
Gregory P. Herrick
Glenn Research Center, Cleveland, Ohio

Jen-Ping Chen
The Ohio State University, Columbus, Ohio

Methods for Computationally Effi cient
Structured CFD Simulations of Complex
Turbomachinery Flows

NASA/TM—2012-217272

April 2012

NASA STI Program . . . in Profi le

Since its founding, NASA has been dedicated to the
advancement of aeronautics and space science. The
NASA Scientifi c and Technical Information (STI)
program plays a key part in helping NASA maintain
this important role.

The NASA STI Program operates under the auspices
of the Agency Chief Information Offi cer. It collects,
organizes, provides for archiving, and disseminates
NASA’s STI. The NASA STI program provides access
to the NASA Aeronautics and Space Database and
its public interface, the NASA Technical Reports
Server, thus providing one of the largest collections
of aeronautical and space science STI in the world.
Results are published in both non-NASA channels
and by NASA in the NASA STI Report Series, which
includes the following report types:

• TECHNICAL PUBLICATION. Reports of

completed research or a major signifi cant phase
of research that present the results of NASA
programs and include extensive data or theoretical
analysis. Includes compilations of signifi cant
scientifi c and technical data and information
deemed to be of continuing reference value.
NASA counterpart of peer-reviewed formal
professional papers but has less stringent
limitations on manuscript length and extent of
graphic presentations.

• TECHNICAL MEMORANDUM. Scientifi c

and technical fi ndings that are preliminary or
of specialized interest, e.g., quick release
reports, working papers, and bibliographies that
contain minimal annotation. Does not contain
extensive analysis.

• CONTRACTOR REPORT. Scientifi c and

technical fi ndings by NASA-sponsored
contractors and grantees.

• CONFERENCE PUBLICATION. Collected
papers from scientifi c and technical
conferences, symposia, seminars, or other
meetings sponsored or cosponsored by NASA.

• SPECIAL PUBLICATION. Scientifi c,

technical, or historical information from
NASA programs, projects, and missions, often
concerned with subjects having substantial
public interest.

• TECHNICAL TRANSLATION. English-

language translations of foreign scientifi c and
technical material pertinent to NASA’s mission.

Specialized services also include creating custom
thesauri, building customized databases, organizing
and publishing research results.

For more information about the NASA STI
program, see the following:

• Access the NASA STI program home page at
http://www.sti.nasa.gov

• E-mail your question via the Internet to help@

sti.nasa.gov

• Fax your question to the NASA STI Help Desk

at 443–757–5803

• Telephone the NASA STI Help Desk at
 443–757–5802

• Write to:

 NASA Center for AeroSpace Information (CASI)
 7115 Standard Drive
 Hanover, MD 21076–1320

Gregory P. Herrick
Glenn Research Center, Cleveland, Ohio

Jen-Ping Chen
The Ohio State University, Columbus, Ohio

Methods for Computationally Effi cient
Structured CFD Simulations of Complex
Turbomachinery Flows

NASA/TM—2012-217272

April 2012

National Aeronautics and
Space Administration

Glenn Research Center
Cleveland, Ohio 44135

Available from

NASA Center for Aerospace Information
7115 Standard Drive
Hanover, MD 21076–1320

National Technical Information Service
5301 Shawnee Road

Alexandria, VA 22312

Available electronically at http://www.sti.nasa.gov

Trade names and trademarks are used in this report for identifi cation
only. Their usage does not constitute an offi cial endorsement,
either expressed or implied, by the National Aeronautics and

Space Administration.

This work was sponsored by the Fundamental Aeronautics Program
at the NASA Glenn Research Center.

Level of Review: This material has been technically reviewed by technical management.

