of the spatial factors.  A 
sketch of the subspace layout within which a 
spherical CCD was applied is shown in       
figure 10.  The subspaces are denoted 
1 , 2 , 4 , and 5     to distinguish them from the 
different subspaces to which the FCD was 
applied.  For clarity, only the axial points for 
1 and 5   are shown. These designs also 
supported full second-order models and a 
limited number of mixed cubic terms. 

The FCD, D-optimal, and spherical CCD 
effectively yielded a total of six basic empirical 
models for comparison: (1) up to full second-
order using the FCD, (2) full second-order and 
additional mixed cubic and quartic terms using 
the FCD, (3) full third-order using D-optimality, 
(4) full third-order using D-optimality and 
additional quartic and mixed quartic terms,      
(5) full second-order using the spherical CCD, 
and (6) full second-order and additional mixed 
cubic and quartic terms using the spherical 
CCD.   Each of these cases yielded a different 
distribution of the prediction variance 
throughout the inference space.   Figure 11 
illustrates the distributions of the unit standard 
error of prediction (reference 1) for all six cases.  
The full second-order FCD exhibits a desirable 
broad, flat region of nearly constant, relatively 
low error in the center of the design with the 
larger errors pushed toward the boundaries of 
the design.  A similar description applies to the 
full second-order spherical CCD, which is a 
rotatable design since the error depends only on 
distance from the center, not the direction.  The 
full third-order D-optimal design exhibits less 
desirable prediction variance properties with a 
more irregular and undulating error distribution.  
For all the three previous designs, adding 
higher-order terms degrades the error 
distribution, particularly for the D-optimal 
design.  Figure 11 shows that the addition of 
model terms of higher order increases the levels 
and local gradients of the prediction variance 
distributions.  Furthermore, the error 
distributions are less predictable. 

Two confirmation points were also obtained 
in each of the 11 subspaces with the FCD, and 4 

confirmation points were acquired in each of the 
4 subspaces with the spherical CCD.  These 
points were not used to generate the response 
surface functions but, instead, were held in 
reserve to test the empirical models.   The 
models were used to predict the responses at 
these points, and it was a requirement that a 
sufficient number of confirmation points be 
adequately predicted for the models to be 
considered a proper representation of the system 
response.  

The data point total for the current 
experiment is now summarized.  The FCD in 
three variables featuring 22 points (including 
confirmation points) was specified in all 11 
inference subspaces for a total of 242 points.  
There were 103 unique sites in the overall 
inference space, 11 of which were replicated 6 
times.  Augmenting the FCD to a full third-order 
D-optimal design required 17 additional points 
in 5 subspaces totaling 85 points.  There were 70 
additional unique sites, and 5 sites were 
replicated 3 times.  The spherical CCD featured 
24 points (including confirmation points) in each 
of 4 subspaces totaling 96 points.  There were 48 
unique sites, and 4 sites were replicated 3 times.  
A grand total of 375 points was budgeted for the 
entire experiment. 

 

RSM Analysis 

Model Building 
Multiple linear regression methods 

(references 1 and 2) were used to develop the 
empirical response functions relating the 
aerodynamic coefficients to the independent 
variables in all subspaces.  A total of 12 
responses were measured (6 aerodynamic forces 
and moments for the booster model and orbiter 
model) in 11 subspaces for a total of 132 
response functions.  The FCD supported the 
inclusion of up to 13 model parameters. 
Assuming at least one degree of freedom was 
required to assess the quality of fit, there were 
up to 12 terms that could either be included in 
the model or not (two possible states), or 212-1 = 
4095 candidate models in each case, or a total of 
540,540 candidate models to consider, in 
principle.  The task was reduced by half, since 



 15

only the three longitudinal aerodynamic 
coefficients for each model were of interest.  
Furthermore, the focus of this exploratory 
investigation was the booster model lift, drag, 
and pitching moment coefficients, so “only” 
135,135 candidate models remained.  
Fortunately, a number of model-building 
strategies exist to render this task more feasible, 
and the present analysis used a backward 
elimination method as a guide to selection of 
final models.  A detailed description of this 
strategy is provided in references 1 and 2.  All 
analyses were performed using commercially-
available experimental design and statistical 
analysis software (reference 19).  It is noted that 
backward elimination does not guarantee a “best 
model.”  Any model building strategy is affected 
by the presence of correlated independent 
variables, or multicollinearity, where the 
contribution that a given model term makes to 
the explained variance depends on the presence 
of another variable in the model.  An advantage 
of the second-order FCD and spherical CCD is 
that this linear dependence is minimized, so the 
use of a model-building strategy such as 
backward elimination is more likely to yield an 
adequate model.  The initial approach that was 
taken with data acquired using the FCD was to 
specify a full second-order model and to apply 
backward elimination to identify a model for 
more detailed consideration.  A formal analysis 
of variance (ANOVA) (reference 1) partitioned 
the total variance in the experimental data into a 
component that could be explained by the model 
and a residual or unexplained component not 
explained by the model.  The ANOVA output 
included an F-test (reference 1) to determine if 
the regression model was significant at an 
assumed significance level (s-level) of 0.05. 
Individual F-tests were also performed on all 
regression coefficients. A lack of fit test 
provided a metric to assess how well the model 
fit the data.  Acquiring data at more unique 
combinations of the independent variables than 
there were coefficients in the model provided an 
estimate of the unexplained variation due to lack 
of fit, and the estimate of pure error from the 
center point replicates provided a basis with 
which to assess its significance.    Excessive lack 
of fit suggested that a different model may be 
necessary.   It is noted, however, the pure error 

