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Abstract 

This research presents more efficient computational methods by which to perform multi-block 
structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-
fidelity solutions of complicated geometries and their associated flows. This computational framework 
offers flexibility in allocating resources to balance process count and wall-clock computation time, while 
facilitating research interests of simulating axial compressor stall inception with more complete gridding 
of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The 
paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows. 
These methods are validated and demonstrate improved computational efficiency when applied to 
complicated geometries and flows. 

Introduction 

With advances in computational science and technology, simulations of more complex 
turbomachinery geometries and flows become more feasible and appropriate. The application of CFD to 
the study of compressor stability has introduced new challenges of infrastructure and resource 
availability; these challenges have motivated the research discussed herein. 

The research which follows documents the enhancements to a state-of-the-art turbomachinery 
computational fluid dynamics code to facilitate further research into compressor stall inception and other 
complex turbomachinery flows. Modifications are implemented to increase the speed and computational 
efficiency of the code while retaining accuracy and backward-compatibility with existing input/output 
data. An analytic viscous flux Jacobian computation is installed, replacing the previous numerical 
computation of the viscous flux Jacobian. A “multiple-blocks-per-computational-process” data structure 
framework is implemented to facilitate efficient load balancing for large-scale parallel computations; this 
enhancement is available at the user’s discretion and control, and the user may forgo use of this feature 
with no loss in other functionality (but with additional computational efficiency unrealized). 

This “multiple-block” scheme, as “multiple-blocks-per-computational-process” shall be condensed in 
reference hereafter, is motivated by the desire to achieve greater computational efficiency and load 
balancing for CFD simulations containing disparately sized grid blocks, because many modern 
turbomachinery geometries and their associated flows have small, local regions laden with complex fluid 
mechanic phenomena. These local regions can be of much lesser geometric/computational extent than the 
global flow channels, which historically has motivated the use of models rather than grids in the local 
regions. 
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Nomenclature 

Av  Viscous Flux Jacobian Matrix 
Av+  Positive Viscous Flux Jacobian Matrix 
Av-  Negative Viscous Flux Jacobian Matrix 
e  Total energy per unit volume 
F, G, H  Inviscid Flux Vectors (curvilinear space) 
Fv,Gv,Hv  Viscous Flux Vectors (curvilinear space) 
k  Generalized curvilinear coordinate 
Q  Conservative variable vector (curvilinear space) 
Q   Conservative variable vector evaluated at cell interface 

S  Body force vector due to rotating frame 
u,v,w  Absolute velocity (Cartesian space) 
x,y,z  Spatial Coordinate (Cartesian space) 
  Increment, change 
ε  Very small number 
Ω  Rotational speed 
  Density 
τ  Temporal coordinate (curvilinear space) 
,,  Spatial coordinate (curvilinear space) 

Flow Solver 

TURBO is a physics-based simulation tool for multistage turbomachinery. The solver computes the 
fluid conservation laws—the compressible RANS equations of Equation (1)—without ad hoc modeling of 
any flow phenomena other than models required for turbulence.  
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This code solves the unsteady Reynolds-averaged Navier-Stokes equations and a decoupled k- 

turbulence model developed by Zhu and Shih (Ref. 1). To facilitate rotor-stator interaction studies, 
TURBO employs a sliding interface technique implemented by Chen and Barter (Ref. 2) in which 
conservative variables are interpolated across blade row interfaces. The code is implemented in a 
portable, scalable form for distributed-memory parallel computers using MPI message passing. The 
parallel implementation employs domain decomposition and supports general multi-block grids with 
arbitrary grid-block connectivity. The solution algorithm is a Newton iterative implicit time-accurate 
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scheme with characteristics-based finite-volume spatial discretization. The Newton subiterations are 
solved using a concurrent block-Jacobi symmetric Gauss-Seidel (BJ-SGS) relaxation scheme. Because all 
of the fundamental fluid mechanics are computed, the code is capable of capturing the nonlinear 
characteristics of the flow fields of interest. With the actual modeling of the grid movement of the blade 
rows in relative motion, this code is capable of computing the unsteady interactions between blade rows. 
Details of the flow solver are given by Chen and Whitfield (Ref. 3). The original approach to 
parallelization for large-scale, complex problems is discussed by Chen and Briley (Ref. 4); modifications 
and enhancements to this parallelization scheme are described forthwith. 