NASA/TM—2012-217272 1

Methods for Computationally Efficient Structured CFD Simulations
of Complex Turbomachinery Flows

Gregory P. Herrick

National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Jen-Ping Chen

The Ohio State University
Columbus, Ohio 43210

Abstract

This research presents more efficient computational methods by which to perform multi-block
structured Computational Fluid Dynamics (CFD) simulations of turbomachinery, thus facilitating higher-
fidelity solutions of complicated geometries and their associated flows. This computational framework
offers flexibility in allocating resources to balance process count and wall-clock computation time, while
facilitating research interests of simulating axial compressor stall inception with more complete gridding
of the flow passages and rotor tip clearance regions than is typically practiced with structured codes. The
paradigm presented herein facilitates CFD simulation of previously impractical geometries and flows.
These methods are validated and demonstrate improved computational efficiency when applied to
complicated geometries and flows.

Introduction

With advances in computational science and technology, simulations of more complex
turbomachinery geometries and flows become more feasible and appropriate. The application of CFD to
the study of compressor stability has introduced new challenges of infrastructure and resource
availability; these challenges have motivated the research discussed herein.

The research which follows documents the enhancements to a state-of-the-art turbomachinery
computational fluid dynamics code to facilitate further research into compressor stall inception and other
complex turbomachinery flows. Modifications are implemented to increase the speed and computational
efficiency of the code while retaining accuracy and backward-compatibility with existing input/output
data. An analytic viscous flux Jacobian computation is installed, replacing the previous numerical
computation of the viscous flux Jacobian. A “multiple-blocks-per-computational-process” data structure
framework is implemented to facilitate efficient load balancing for large-scale parallel computations; this
enhancement is available at the user’s discretion and control, and the user may forgo use of this feature
with no loss in other functionality (but with additional computational efficiency unrealized).

This “multiple-block” scheme, as “multiple-blocks-per-computational-process” shall be condensed in
reference hereafter, is motivated by the desire to achieve greater computational efficiency and load
balancing for CFD simulations containing disparately sized grid blocks, because many modern
turbomachinery geometries and their associated flows have small, local regions laden with complex fluid
mechanic phenomena. These local regions can be of much lesser geometric/computational extent than the
global flow channels, which historically has motivated the use of models rather than grids in the local
regions.

NASA/TM—2012-217272 2

Nomenclature

Av Viscous Flux Jacobian Matrix
Av+ Positive Viscous Flux Jacobian Matrix
Av- Negative Viscous Flux Jacobian Matrix
e Total energy per unit volume
F, G, H Inviscid Flux Vectors (curvilinear space)
Fv,Gv,Hv Viscous Flux Vectors (curvilinear space)
k Generalized curvilinear coordinate
Q Conservative variable vector (curvilinear space)
Q Conservative variable vector evaluated at cell interface

S Body force vector due to rotating frame
u,v,w Absolute velocity (Cartesian space)
x,y,z Spatial Coordinate (Cartesian space)
 Increment, change
ε Very small number
Ω Rotational speed
 Density
τ Temporal coordinate (curvilinear space)
,, Spatial coordinate (curvilinear space)

Flow Solver

TURBO is a physics-based simulation tool for multistage turbomachinery. The solver computes the
fluid conservation laws—the compressible RANS equations of Equation (1)—without ad hoc modeling of
any flow phenomena other than models required for turbulence.

     
0
















S

HHGGFFQ vvv
 (1)

where























































0

0

0

v
wS,

e

w
v

u
JQ (2)

This code solves the unsteady Reynolds-averaged Navier-Stokes equations and a decoupled k-

turbulence model developed by Zhu and Shih (Ref. 1). To facilitate rotor-stator interaction studies,
TURBO employs a sliding interface technique implemented by Chen and Barter (Ref. 2) in which
conservative variables are interpolated across blade row interfaces. The code is implemented in a
portable, scalable form for distributed-memory parallel computers using MPI message passing. The
parallel implementation employs domain decomposition and supports general multi-block grids with
arbitrary grid-block connectivity. The solution algorithm is a Newton iterative implicit time-accurate

NASA/TM—2012-217272 3

scheme with characteristics-based finite-volume spatial discretization. The Newton subiterations are
solved using a concurrent block-Jacobi symmetric Gauss-Seidel (BJ-SGS) relaxation scheme. Because all
of the fundamental fluid mechanics are computed, the code is capable of capturing the nonlinear
characteristics of the flow fields of interest. With the actual modeling of the grid movement of the blade
rows in relative motion, this code is capable of computing the unsteady interactions between blade rows.
Details of the flow solver are given by Chen and Whitfield (Ref. 3). The original approach to
parallelization for large-scale, complex problems is discussed by Chen and Briley (Ref. 4); modifications
and enhancements to this parallelization scheme are described forthwith.