component in most wind tunnel tests is typically 
extremely small.  Since this variance component 
comprises the denominator in the lack-of-fit F-
test, even quite reasonable lack of fit variance 
components are declared statistically significant.  
Consequently, the regression models will often 
fail the lack of fit test not because this variance 
component is large in a meaningful absolute 
sense but because there is so little pure error.  

The 2

adjR  and 2

predR  statistics (reference 1) 

provided measures of the explained variance 
relative to the total variance and the amount of 
variation in new data explained by the model, 
respectively.  A guideline (reference 19) was 
that these two values should be within about 
0.20 of each other.  It is possible to obtain very 

high values of 2

adjR  by overfitting the model and 

correspondingly small values of 2

predR  since the 

model is a poor predictor of the response at other 
locations within the inference space.  The main 
problem with using the R-squared statistics for 
wind tunnel response surface model evaluation 
is the precision of the measurements is generally 
so good that these values are often very close    
to 1.  As a result, they are not very clear 
discriminators. The analysis also included an  
Adequate Precision value (reference 19), which 
was basically a signal-to-noise ratio or another 
measure of regression model discrimination.  

Important information that was provided in 
the post-ANOVA output was contained in the 
variation inflation factors (VIF) (reference 1) for 
the individual terms.  VIF is a measure of how 
much the variance of the model is inflated by the 
lack of orthogonality in the design.  A value of 1 
indicates the factor is orthogonal to all other 
factors in the model.  Values greater than 10 
indicate the factors are too correlated with each 
other, that is, multicollinearity is sufficiently 
strong to adversely affect the estimates of the 
regression coefficients and the ability to discern 
which factors truly affect the aerodynamic 
responses. 
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Model Validation 

Residuals Analysis 

Absent any other information external to the 
experiment, all the information that is available 
about the quality of the regression model fit is 
contained in the residuals.   The residuals are the 
difference between the observed response and 
the predicted response for the same combination 
of the independent variables.   Underlying 
assumptions in the regression model include 
normally and independently distributed errors 
having a mean of zero and a constant variance.  
The residuals for a well-formed model should be 
due only to random error in the data, not a 
systematic departure of the model from the data.  
A comprehensive residuals analysis was 
performed for all promising models from the 
backward elimination method.  This process was 
very rapid and efficient using the diagnostic 
plots and influence plots described in                 
reference 19.  A detailed discussion of residuals 
analysis is provided in the literature               
(see references 1 and 2, for example).  The 
diagnostic plots included a normal probability 
plot of the residuals, residuals versus predicted 
response values, residuals versus experimental 
run order, predicted versus actual response 
values, Box-Cox plots (reference 1), and 
residuals versus factor level.  The influence plots 
included externally studentized residuals, 
leverage, DFFITS and DFBETAS        
(reference 19), and Cook’s D (reference 1).  
Upon completion of the residuals analysis, 3-D 
response surface plots and 2-D contour plots 
were created to visualize the estimated 
aerodynamic responses throughout each 
inference subspace.    

A manual review was performed of all 
recommended models resulting from backward 
elimination.  Selected model terms were added 
and/or deleted, and the analysis of the updated 
regression model was repeated.  Engineering 
judgments were made regarding the usefulness 
of certain model terms.  For example, a model 
term could be declared statistically significant 
based on the 5% level of significance assumed 
in these analyses, but it may not have been 
judged practically significant.  The analysis was 

initially driven by the concept of model 
parsimony (reference 1), that is, to develop 
easily-interpretable response functions with the 
minimum number of terms that were good 
predictors of the aerodynamic responses.  Model 
hierarchy (reference 1) was also maintained 
throughout the analyses.  The hierarchy principle 
indicates that if a model contains significant 
higher-order terms, it should also contain all of 
the lower-order terms that comprise it, even if 
the F-tests on these terms are insignificant.  In 
the end, the models were largely the product of 
the model-building algorithm and user input. 