Enhancements to Flow Solver 

To facilitate computationally efficient solutions of large-scale and increasingly complex 
turbomachinery flow conditions, effective algorithms must be developed and implemented. These 
algorithms must have good performance, high-efficiency CPU utilization, efficient memory utilization, 
and exhibit portability and scalability. 

Analytic Viscous Flux Jacobians 

Good (improved) algorithmic performance is addressed in this study through the implementation of 
analytic viscous flux Jacobians. To facilitate solution of the compressible RANS equations through 
numerical methods of linear algebra, the fluxes of Equation (1)—nonlinear functions of time and space—
must be linearized. Using methods of Briley and McDonald (Ref. 5), linearization is achieved 
approximately via Taylor series expansion, as shown in Equation (3). 
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where A(Q)=∂K(Q)/∂Q is the flux Jacobian, and the superscripts here indicate time step indices. Since its 
inception, TURBO has utilized analytic definitions for the inviscid flux Jacobian terms, but numerical 
definitions for the viscous flux Jacobian terms (Ref. 6): 
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The numerical calculation of viscous flux Jacobians, though simple in derivation and implementation, 

proves to be quite computationally expensive, accounting for up to 20 to 25 percent of total CPU time in 
many simulations. Previously at Mississippi State University, Cox (Ref. 7) implemented a more efficient 
analytic formulation for viscous flux Jacobian computation; Cinnella (Ref. 8) had implemented these 
formulations in the General Aerodynamic Simulation Program in his (Cinnella’s) prior work.  

Using the thin-layer approximation to derive the components of the viscous flux vector (detailed in 
Refs. 7, 8, and 9), the terms are easily differentiated with respect to the Q vector, yielding the analytic 
viscous flux Jacobian. To facilitate common code structure and efficient performance of the analytic 
viscous flux Jacobian computations, these analytically-computed diffusive vectors are (arbitrarily) 
implemented in the manner of the Steger-Warming flux vector splitting concept employed with the 
convective inviscid flux Jacobians: 
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Enforcing the above condition into the temporal evolution linearization of Equation (3) yields 
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where barred values are evaluated at volume interfaces and non-barred values are evaluated at volume 
centers. For cell interface l between volumes l and l+1, positively propagating waves originate at volume l 
while negatively propagating waves originate from volume l+1. All properties employed explicitly at cell 
interfaces are determined by averaging property values from the two adjacent cells: 
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All property gradients at cell interfaces are determined using second-order central differencing of the 

property values from the two adjacent cells. Observing that ∆k = 1 yields: 
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The final expressions for the analytic viscous flux Jacobian may be found in Herrick (Ref. 9). 

Efficient CPU Usage: Multiple-Block Scheme 

Two critical characteristics of efficient parallel CPU utilization are the minimization of 
message-passing and the balancing of computational load. In order to minimize delays associated with 
message-passing, it is desirable to maximize serial operations within the solution algorithm of the grand 
computational domain and to attain equivalently sized messages among all simultaneous parallel 
communications. It is also desirable to achieve a computational load balance whereby all processes are 
working (or communicating) simultaneously. These quests are difficult to satisfy due to disparate sizes 
and shapes among geometries, varied boundary conditions, and differences in the flow field. 