Enhancements to Flow Solver

To facilitate computationally efficient solutions of large-scale and increasingly complex
turbomachinery flow conditions, effective algorithms must be developed and implemented. These
algorithms must have good performance, high-efficiency CPU utilization, efficient memory utilization,
and exhibit portability and scalability.

Analytic Viscous Flux Jacobians

Good (improved) algorithmic performance is addressed in this study through the implementation of
analytic viscous flux Jacobians. To facilitate solution of the compressible RANS equations through
numerical methods of linear algebra, the fluxes of Equation (1)—nonlinear functions of time and space—
must be linearized. Using methods of Briley and McDonald (Ref. 5), linearization is achieved
approximately via Taylor series expansion, as shown in Equation (3).

   111   nnnn QQAKK (3)

where A(Q)=∂K(Q)/∂Q is the flux Jacobian, and the superscripts here indicate time step indices. Since its
inception, TURBO has utilized analytic definitions for the inviscid flux Jacobian terms, but numerical
definitions for the viscous flux Jacobian terms (Ref. 6):

      
Q

QKQQK

Q

)Q(K
QA

vvv
v








 (4)

The numerical calculation of viscous flux Jacobians, though simple in derivation and implementation,

proves to be quite computationally expensive, accounting for up to 20 to 25 percent of total CPU time in
many simulations. Previously at Mississippi State University, Cox (Ref. 7) implemented a more efficient
analytic formulation for viscous flux Jacobian computation; Cinnella (Ref. 8) had implemented these
formulations in the General Aerodynamic Simulation Program in his (Cinnella’s) prior work.

Using the thin-layer approximation to derive the components of the viscous flux vector (detailed in
Refs. 7, 8, and 9), the terms are easily differentiated with respect to the Q vector, yielding the analytic
viscous flux Jacobian. To facilitate common code structure and efficient performance of the analytic
viscous flux Jacobian computations, these analytically-computed diffusive vectors are (arbitrarily)
implemented in the manner of the Steger-Warming flux vector splitting concept employed with the
convective inviscid flux Jacobians:

  vvv AAA (5)

NASA/TM—2012-217272 4

Enforcing the above condition into the temporal evolution linearization of Equation (3) yields

 

11 



 












l
v
ll

v
l

l

QAQAQ
Q

QK
 (6)

where barred values are evaluated at volume interfaces and non-barred values are evaluated at volume
centers. For cell interface l between volumes l and l+1, positively propagating waves originate at volume l
while negatively propagating waves originate from volume l+1. All properties employed explicitly at cell
interfaces are determined by averaging property values from the two adjacent cells:

2

1 ll
l

QQ
Q


  (7)

All property gradients at cell interfaces are determined using second-order central differencing of the

property values from the two adjacent cells. Observing that ∆k = 1 yields:

 ll
l

QQ
k

Q











1 (8)

The final expressions for the analytic viscous flux Jacobian may be found in Herrick (Ref. 9).

Efficient CPU Usage: Multiple-Block Scheme

Two critical characteristics of efficient parallel CPU utilization are the minimization of
message-passing and the balancing of computational load. In order to minimize delays associated with
message-passing, it is desirable to maximize serial operations within the solution algorithm of the grand
computational domain and to attain equivalently sized messages among all simultaneous parallel
communications. It is also desirable to achieve a computational load balance whereby all processes are
working (or communicating) simultaneously. These quests are difficult to satisfy due to disparate sizes
and shapes among geometries, varied boundary conditions, and differences in the flow field.