Subspace Boundary Discontinuities  

The partitioning of the overall inference 
space resulted in empirical response surfaces 
that did not meet seamlessly at the subspace 
boundaries. Discontinuities in the levels of the 
estimated response and the slopes at the 
subspace boundaries were observed. This 
occurred because the responses at the boundaries 
were estimated from two different regression 
models (built from different data sets) applied to 
the same combinations of the independent 
variables. If the regression models have 
adequately captured the underlying aerodynamic 
response behavior in the adjoining subspaces, 
then the boundary discontinuities should simply 
reflect model prediction uncertainty, which 
exists throughout the inference space and not 
just at inference subspace boundaries.  The 
boundary phenomenon is simply the RSM 
equivalent of replicating data.  For example, two 
different response values would be obtained on 
the boundary at the same combination of the 
independent variables if two direct 
measurements were acquired instead of 
predictions from two different response surface 
functions.  This is due to random error in any 
data set, which is in fact the same reason that the 
response models do not perfectly agree.  In 
assessing subspace boundary discontinuities, the 
question was whether the variance in the 
predictions was consistent with experimental 
uncertainty.   The claim is not that the response 
surfaces themselves represent the true response 
of the system, but that the true response lies with 
some probability within locally parallel surfaces 
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representing the limits of some prescribed 
precision interval.  Those surfaces can have 
discontinuities at the boundaries.  The only 
claim is that the true surface is continuous at the 
boundary and lies everywhere between the 
precision intervals, even if those intervals do not 
meet smoothly at the boundary.   

The differences in the response predictions 
for the lift, drag, and pitching moment 
coefficients on the subspace boundaries obtained 
from the regression functions on either side of 
the boundaries were compared to precision 
requirements.  The precision requirements for 
each response variable presented in an earlier 
section describe the acceptable uncertainties for 
individual response estimates.  To compute 
acceptable corresponding uncertainties for 
differential response estimates, these values 
were simply multiplied by the square root of 
two, since under commonly occurring conditions 
the variance of the difference between two 
random variables is the sum of their variances 
(reference 2).  Given the layout of the 11 
inference subspaces in this experiment, there 
were a total of 14 common boundaries.  There 
were a total of 5 common design points (4 
factorial points and 1 axial point) at each 
boundary.  Consequently, 70 comparisons were 
made for each of the three longitudinal 
aerodynamic coefficient responses, resulting in 
210 total comparisons.  Fewer comparisons were 
made in the analyses of the FCD design with 
added higher-order terms, the D-optimal design, 
and the spherical CCD since fewer subspaces 
were investigated.  The total comparisons in 
these cases are summarized in Table III.    

Confirmation Points  

Another metric in assessing the adequacy of 
the empirical response surface models was to 
compare the predicted responses to the observed 
responses at different combinations of the 
independent variables than those for which data 
were acquired to build the models.  
Confirmation points were acquired at randomly-
selected locations within the inference subspaces 
at the same time as the design points.   These 
points were interleaved with the design points in 
each block and were therefore acquired in 

random order.  The confirmation points were not 
used to generate the models but held in reserve 
until promising regression functions had been 
identified.  Twenty-two confirmation points, 2 
points per subspace, were obtained during the 
acquisition of data required by the FCD.  Ten of 
these confirmation points were also used for 
comparisons to the predictions obtained in five 
selected subspaces using the FCD with added 
higher-order terms and the D-optimal design.  A 
total of 16 confirmation points, 4 points per 
subspace, were obtained along with the design 
points for the spherical CCD.  Table IV 
summarizes the confirmation points for all 
designs. A successful confirmation point was 
obtained if the measured response fell within a 
prediction interval centered about the predicted 
response, with the interval width corresponding 
to a 95% probability.  An objective measure of 
how many successful confirmations were 
required to consider the empirical functions as 
reasonable predictors of the aerodynamic 
responses was proposed in reference 6.  In this 
approach, the model confirmation was 
considered a Bernoulli process in which there 
were a prescribed number of trials with exactly 
two outcomes, success and failure, and a clearly 
defined criterion for success.  A successful trial 
was defined as having occurred in the 
confirmation process when a confirmation point 
was situated within the 95% prediction interval 
of the model.  A failure occurred when the 
confirmation point fell outside this interval.  The 
true probability of success on any one trial was 
assumed to be 95% corresponding to the size of 
the prediction interval.  The cumulative binomial 
probability distribution was used to determine a 
“critical binomial number,” call it m, for an n-
trial process for which the success rate was 95% 
for each trial.  Specifically, there was at least a 
95% probability of m or more successes in n 
trials if the probability of success on each trial 
was 95%.  For the 22-trial process in the current 
experiment, the critical binomial number was 
19.  Consequently, 19 or more confirmation 
points falling within the 95% prediction 
intervals was the success criterion. 
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Discussion of Results 

A significant amount of information was 
acquired in the stage separation experiment, 
which included 12 aerodynamic force and 
moment responses (6 responses per model) as 
functions of 3 independent variables, 3 
experimental designs, and up to 11 inference 
subspaces.  The focus of the current 
investigation was narrowed to three 
aerodynamic responses for the booster model 
corresponding to the lift, drag, and pitching 
moment coefficients within the 3-D inference 
space defined by the independent variables, x, 
z, and .  The results presented in this section 
emphasize the lift coefficient response, since the 
discussion is also applicable to the drag 
coefficient and pitching moment coefficient 
responses.  