The enhancement of the parallelization of TURBO from its original single-block structure to the 
modified multiple-block structure is depicted in Figure 1. The original parallelization strategy for TURBO 
greatly enhanced serial-TURBO’s flexibility and applicability to larger and more complicated geometries. 
With the single block per process infrastructure, a complicated geometry with many subdomains conveys 
a demand for a very large parallel computer cluster; with disparately sized blocks, the computational 
efficiency of the simulation suffers. A multiple-blocks scheme allows small blocks to coexist with large 
rectangular blocks on a single process without compromising computational efficiency. 

To create the multiple-block infrastructure, the one-block/one-process equivalence of the original 
parallelization is dissolved. Process identifiers within the code, as with the original code, remain uniquely 
MPI_COMM_RANK within MPI_COMM_WORLD. However, the data structures within the program must 
incorporate the new premise of multiple blocks coexisting, each with a global identifier unique to the 
grand computational domain and a local identifier unique to the specific process on which it resides. In 
the original parallel code, the process identifiers (MPI_COMM_RANK within MPI_COMM_WORLD) also 
serve to uniquely dereference CFD data for a given block. 

The modification to the parallelization scheme, seemingly, requires the implementation of an outer 
loop cycling through all the local blocks residing on each respective process. Though simple in concept, 
this is not strictly possible due the presence of numerous conditional statements (tailoring program 
execution for varied boundary conditions, block connectivities, flow regimes, etc.) which may 
unavoidably invoke communication with other blocks residing on other processes. Note that the user has 
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some control of the frequency of communication between blocks, although each round of communication 
may enhance convergence at the expense of communication time, with parallel communication more 
taxing than serial communication. 

Whereas initially all communication between blocks was between processes, the new scheme allows for 
the communication partner to coexist on the given process. Because blocks are likely to be distributed to 
processes in different quantities, MPI collective commands (e.g., MPI_REDUCE, MPI_ALLREDUCE, 
MPI_SUM, MPI_SCAN) must be called only so limitedly to satisfy the most restrictive block-process 
distributions. Ergo, all collective communications must occur only once per routine, per process. However, 
because each block has its own boundary conditions, connectivities, and associated flow, all blocks must 
execute the commonly shared solution routines (within the local block loop) before the process, and its 
resident blocks as a group, may engage in parallel communication. Subtle re-ordering of command 
sequences has resulted in insignificant changes in numerical computation outputs. 

Efficient Memory Utilization: Multiple-Block Scheme 

Nearly every data structure in the code requires modification to enable coexistence of multiple blocks 
on a single computational process. Originally, fundamental CFD values like grid data (x,y,z) and flow 
data (q,p) are stored in explicit-shape arrays dimensioned using the ξ, η, ζ extents of a single grid block: 
This original memory management scheme is ideal for its intent with optimal memory consumption, 
minimal pointer indirection, and dearth of unnecessary computations to fully dereference CFD data. 

When seeking to place multiple blocks on a process, efficient memory utilization is a critical concern. 
Though this scheme performs best with regard to computational efficiency (i.e., with minimal pointer 
indirection and minimal high-level computations in the dereferencing procedure) by adding a trailing 
subscript, each dimension of the data structure is sized to accommodate the maximum value of that 
respective dimension among the subsets (grid blocks) of data. Thus, much memory is wasted if small 
blocks should cohabit with large blocks on a given process. Explicit-shape arrays are also inefficient with 
memory management in instances where the different blocks on the process have different dimensions 
(spatial coordinate directions) of maximum extent.  

Alternatively, ribbon vectors are one-dimensional arrays sized exactly to the requirements of their 
application; they are perfectly efficient with memory. However, the pointer arithmetic necessary to navigate 
the array’s “implicit dimensions,” performed by the compiler at a lower level with explicit-shape arrays, 
must be performed in the software code at a higher level, at a great expense of added execution time. 