The enhancement of the parallelization of TURBO from its original single-block structure to the
modified multiple-block structure is depicted in Figure 1. The original parallelization strategy for TURBO
greatly enhanced serial-TURBO’s flexibility and applicability to larger and more complicated geometries.
With the single block per process infrastructure, a complicated geometry with many subdomains conveys
a demand for a very large parallel computer cluster; with disparately sized blocks, the computational
efficiency of the simulation suffers. A multiple-blocks scheme allows small blocks to coexist with large
rectangular blocks on a single process without compromising computational efficiency.

To create the multiple-block infrastructure, the one-block/one-process equivalence of the original
parallelization is dissolved. Process identifiers within the code, as with the original code, remain uniquely
MPI_COMM_RANK within MPI_COMM_WORLD. However, the data structures within the program must
incorporate the new premise of multiple blocks coexisting, each with a global identifier unique to the
grand computational domain and a local identifier unique to the specific process on which it resides. In
the original parallel code, the process identifiers (MPI_COMM_RANK within MPI_COMM_WORLD) also
serve to uniquely dereference CFD data for a given block.

The modification to the parallelization scheme, seemingly, requires the implementation of an outer
loop cycling through all the local blocks residing on each respective process. Though simple in concept,
this is not strictly possible due the presence of numerous conditional statements (tailoring program
execution for varied boundary conditions, block connectivities, flow regimes, etc.) which may
unavoidably invoke communication with other blocks residing on other processes. Note that the user has

NASA/TM—2012-217272 5

some control of the frequency of communication between blocks, although each round of communication
may enhance convergence at the expense of communication time, with parallel communication more
taxing than serial communication.

Whereas initially all communication between blocks was between processes, the new scheme allows for
the communication partner to coexist on the given process. Because blocks are likely to be distributed to
processes in different quantities, MPI collective commands (e.g., MPI_REDUCE, MPI_ALLREDUCE,
MPI_SUM, MPI_SCAN) must be called only so limitedly to satisfy the most restrictive block-process
distributions. Ergo, all collective communications must occur only once per routine, per process. However,
because each block has its own boundary conditions, connectivities, and associated flow, all blocks must
execute the commonly shared solution routines (within the local block loop) before the process, and its
resident blocks as a group, may engage in parallel communication. Subtle re-ordering of command
sequences has resulted in insignificant changes in numerical computation outputs.

Efficient Memory Utilization: Multiple-Block Scheme

Nearly every data structure in the code requires modification to enable coexistence of multiple blocks
on a single computational process. Originally, fundamental CFD values like grid data (x,y,z) and flow
data (q,p) are stored in explicit-shape arrays dimensioned using the ξ, η, ζ extents of a single grid block:
This original memory management scheme is ideal for its intent with optimal memory consumption,
minimal pointer indirection, and dearth of unnecessary computations to fully dereference CFD data.

When seeking to place multiple blocks on a process, efficient memory utilization is a critical concern.
Though this scheme performs best with regard to computational efficiency (i.e., with minimal pointer
indirection and minimal high-level computations in the dereferencing procedure) by adding a trailing
subscript, each dimension of the data structure is sized to accommodate the maximum value of that
respective dimension among the subsets (grid blocks) of data. Thus, much memory is wasted if small
blocks should cohabit with large blocks on a given process. Explicit-shape arrays are also inefficient with
memory management in instances where the different blocks on the process have different dimensions
(spatial coordinate directions) of maximum extent.

Alternatively, ribbon vectors are one-dimensional arrays sized exactly to the requirements of their
application; they are perfectly efficient with memory. However, the pointer arithmetic necessary to navigate
the array’s “implicit dimensions,” performed by the compiler at a lower level with explicit-shape arrays,
must be performed in the software code at a higher level, at a great expense of added execution time.

Derived data types offer the computational efficiency of lower level pointer arithmetic performed by
the compiler like explicit-shape arrays and most of the memory-management efficiency of ribbon vectors,
as each parameter (component) of the derived data type may be sized based on the dimensions of the
relevant grid block. Using derived data types, the q-vector can be transformed from
q(1:5,1:ni,1:nj,1:nk) to q(nlb)%v(1:5, 1:ni(nlb), 1:nj(nlb), 1:nk(nlb)).
However, this scheme necessitates three levels of pointer indirection to dereference CFD data.