FCD 

Initial full second-order models for the 
booster model lift coefficient response, CL1, 
were specified in all 11 subspaces, and 
backward elimination was then used to build 
reduced models.   Additional terms were often 
deleted in a manual editing process to include 
only the “heaviest hitters” in the model.  For 
example, a model recommended from backward 
elimination may have included a quadratic term 
in z with a “p-value” (probability value) 
(reference 1) much less than the cutoff level of 
significance of 0.05 (that is, z2 highly 
significant).   However, its contribution to the 
explained variance may have been two or three 
orders of magnitude less than the main effect of 
.  In the interest of model parsimony, the 
quadratic term was removed from the model, as 
long as the ANOVA output and model 
diagnostics were satisfactory.  The terms that 
were included in the final models for CL1 are 
listed in Table V.  There were at most 5 model 
terms (not including the intercept), which left 9 
degrees of freedom for lack of fit.  The main 
effect of  was common to all models, and this 
term accounted for a significant portion of the 
explained variation in the data.  This was an 
expected effect, since the lift coefficient is 
known to be a strong function of the angle of 

attack (reference 20).  Several of the empirical 
models included the main effects of x, z, the 
first-order interaction of x and z, and a 
quadratic term in z.  Three models from 
subspaces where the booster model was more 
distant from the orbiter model included only the 
main effect of .   Lack of fit was the only     
F-test in the ANOVA output that was a concern, 
since it was statistically significant in all cases.  
This was a common result, even with the higher-
order models that are discussed in later sections.    
The model diagnostics did not reveal any 
significant issues other than a limited number of 
points being flagged with high residuals or as 
potentially influential observations. 

Figure 12 presents a composite plot of the lift 
coefficient (CL1) response surfaces in subspaces 
1-11.  In each subspace, the response surface is 
situated above an inference plane defined by the 
independent variables x and z.  The third 
independent variable, , is fixed at its mid-
level of 2.5 degrees.  The 11 response surfaces 
are arranged approximately in their relative 
locations within the overall design space to 
provide a global qualitative view of the 
estimated lift coefficient response. The response 
surfaces are plotted on a common scale for all 
subspaces.  The numerical values on the 
coordinate axes are not clearly visible.  
However, the common plot scale provides a 
useful means of qualitatively assessing 
significant changes in the empirical response 
surfaces across the inference space and to 
compare local changes in the response levels and 
slopes at the subspace boundaries.  Although not 
presented in this report, the lift coefficient 
generally exhibited a linear dependence on  
for any combination of x and z. The 
dependence of CL1 on x and z at a given  
was less interpretable, which can be inferred 
from figure 12. 

Several of the response surfaces in subspaces 
closer to the fixed orbiter model position exhibit 
a quadratic effect in z at a given level of x.  In 
addition, a twisting of the response surfaces 
indicates a first-order interaction involving x 
and z, that is, the effect of one factor, say z, 
on the lift coefficient response depends on the 
level at which the other factor, x, is set.  The 
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effect of x on CL1 is typically linear.  In the 
three subspaces where contours of constant 
response are not shown in the inference plane 
defined by x and z, the predicted lift 
coefficient is a function of   only.   

The linear dependence of CL1 on x 
conflicts with the nonlinear trends that were 
previously illustrated in figure 4 corresponding 
to the OFAT testing (reference 4) of the LGBB.  
In addition, the discontinuities in the response 
levels and slopes at the subspace boundaries are 
problematic, particularly where quadratic 
curvature is opposite in sign or where a strong 
quadratic trend is predicted from the response 
function on one side of the boundary and a linear 
trend from the response function on the other 
side.  Comparisons of the predictions from 
response surface models in adjoining subspaces 
at all 70 common boundary points are 
summarized in Table III.  A total of 61 
comparisons for CL1 were within the precision 
limits, 57 for drag coefficient, CD1, and 39 for 
pitching moment coefficient, CM1.  The booster 
model pitching moment coefficient was 
expected to be particularly sensitive to the 
location and strength of impinging shock waves 
from the orbiter model (reference 4).  If the 
comparisons of the predicted responses at the 
subspace boundaries are regarded as a Bernoulli 
process as outlined in the previous section, then 
the critical binomial number is 63 for this 70-
trial process.  That is, 63 or more comparisons 
falling within the precision intervals is the 
success criterion.  This criterion was not met for 
any of the aerodynamic response comparisons.  
The simplified models from the FCD design are 
judged inadequate, since the variance in the 
predictions was not considered within the 
experimental uncertainty.  