Derived data types offer the computational efficiency of lower level pointer arithmetic performed by 
the compiler like explicit-shape arrays and most of the memory-management efficiency of ribbon vectors, 
as each parameter (component) of the derived data type may be sized based on the dimensions of the 
relevant grid block. Using derived data types, the q-vector can be transformed from 
q(1:5,1:ni,1:nj,1:nk) to q(nlb)%v(1:5, 1:ni(nlb), 1:nj(nlb), 1:nk(nlb)).  
However, this scheme necessitates three levels of pointer indirection to dereference CFD data. 

While derived data types allow for precise sizing of component arrays to suit the storage requirements 
necessitated by large grid blocks and small grid blocks cohabiting, and also allow for lower-level 
compiler-performed pointer arithmetic, they are neither as memory-efficient as ribbon vectors nor as 
computationally efficient with compiler pointer arithmetic (pointer indirection) as explicit-shape arrays. 
Additional memory is used when defining the derived data type: The compiler must construct and follow 
a map to proceed from the primary variable (subscripted by local block index) down to the component 
(the relevant CFD parameter) down to the specific grid location within that component. This mapping 
concept associated with derived data types consumes additional execution time due to two more levels of 
pointer indirection, as well as additional memory: Beyond the raw data, derived data types consume 
24+12*Ndim additional bytes for each of the Ndim-dimensional components of the derived data type 
variable (for REAL*8 quantities). The additional pointer arithmetic necessary to dereference the desired 
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quantity—though performed at the lower level by the compiler—reduces computational efficiency 
somewhat, as shall be documented in results. 

Table 1 summarizes performance parameters for the three data structure philosophies discussed 
herein.  

Portability and Scalability 

Throughout this study the code has performed efficiently on several machines at various 
supercomputing centers across the United States. TURBO, in its original and modified states (described 
in Table 2), has performed well on jobs consuming 4 to 234 processes in the course of this study. 
Version 3 represents the baseline, single-block code with numeric viscous flux Jacobian computations; 
V4 adds analytic viscous flux Jacobian computations, and V4+ introduces the multiple-block 
infrastructure. 

Validation and Benchmarking 

With all versions, TURBO distributions include a test suite to assist users in validating their TURBO 
installation and compilation. This test suite includes four cases well-suited for benchmarking here. 
General descriptions of these test cases are listed in Table 3. These four cases are benchmarked with and 
without application of the new arbitrary load balancing capability. Detailed performance data for each 
case including Inlet Physical Mass Flow, Exit Physical Mass Flow, Inlet Total Pressure, and Exit Static 
Pressure, are provided in Tables 4, 5, 6, and 7. 

With the continued research on developing and applying TURBO for more complicated 
turbomachinery concerns, two other cases are appropriate for this benchmarking effort: the GE TEC56 
HPT Nozzle 1 and a full-annulus grid of NASA stage 35 with gridded rotor tip clearance regions. Table 8 
documents timing performance of the TEC56 Turbine Nozzle after 100 iterations, and Table 9 conveys 
timing performance for the full annulus NASA Stage 35 after 150 iterations. In addition to total wall 
clock time, timings of critical routines and total TURBO computation times for each process are also 
listed. 

As documented here and in further detail in Reference 9, numerical accuracy is preserved, 
particularly between versions V4 and V4+. Numerical accuracy is also preserved when redistributing the 
block/ process layout with V4+, an option previously unavailable. Mass flow has stayed consistent within 
0.22 percent, while pressure-performance has maintained accuracy within 0.11 percent. The numerical 
accuracy of the analytic viscous flux Jacobians is retained within about 3.5 percent, as documented in 
Reference 9. From V3 to V4, computation time of the viscous flux Jacobians has been reduced by 50 to 
75 percent. Additional changes implemented in the evolution of TURBO from V3 to V4 yielded total 
computation time reductions of 10 to 30 percent. 