While derived data types allow for precise sizing of component arrays to suit the storage requirements
necessitated by large grid blocks and small grid blocks cohabiting, and also allow for lower-level
compiler-performed pointer arithmetic, they are neither as memory-efficient as ribbon vectors nor as
computationally efficient with compiler pointer arithmetic (pointer indirection) as explicit-shape arrays.
Additional memory is used when defining the derived data type: The compiler must construct and follow
a map to proceed from the primary variable (subscripted by local block index) down to the component
(the relevant CFD parameter) down to the specific grid location within that component. This mapping
concept associated with derived data types consumes additional execution time due to two more levels of
pointer indirection, as well as additional memory: Beyond the raw data, derived data types consume
24+12*Ndim additional bytes for each of the Ndim-dimensional components of the derived data type
variable (for REAL*8 quantities). The additional pointer arithmetic necessary to dereference the desired

NASA/TM—2012-217272 6

quantity—though performed at the lower level by the compiler—reduces computational efficiency
somewhat, as shall be documented in results.

Table 1 summarizes performance parameters for the three data structure philosophies discussed
herein.

Portability and Scalability

Throughout this study the code has performed efficiently on several machines at various
supercomputing centers across the United States. TURBO, in its original and modified states (described
in Table 2), has performed well on jobs consuming 4 to 234 processes in the course of this study.
Version 3 represents the baseline, single-block code with numeric viscous flux Jacobian computations;
V4 adds analytic viscous flux Jacobian computations, and V4+ introduces the multiple-block
infrastructure.

Validation and Benchmarking

With all versions, TURBO distributions include a test suite to assist users in validating their TURBO
installation and compilation. This test suite includes four cases well-suited for benchmarking here.
General descriptions of these test cases are listed in Table 3. These four cases are benchmarked with and
without application of the new arbitrary load balancing capability. Detailed performance data for each
case including Inlet Physical Mass Flow, Exit Physical Mass Flow, Inlet Total Pressure, and Exit Static
Pressure, are provided in Tables 4, 5, 6, and 7.

With the continued research on developing and applying TURBO for more complicated
turbomachinery concerns, two other cases are appropriate for this benchmarking effort: the GE TEC56
HPT Nozzle 1 and a full-annulus grid of NASA stage 35 with gridded rotor tip clearance regions. Table 8
documents timing performance of the TEC56 Turbine Nozzle after 100 iterations, and Table 9 conveys
timing performance for the full annulus NASA Stage 35 after 150 iterations. In addition to total wall
clock time, timings of critical routines and total TURBO computation times for each process are also
listed.

As documented here and in further detail in Reference 9, numerical accuracy is preserved,
particularly between versions V4 and V4+. Numerical accuracy is also preserved when redistributing the
block/ process layout with V4+, an option previously unavailable. Mass flow has stayed consistent within
0.22 percent, while pressure-performance has maintained accuracy within 0.11 percent. The numerical
accuracy of the analytic viscous flux Jacobians is retained within about 3.5 percent, as documented in
Reference 9. From V3 to V4, computation time of the viscous flux Jacobians has been reduced by 50 to
75 percent. Additional changes implemented in the evolution of TURBO from V3 to V4 yielded total
computation time reductions of 10 to 30 percent.

In general, when executed in a single-block-per-process mode, the multiple-block (V4+) code suffers
about a 7 percent speed penalty (ranging from 2 to 12 percent in the benchmark examples) versus the V4
code. This is attributed to the additional, more complicated dereferencing process of the newly-
implemented derived data types, which require three times the pointer indirections as the explicit-shape
arrays used in the V4 code. In the course of development, this disparity had been as large as 30 percent;
deconstruction and reconstruction of some routines reduced the overhead of repetitive multiple-level
pointer indirections, and the code’s performance improved to the current levels cited.