FCD with Higher-Order Terms 

The regression model building process was 
repeated for subspaces 1-5 to determine if the 
addition of higher-order terms that were 
supported by the model would improve the fits. 
The FCD supported up to 14 model terms 
(exclusive of the intercept) that were unaliased, 
that is, not confounded with any other terms in 
the model (reference 1).  The initial model that 

was specified prior to the application of 
backward elimination was a full second-order 
model plus mixed cubic and a single mixed 
quartic term.   The issue that arose in these cases 
was that backward elimination frequently 
identified all fourteen model terms as 
statistically significant, and the full model was 
retained.  The pure error estimate from the 
centerpoint replicates was the sole source of 
information with which to estimate the 
experimental error, and this term was so small 
that all statistical tests of significance for the 
model terms yielded very low p-values (much 
less than the cutoff value of 0.05).  With no lack 
of fit degrees of freedom, there was no means of 
assessing the quality of the fit.  In essence, the 
model was being forced through the mean of the 
responses at every site in the inference space for 
which data was acquired.  Consequently, all 
models that were selected as promising 
candidates from backward elimination were 
manually edited, and certain higher-order terms 
were deleted from the model on the basis of their 
relative contribution to the explained variance.  
This approach provided at least 2 degrees of 
freedom for lack of fit and a more meaningful 
analysis of the residuals.  All models except for 
the pitching moment coefficient response model 
in subspace 2 failed the lack of fit test.  At this 
point, it was concluded that the lack of fit test 
was too misleading, since the extremely small 
estimates of pure error consistently rendered any 
acceptably small lack of fit component as highly 
significant.   Table V shows the models that 
were developed for the lift coefficient response 
in subspaces 1-5.   The models are significantly 
more complex than their counterparts from the 
previous section, and they include main effects, 
two- and three-factor interactions, quadratic 
effects in x and z, mixed cubic terms, and a 
single mixed quartic term.  The higher-order 
effects of x and z seem more consistent with 
the trends that were exhibited in the OFAT data 
set in reference 4.  The more nonlinear lift 
coefficient response is also apparent in       
figure 13, which shows a composite plot of the 
response surfaces estimated from the higher-
order models in the 5 adjoining subspaces in the 
bottom half of the figure.  For reference, the 
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lower-order response surfaces from the previous 
section are repeated in the upper half of the 
figure.  All plots feature a common scale in 
figure 13.  Side-by-side comparisons of the 
response surfaces estimated from the two 
different sets of empirical functions are shown in 
figure 14, where the plot scales are adjusted 
from subspace-to-subspace but are the same 
within a given subspace.  The second-order 
curvature along the x and z axes is apparent, 
and the first- and higher-order interaction terms 
result in complex twisting of the surfaces.  
Visual inspection of the response surfaces at the 
subspace boundaries also suggest a better match 
in the local response levels and slopes. 

The post-ANOVA output indicated that the 
variance inflation factor for the mixed quartic 
term was greater than the recommended cutoff 
value of 10 (reference 19).  The presence of 
multicollinearity, or lack of orthogonality in the 
design, inflated the variance of the 
corresponding model regression coefficients.  
The most significant outcome from the residuals 
analysis was that several points exhibited very 
high leverage or leverage values of 1, and other 
influence diagnostics showed many points well 
outside of the recommended limits.  A leverage 
value of 1 indicated that the predicted response 
was forced to exactly match the observed data at 
that point.  It is concluded, then, that too many 
higher-order terms were included in the models, 
since the models were essentially being fit to 
noise.   The results in Tables III and IV illustrate 
this point.  A comparison of the predicted 
responses at the subspace boundaries using the 
regression models from adjoining subspaces 
yields 100% agreement.  In contrast, most of the 
observed confirmation points fail to fall within 
the 95% prediction intervals centered about the 
predicted responses. 

FCD Augmented to D-Optimal 

The prior results motivated an augmentation 
of the FCD to a full third-order D-optimal 
design by obtaining additional data points at 14 
unique sites in separate  randomized blocks in 
subspaces 1-5.  This model supported terms 
beyond full third-order including selected mixed 
quartic and pure quartic terms.  The general 

form of the final models is summarized in Table 
V.  All models were hierarchical and included 
terms up through pure quartic.  The inclusion of 
pure cubic, mixed cubic, pure quartic, and mixed 
quartic terms involving x and z is not 
unreasonable given the highly nonlinear 
behavior that was observed or inferred in the 
OFAT testing (reference 4).   Interpretation of 
many of the higher-order mixed terms is that the 
cubic effects of x and z depend on the level of 
the other spatial factor or the relative angle of 
attack. The same approach to model building 
that was taken in the previous section was 
applied to the current data set.  Specifically, all 
available unaliased terms were included in the 
model as a starting point for backward 
regression.   If all available terms were retained 
in the model after backward regression, 
engineering judgment was used to delete at least 
2 terms to provide degrees of freedom for lack 
of fit and to better assess the residuals.       
Figure 15 presents side-by-side comparisons of 
the response surfaces estimated from the 
simplified FCD models and from the D-optimal 
models at each of the 5 selected subspaces.  
Similar to figure 14, the plots scales are different 
from subspace-to-subspace but are the same 
within a given subspace to allow a direct 
qualitative comparison of the two designs.  The 
increased complexity of the D-optimal response 
surfaces in all subspaces is obvious.  The highly-
warped response surfaces are less interpretable, 
which may be indicative of significant spatial 
variability of the multiple shock wave 
impingements on the booster model.    