In general, when executed in a single-block-per-process mode, the multiple-block (V4+) code suffers 
about a 7 percent speed penalty (ranging from 2 to 12 percent in the benchmark examples) versus the V4 
code. This is attributed to the additional, more complicated dereferencing process of the newly-
implemented derived data types, which require three times the pointer indirections as the explicit-shape 
arrays used in the V4 code. In the course of development, this disparity had been as large as 30 percent; 
deconstruction and reconstruction of some routines reduced the overhead of repetitive multiple-level 
pointer indirections, and the code’s performance improved to the current levels cited. 

As documented in Tables 8 and 9, when used optimally, the multiple-blocks approach of 
TURBO_P.V4+ provides superior efficiency for large-scale parallel computation. The TEC56 turbine 
nozzle uses nearly 40 percent less process-time on seven processes than when it utilizes one process alone 
for each of its seventeen blocks; the Stage 35 simulation uses nearly 25 percent less process-time on 
234 processes than when it is executed with each of its 306 blocks individually occupying a process. The 
Stage 35 timing data affirms the speed penalty introduced by the extensive pointer indirection of derived  
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data types in computationally intensive routines such as the Symmetric Gauss-Seidel loop. The eddy 
viscosity computation is also adversely affected when disparately-sized blocks are run in a single-block-
per-process mode with the V4+ code, but this penalty diminishes greatly when the total computational 
volume counts are more equally distributed among all processes with the multiple-block capability. 

Analysis of Complex Turbomachinery Flows 

The multiple-block capability is motivated by the desire to simulate complicated turbomachinery 
geometries and their associated flows. Among the complex turbomachinery flows of primary interest are 
those associated with stall inception in axial compressors. Much computational research on compressor 
stall inception has been performed with TURBO (Refs. 10, 11, and 12), but these earlier simulations 
employed simplified, periodic models of the flows across the rotor blade tips. This simplification was 
dictated by the previous single block per process infrastructure of TURBO. With the critical role of 
clearance flows in the stall inception process, it is of interest to capture the clearance flows in greater 
detail using separate grid blocks. A full annulus grid of Stage 35 with gridded rotor tip clearance flow 
(see clearance grid in Fig. 2) is simulated and studied here. 

When investigating compression system instability through CFD a significant benefit of the gridded 
rotor tip clearance region, made feasible with the multiple-block per process infrastructure, is reaped in 
the post-processing stage. With fully contiguous gridding about the airfoil’s leading edge, suction side, 
trailing edge, pressure side, and clearance regions, continuous particle traces become much more easily 
attainable and more precise than when certain grid segments like clearance regions are modeled. In 
Figure 3, particle traces are depicted demonstrating the breakdown of clean passage flow. In time, 
clearance flow sweeps forward, blockage develops and intensifies into the tightly-recirculating, forward-
swept flow blockages characteristic of stall inception. Further discussion of this flow condition and its 
inherent fluid mechanic phenomena is available in Reference 9. 

Conclusions 

Two methods for improving the computational efficiency of the TURBO code were presented here: 
an analytic computation of viscous flux Jacobians, and a more versatile data infrastructure to handle 
multiple blocks on each computing process. TURBO_P.V4+ now computes viscous flux Jacobian terms 
in 50 to 75 percent less time than TURBO_P.V3. As a result of this work, the user can arbitrarily control 
the load balance distribution of blocks on processes. With good load balance distribution, the new code 
can compute large domains comprised of large and small subdomains in 20 to 40 percent less process-
time. The user need not employ the new multiple-block capability; in such cases, accuracy will be 
retained, but speed will suffer about a 7 percent penalty due to the complexity of TURBO_P.V4+’s new 
data structures. The modified code is benchmarked versus the existing TURBO test suite, as well as with 
cases representative of contemporary turbomachinery research. A brief presentation of axial compressor 
stall inception demonstrates the utility and merit of this multiple block per process infrastructure in 
capturing complicated turbomachinery flows. 
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TABLE 1.—DATA STRUCTURES FOR REAL*8 MULTIPLE BLOCK STRUCTURED CFD DATA 
Memory 
management 
scheme 