As documented in Tables 8 and 9, when used optimally, the multiple-blocks approach of
TURBO_P.V4+ provides superior efficiency for large-scale parallel computation. The TEC56 turbine
nozzle uses nearly 40 percent less process-time on seven processes than when it utilizes one process alone
for each of its seventeen blocks; the Stage 35 simulation uses nearly 25 percent less process-time on
234 processes than when it is executed with each of its 306 blocks individually occupying a process. The
Stage 35 timing data affirms the speed penalty introduced by the extensive pointer indirection of derived

NASA/TM—2012-217272 7

data types in computationally intensive routines such as the Symmetric Gauss-Seidel loop. The eddy
viscosity computation is also adversely affected when disparately-sized blocks are run in a single-block-
per-process mode with the V4+ code, but this penalty diminishes greatly when the total computational
volume counts are more equally distributed among all processes with the multiple-block capability.

Analysis of Complex Turbomachinery Flows

The multiple-block capability is motivated by the desire to simulate complicated turbomachinery
geometries and their associated flows. Among the complex turbomachinery flows of primary interest are
those associated with stall inception in axial compressors. Much computational research on compressor
stall inception has been performed with TURBO (Refs. 10, 11, and 12), but these earlier simulations
employed simplified, periodic models of the flows across the rotor blade tips. This simplification was
dictated by the previous single block per process infrastructure of TURBO. With the critical role of
clearance flows in the stall inception process, it is of interest to capture the clearance flows in greater
detail using separate grid blocks. A full annulus grid of Stage 35 with gridded rotor tip clearance flow
(see clearance grid in Fig. 2) is simulated and studied here.

When investigating compression system instability through CFD a significant benefit of the gridded
rotor tip clearance region, made feasible with the multiple-block per process infrastructure, is reaped in
the post-processing stage. With fully contiguous gridding about the airfoil’s leading edge, suction side,
trailing edge, pressure side, and clearance regions, continuous particle traces become much more easily
attainable and more precise than when certain grid segments like clearance regions are modeled. In
Figure 3, particle traces are depicted demonstrating the breakdown of clean passage flow. In time,
clearance flow sweeps forward, blockage develops and intensifies into the tightly-recirculating, forward-
swept flow blockages characteristic of stall inception. Further discussion of this flow condition and its
inherent fluid mechanic phenomena is available in Reference 9.

Conclusions

Two methods for improving the computational efficiency of the TURBO code were presented here:
an analytic computation of viscous flux Jacobians, and a more versatile data infrastructure to handle
multiple blocks on each computing process. TURBO_P.V4+ now computes viscous flux Jacobian terms
in 50 to 75 percent less time than TURBO_P.V3. As a result of this work, the user can arbitrarily control
the load balance distribution of blocks on processes. With good load balance distribution, the new code
can compute large domains comprised of large and small subdomains in 20 to 40 percent less process-
time. The user need not employ the new multiple-block capability; in such cases, accuracy will be
retained, but speed will suffer about a 7 percent penalty due to the complexity of TURBO_P.V4+’s new
data structures. The modified code is benchmarked versus the existing TURBO test suite, as well as with
cases representative of contemporary turbomachinery research. A brief presentation of axial compressor
stall inception demonstrates the utility and merit of this multiple block per process infrastructure in
capturing complicated turbomachinery flows.

NASA/TM—2012-217272 8

References

1. J. Zhu and T.H. Shih, “CMOTT Turbulence Module for NPARC,” Tech. Rep. CR-204143,
National Aeronautics and Space Administration, Aug. 1997.

2. J.P. Chen and J. Barter, “Comparison of Time-Accurate Calculations for the Unsteady Interaction
in Turbomachinery Stage,” AIAA-1998-3292, American Institute of Aeronautics and Astronautics,
1998.

3. J.-P. Chen, and D.L. Whitfield, “Navier-Stokes Calculations for the Unsteady Flowfield of
Turbomachinery,” AIAA-1993-0676, American Institute of Aeronautics and Astronautics, 1993.

4. J.-P. Chen and W.R. Briley, “A Parallel Flow Solver for Unsteady Multiple Blade Row
Turbomachinery Simulations,” Tech. Rep. GT2001-0348, ASME TURBO Expo, New Orleans,
Louisiana, 2001.