The response surface models developed in 
subspaces 1, 2, and 4 were used to predict 
piecewise continuous distributions of CL1 
versus x at fixed values of z = 1.313 inches 
and  = 0 degrees as shown in figure 16.  This 
distribution is directly comparable to the OFAT 
distribution that was previously shown in   
figure 4.  It is noted that the response surface 
distribution corresponds to combinations of the 
independent variables for which data were not 
acquired.  The response surface estimates appear 
to capture the general character of the lift 
coefficient distribution that was observed in the 
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OFAT testing, although quantitative agreement 
is lacking. 

The post-ANOVA results indicated that all 
models included several terms ranging from 
main effects to mixed quartic terms with VIF 
values indicative of extreme multicollinearity 
(VIF ranging from 50 to greater than 30,000!).  
The residuals analysis revealed many points 
with high leverage values, several with leverage 
of 1, and extremely large DFFITS, DFBETAS, 
and Cook’s D.  These influence diagnostics 
indicated that the response surfaces were being 
forced to fit the data points, and that the models 
would be poor predictors of the responses at 
other points in the inference space.   This 
assessment is confirmed in Tables III and IV, 
which show that the predicted values at the 
subspace boundaries using the regression models 
from adjoining regions are universally within the 
95% precision intervals, but the models are poor 
predictors when compared to the observed 
confirmation points.   

Spherical CCD 

A spherical CCD was applied to the four 
subspaces previously shown in figure 10 to 
determine any potential advantages to an 
alternate, rotatable CCD with orthogonal 
blocking applied to inference subspaces that 
were slightly trimmed compared to the FCD.  
The subspaces were labeled 1 , 2 , 4 , and 5    to 
distinguish them from the original FCD 
subspaces (some overlap exists between the 
subspaces).  The minimum z for the factorial 
blocks was increased to 1.00 inch from 0.656 
inches to accommodate the axial points that 
extended outside the inference subspace cubes.  
The spherical design provided five levels of the 
independent variables, so it was more flexible, 
had better standard error of design 
characteristics, and was nearly orthogonal.  In 
addition, orthogonal blocking was supported. 
The trimming of the subregions was an initial 
attempt to better resolve the shock-rich inference 
space navigated by the booster model.  The 
spherical design supported a full second-order 
model and certain mixed cubic and mixed 
quartic terms.  The application of backward 
elimination typically returned all unaliased terms 

that were originally specified in the model.  
Manual editing of the models led to the deletion 
of one or two model terms that were statistically 
significant but represented the smallest 
contributions to the explained variance in the 
data set.  Consequently, there were at most 2 
degrees of freedom for lack of fit.  The deletion 
of any higher-order terms had very little effect 
on the regression coefficients because of the 
near-orthogonality of the spherical CCD.  This 
was in contrast to the severe multicollinearity 
encountered in the FCD with higher-order terms 
and the D-optimal design.  Table V shows the 
terms that were included in the final regression 
models for CL1 in the four subspaces.  Model 
terms common to the response surface functions 
in subspaces 1 , 2 , 4 , and 5     included all main 
effects, all two-factor interactions, and 
quadratic, mixed cubic, and mixed quartic terms 
in x and z. Depending on the subspace, the 
quadratic effect of  and certain higher-order 
interaction terms involving  were included in 
the models.  Figure 17 shows a composite layout 
of the lift coefficient response surfaces, where 
the independent variable  is set to its mid-
level of 2.5 degrees.  A common plot scale was 
used in all subspaces.  The second-order 
curvature in the spatial variables is apparent in 
all response surfaces and, qualitatively, the 
subspace boundary discontinuities appear 
reasonable.  The predictions of the lift 
coefficient at the subspace boundaries using the 
regression functions in adjoining subspaces are 
all within the specified precision intervals with 
95% confidence (see Table III).  Unfortunately, 
the models are poor predictors of the response at 
other locations within the inference subspaces.  
As shown in Table IV, very few of the observed 
confirmation points fell within the 95% 
prediction intervals.  The ANOVA output 
indicated significant lack of fit for most models, 
the only exceptions being CM1 in subspaces 
1 and 5  and CD1 in subspace 2 .  The post-
ANOVA output did not reveal any issues with 
multicollinearity. The residuals analysis showed 
a large percentage of the design points with very 
high leverage, or leverage values of 1 in addition 
to large values of the externally studentized 
residuals, DFFITS, DFBETAS, and Cook’s D.  
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Consequently, the response surfaces were once 
again being forced to fit the data, and the 
functions behaved unrealistically at other 
combinations of the independent variables.  