Additional memory consumed Levels of pointer 
indirection 

Additional high-level 
computations 

Trailing 
subscript 

 1 0 

Ribbon vector 0 1 3 
Derived data 
type 

24+12* Ndim 3 0 

 
TABLE 2.—DESCRIPTIONS OF CODE VERSIONS 

Version Viscous flux jacobian Blocks per process 
V3 Numeric Single 
V4 Analytic Single 

V4+ Analytic Multiple 
 

TABLE 3.—TURBO TEST SUITE 
Case Blade rows Grid blocks Grid points 

Flat Plate 1 4 10 168 
Rotor 67 1 4 44 950 
Stage 37 TS 2 5 498 270 
Stage 37 P 2 17 1 696 566 

 
TABLE 4.—OUTPUT DATA: FLAT PLATE, 10000 ITERATIONS 

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa) 

V3 4 52.39049 52.38945 110760.12446 98538.99859 
V4 4 52.39076 52.38780 110759.74378 98537.99857 

V4+ 4 52.39076 52.38780 110759.74378 98537.99857 
V4+ 2 52.39076 52.38780 110759.74378 98537.99857 
V4+ 1 52.39076 52.38780 110759.74378 98537.99857 

 
TABLE 5.—OUTPUT DATA: ROTOR 67, 1000 ITERATIONS 

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa) 

V3 4 34.61931 34.22768 101254.86667 115091.16823 
V4 4 34.59931 34.20919 101254.81966 115087.98710 

V4+ 4 34.59930 34.20919 101254.82005 115088.00740 
V4+ 2 34.59922 34.20958 101254.80964 115087.68202 
V4+ 1 34.60212 34.21248 101254.71517 115086.74200 

 
TABLE 6.—OUTPUT DATA: STAGE 37 TIME-SHIFT, 168 ITERATIONS 

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa) 

V3 5 17.42277 16.97482 101350.42278 100618.38075 
V4 5 17.42011 16.95894 101350.51642 100584.15500 

V4+ 5 17.42075 16.95985 101350.88000 100589.98477 
V4+ 2 17.42075 16.95985 101350.88000 100589.98477 

 
TABLE 7.—OUTPUT DATA: STAGE 37 PERIODIC, 168 ITERATIONS 

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa) 

V3 17 17.72801 17.23441 101347.33946 101507.27163 
V4 17 17.71025 17.20281 101351.90559 101410.57214 

V4+ 17 17.70894 17.19907 101351.53512 101398.52356 
V4+ 7 17.70894 17.19907 101351.53512 101398.52356 

 
  





mlb

nlb
nlbnlbnlb nknjni

mlbnknjni

1

maxmaxmax

8

8



NASA/TM—2012-217272 10 

TABLE 8.—TIMING DATA FOR TEC56 TURBINE NOZZLE, 100 ITERATIONS 
Code Processes Viscous flux jacobians, 

(cpu-s) 
Wall clock, 

(s) 
Proc-time, 

(cpu-s) 
V3 17 207.25 585 5815 
V4 17 37.06 550 5481 

V4+ 17 37.73 569 5674 
V4+ 7 51.28 874 3476 

 
TABLE 9.—TIMING DATA FOR NASA STAGE 35 FULL ANNULUS 

WITH GRIDDED TIP CLEARANCES, 150 ITERATIONS 
Code Processes Gauss-

seidel, 
(cpu-s) 

Eddy viscosity,
(cpu-s) 

Wall clock,
(s) 

Proc-time, 
(cpu-s) 

V4 306 198737 44118 2571 783268 
V4+ 306 200502 45260 2548 777200 
V4+ 234 234485 27470 2627 611666 
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Figure 1.—Modification of parallel structure from single block 

per process (black) to multiple block per process (red). 
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Figure 2.—Gridded rotor tip clearance region, shown plan-view. 
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