5. H. McDonald and W.R. Briley, “Solution of the Compressible Three-dimensional Navier-Stokes
Equations by an Implicit Technique,” in Lecture Notes on Physics, Fourth International Conference
on Numerical Methods in Fluid Dynamics (Boulder, Colorado), vol. 35, pp. 105-110, Springer-
Verlag, 1974.

6. D.L. Whitfield and L.K. Taylor, “Discretized Newton-Relaxation of High-Resolution Flux-
Difference Split Schemes,” AIAA-1991-1539, American Institute of Aeronautics and Astronautics,
June 1991.

7. C.F. Cox, “An Efficient Solver for Flows in Local Equilibrium,” PhD Thesis, Mississippi State
University, Mississippi State, Mississippi, December 1992.

8. P. Cinnella, “Flux-Split Algorithms for Flows With Non-Equilibrium Chemistry and
Thermodynamics,” PhD Thesis, Virginia Polytechnic Institute and State University, Blacksburg,
Virginia, December 1989.

9. G.P. Herrick, “Facilitating Higher-Fidelity Simulations of Axial Compressor Instability and Other
Turbomachinery Flow Conditions,” PhD Thesis, Mississippi State University, Mississippi State,
Mississippi, May 2008.

10. J.-P. Chen, R.S. Webster, M.D. Hathaway, G.P. Herrick, and G.J. Skoch, “Numerical Simulation of
Stall and Stall Control in Axial and Radial Compressors,” AIAA-2006-0418, American Institute of
Aeronautics and Astronautics, 2006.

11. J.-P. Chen, M.D. Hathaway, and G.P. Herrick, “Prestall Behavior of a Transonic Axial Compressor
Stage via Time-Accurate Numerical Simulation,” Journal of Turbomachinery, vol. 130, no. 4,
October 2008, pp. 041014.01—041014.12.

12. M.D. Hathaway, J.-P. Chen, R.S. Webster, and G.P. Herrick, “Time-Accurate Unsteady
Simulations of the Stall Inception Process in the Compression System of a U.S. Army Helicopter
Gas Turbine Engine,” 2004 DoD High Performance Computing Modernization Project Users
Group Conference, Williamsburg, Virginia, June 2004.

NASA/TM—2012-217272 9

TABLE 1.—DATA STRUCTURES FOR REAL*8 MULTIPLE BLOCK STRUCTURED CFD DATA
Memory
management
scheme

Additional memory consumed Levels of pointer
indirection

Additional high-level
computations

Trailing
subscript

 1 0

Ribbon vector 0 1 3
Derived data
type

24+12* Ndim 3 0

TABLE 2.—DESCRIPTIONS OF CODE VERSIONS

Version Viscous flux jacobian Blocks per process
V3 Numeric Single
V4 Analytic Single

V4+ Analytic Multiple

TABLE 3.—TURBO TEST SUITE
Case Blade rows Grid blocks Grid points

Flat Plate 1 4 10 168
Rotor 67 1 4 44 950
Stage 37 TS 2 5 498 270
Stage 37 P 2 17 1 696 566

TABLE 4.—OUTPUT DATA: FLAT PLATE, 10000 ITERATIONS

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa)

V3 4 52.39049 52.38945 110760.12446 98538.99859
V4 4 52.39076 52.38780 110759.74378 98537.99857

V4+ 4 52.39076 52.38780 110759.74378 98537.99857
V4+ 2 52.39076 52.38780 110759.74378 98537.99857
V4+ 1 52.39076 52.38780 110759.74378 98537.99857

TABLE 5.—OUTPUT DATA: ROTOR 67, 1000 ITERATIONS

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa)

V3 4 34.61931 34.22768 101254.86667 115091.16823
V4 4 34.59931 34.20919 101254.81966 115087.98710

V4+ 4 34.59930 34.20919 101254.82005 115088.00740
V4+ 2 34.59922 34.20958 101254.80964 115087.68202
V4+ 1 34.60212 34.21248 101254.71517 115086.74200

TABLE 6.—OUTPUT DATA: STAGE 37 TIME-SHIFT, 168 ITERATIONS

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa)