Figure 18 compares the lift coefficient 
response surfaces at  = 2.5 degrees for all of 
the designs and response models in subspace 1, 
where the subspaces corresponding to the 
simplified FCD, FCD with higher-order terms, 
and D-optimal have been trimmed to match the 
spherical CCD inference space 1 .  Significant 
differences in the response surface behavior are 
apparent in the D-optimal and spherical designs 
compared to the FCD design models, 
particularly near the boundary defined by the   
z = 1.00-inch plane.  These differences are also 
apparent in the 2-D plots of CL1 versus x at   
z = 1.00 inch and  = 2.5 degrees in       
figure 19.   Better agreement in the response 
levels and slopes is obtained inside the inference 
space, as shown in figure 20 corresponding to z 
= 2.5 inches and  = 2.5 degrees.   
 

Concluding Remarks 

Response surface methodology was used in 
the design, execution, and analysis of a wind 
tunnel investigation to estimate the supersonic 
stage separation aerodynamics of a generic, 
bimese two-stage-to-orbit vehicle in a belly-to-
belly arrangement.  The current report focused 
on the development of empirical response 
surface models to estimate the longitudinal 
aerodynamics of a winged booster vehicle as it 
navigated through a three-dimensional inference 
space dominated by shock waves originating 
from a like-scale orbiter vehicle. The inference 
space was defined by two spatial variables, the 
relative axial and vertical locations of the 
booster and orbiter, and one rotational variable, 
the relative angle of attack.  Experimental data 
to support the response surface modeling was 
obtained in the NASA Langley Unitary Plan 
Wind Tunnel at Mach = 3.0 using 0.0175-scale 
models of the booster and orbiter vehicles.  The 
overall inference space was partitioned into 
several contiguous subspaces within which data 
were acquired using formal design of 
experiments.  The experimental design 

principles of randomization, replication, and 
blocking were key elements in this investigation. 
The partitioning was guided by prior data using 
a one-factor-at-a-time testing technique, which 
showed highly nonlinear booster vehicle 
aerodynamics that persisted throughout the 
inference space because of orbiter vehicle shock 
wave impingements.  The data obtained in the 
multiple subspaces were used in an attempt to 
build piecewise-continuous empirical response 
functions relating the aerodynamic coefficients 
to the independent variables over the entire 
inference space.  Face-centered central 
composite, D-optimal, and spherical central 
composite designs were executed that supported 
models ranging from full second-order plus 
mixed cubic and mixed quartic terms to full 
third-order plus pure quartic and mixed quartic 
terms.  A combination of backward elimination 
and engineering judgment was used to build the 
multiple linear regression models, and 
established statistical techniques were applied to 
judge the adequacy of all models.  The model 
evaluation was augmented by objective 
comparisons of the predicted responses at the 
subspace boundaries using empirical response 
surface models in adjoining regions.  In addition, 
response surface model predictions were 
compared to confirmation data points, which 
were measurements specifically acquired for 
model confirmation. 

Reduced second-order response surface 
models estimated from data obtained using the 
three-level, face-centered, or cuboidal, design 
were judged inadequate because of systematic 
discontinuities in the response levels and slopes 
at the subspace boundaries.  The dependence of 
the aerodynamic responses on the relative angle 
of attack was adequately modeled, but the 
dependence on the spatial variables appeared to 
be of a higher-order than assumed in these 
relatively simple models.  The addition of 
higher-order mixed cubic and mixed quartic 
terms to these models mitigated the subspace 
boundary issue.  However, new concerns were 
introduced related to multicollinearity in the 
independent variables and high-influence points 
that produced empirical models that were poor 
predictors of the response at other locations 
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within the inference space.  Augmentation of the 
face-centered designs in selected subspaces to 
full third order using D-optimality criteria was 
accomplished by acquiring additional data.  
More complex response functions were 
developed that included up to pure quartic terms 
in the spatial variables. These models were also 
poor predictors of the aerodynamic responses 
within the inference space because of severe 
multicollinearity and multiple high-influence 
data points. 

A 5-level spherical central composite design 
was applied to selected subspaces with trimmed 
ranges of the independent variables to better 
capture the complex shock-induced aerodynamic 
responses.  The spherical design produced 
response models with terms up to mixed quartic.  
This near-orthogonal design avoided the issue of 
multicollinearity, but multiple high-leverage 
points resulted in empirical functions that failed 
objective model confirmation tests. 

The results obtained in this investigation 
suggest the shock-rich environment traversed by 
the booster model in the simulated Mach 3 
staging is more complex than originally 
assumed. Shock waves represent an 
aerodynamic discontinuity across which the 
local pressure and temperature abruptly change.  
The presence of multiple shock waves, shock 
wave interactions, and shock impingement 
induces nonlinear and possibly discontinuous 
aerodynamic flow-field effects on the booster.  
If the booster model aerodynamics are nonlinear 
and discontinuous, then the experimental design 
must have sufficient spatial resolution to 
effectively capture these phenomena. The 
partitioning of the overall inference space in the 
current experiment into 11 contiguous regions 
was insufficient to resolve these features. 
Adding higher-order terms to regression models 
built from data sets acquired over too-expansive 
ranges of the independent variables resulted in 
empirical functions that were fit to noise and 
were, therefore, poor predictors of the 
aerodynamic responses throughout the inference 
subspace.  In addition, the distribution of points 
in central composite designs may not be 
appropriate to capture the very complex 
responses that are often encountered in 

aerospace testing.  Significant improvements to 
the response surface modeling in aerodynamic 
flow fields similar to the current stage separation 
scenario may be possible by higher-level 
partitioning of the overall inference space and 
the application of full 4th-order D-optimal 
designs within the trimmed subspaces. 
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Table I.  Inference subspace boundaries. 

 

Model Development               10
        Grand Mean                      1 
        Regressors                         9 
Model Assessment                  10
        Lack of Fit                         5 
        Data Quality                     5 
               Block Effects              1 
               Pure Error                 4 
Total                                         20

Table II.  Degrees of freedom budget in a full 
          second-order model. 
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 Table V.  Final regression model terms. 

Table IV.  Confirmation point comparisons 
                            for all designs. 

Table III.  Subspace discontinuity comparisons 
             for all designs. 
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Figure 2.  LGBB bimese wing-body configuration 
                 in belly-to-belly arrangement. 

Figure 1.  Drag coefficient response surface.  

Figure 3.  Proximity matrix for OFAT testing of the NASA Langley LGBB bimese 
                wing-body configuration in belly-to-belly arrangement. 

Reference Dimensions: 
Area (Sref): 19.18 in.2 

Chord (Lref): 13.13 in. 
Span (Bref): 6.46 in. 
Moment Reference Center (MRC)    
8.93 in. from nose (0.68Lref) 
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Figure 4.  Booster model normal force and pitching moment coefficients for 
                 isolated and proximity data (ref. 4) for Zsep=4.594 in., Mach=3. 

Figure 5.  Schlieren flow visualization (ref. 18) of the LGBB configuration 
                 in the NASA MSFC 14-Inch Tri-Sonic Tunnel at Mach=3. 
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Fig. 6.  Photographs of the LBGG configuration installed in Test Section 2 of the NASA LaRC UPWT. 
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Fig. 7.  Partitioning of the overall inference space for the LBGG stage separation experiment. 

Fig. 8.  Power curves for the lift and drag coefficients. 
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Figure 10. Four subspaces with spherical CCD. 
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FCD with 
higher-order 
terms 

D-optimal 
with higher-
order terms 

Spherical 
CCD with 
higher-order 
terms 

FCD 

D-optimal 

Spherical 
CCD 

      Figure 11.  Unit standard error of design for FCD, D-optimal, and spherical CCD. 

x 

CL1 

z 

Figure 12.  Composite plot of booster model lift coefficient response surfaces in 
                 subspaces 1-11; = 2.5 degrees. 
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(a)  simplified FCD 

(b)  FCD with additional higher-order terms 

Figure 13.  Comparison of lift coefficient response surfaces in subspaces 1-5 from simplified FCD 
    and FCD with additional higher-order terms;  = 2.5 degrees. 

x 

CL1 

z 

x 

CL1 

z 



32 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Simplified FCD 
FCD + additional 
higher-order terms 

Subspace 1 

Subspace 4 

Subspace 3 

Subspace 2 

Subspace 5 

Figure 14.  Comparison of lift coefficient response surfaces with simplified FCD 
    and FCD with additional higher order terms; = 2.5 degrees. 
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Figure 15.  Comparison of lift coefficient response surfaces with simplified 
                   FCD and FCD augmented to D-optimal; = 2.5 degrees. 
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      OFAT Data (ref. 4) 

Figure 16.  Comparison of predicted lift coefficient from D-optimal design and observed data 
                   from OFAT test (ref. 4); subspaces 1, 2, and 4; z = 1.313 inches,  = 0 degrees. 

Figure 17.  Composite plot of booster model lift coefficient response surfaces in 
                     subspaces 1 , 2 , 4 , and 5    ; spherical CCD; = 2.5 degrees. 
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z 
Simplified FCD FCD with additional 

higher-order terms 

D-optimal 
Spherical CCD

Figure 18.  Comparison of lift coefficient response surfaces for all designs and empirical models 
                  in subspace 1; inference space trimmed to match the spherical CCD;  = 2.5 degrees. 

Figure 19.  Comparison of predicted lift coefficient versus x for different experimental designs;  
                  z = 1.0 inches,  = 2.5 degrees. 

Simplified FCD FCD with additional 
higher-order terms 

D-optimal Spherical CCD
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Figure 20.  Comparison of predicted lift coefficient versus x for different experimental designs;  
                  z = 2.5 inches,  = 2.5 degrees. 
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