V3 5 17.42277 16.97482 101350.42278 100618.38075
V4 5 17.42011 16.95894 101350.51642 100584.15500

V4+ 5 17.42075 16.95985 101350.88000 100589.98477
V4+ 2 17.42075 16.95985 101350.88000 100589.98477

TABLE 7.—OUTPUT DATA: STAGE 37 PERIODIC, 168 ITERATIONS

Code Procs min(kg/s) mex(kg/s) PTin(Pa) PSex(Pa)

V3 17 17.72801 17.23441 101347.33946 101507.27163
V4 17 17.71025 17.20281 101351.90559 101410.57214

V4+ 17 17.70894 17.19907 101351.53512 101398.52356
V4+ 7 17.70894 17.19907 101351.53512 101398.52356





mlb

nlb
nlbnlbnlb nknjni

mlbnknjni

1

maxmaxmax

8

8

NASA/TM—2012-217272 10

TABLE 8.—TIMING DATA FOR TEC56 TURBINE NOZZLE, 100 ITERATIONS
Code Processes Viscous flux jacobians,

(cpu-s)
Wall clock,

(s)
Proc-time,

(cpu-s)
V3 17 207.25 585 5815
V4 17 37.06 550 5481

V4+ 17 37.73 569 5674
V4+ 7 51.28 874 3476

TABLE 9.—TIMING DATA FOR NASA STAGE 35 FULL ANNULUS

WITH GRIDDED TIP CLEARANCES, 150 ITERATIONS
Code Processes Gauss-

seidel,
(cpu-s)

Eddy viscosity,
(cpu-s)

Wall clock,
(s)

Proc-time,
(cpu-s)

V4 306 198737 44118 2571 783268
V4+ 306 200502 45260 2548 777200
V4+ 234 234485 27470 2627 611666

NASA/TM—2012-217272 11

Figure 1.—Modification of parallel structure from single block

per process (black) to multiple block per process (red).

NASA/TM—2012-217272 12

Figure 2.—Gridded rotor tip clearance region, shown plan-view.

F
ig

ur
e

3.
—

T
he

 e
vo

lu
tio

n
of

 fl
o

w
 b

lo
ck

ag
e

an
d

st
al

l:
(le

ft)
 M

in
im

al
 fo

rw
a

rd
 s

w
e

e
p

of
 c

le
ar

a
nc

e
flo

w
, (

m
id

d
le

)
sp

re
ad

in
g

a
nd

 s
tr

en
gt

h
en

in
g

bl
oc

ka
ge

, (
rig

ht
)

in
te

ns
e

re
ci

rc
ul

at
io

ns
 a

nd
 p

as
sa

g
e

bl
o

ck
ag

e.

NASA/TM—2012-217272 13

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

The public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB
control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)
01-04-2012

2. REPORT TYPE
Technical Memorandum

3. DATES COVERED (From - To)

4. TITLE AND SUBTITLE
Methods for Computationally Efficient Structured CFD Simulations of Complex
Turbomachinery Flows

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S)
Herrick, Gregory, P.; Chen, Jen-Ping

5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER
WBS 561581.02.08.03.21.03

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135-3191

8. PERFORMING ORGANIZATION
 REPORT NUMBER
E-18028

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

10. SPONSORING/MONITOR'S
 ACRONYM(S)
NASA

11. SPONSORING/MONITORING
 REPORT NUMBER
NASA/TM-2012-217272

12. DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified-Unlimited
Subject Categories: 02, 07, 34, 61, and 64
Available electronically at http://www.sti.nasa.gov
This publication is available from the NASA Center for AeroSpace Information, 443-757-5802

13. SUPPLEMENTARY NOTES

14. ABSTRACT
This research presents more efficient computational methods by which to perform multi-block structured Computational Fluid Dynamics
(CFD) simulations of turbomachinery, thus facilitating higher-fidelity solutions of complicated geometries and their associated flows. This
computational framework offers flexibility in allocating resources to balance process count and wall-clock computation time, while
facilitating research interests of simulating axial compressor stall inception with more complete gridding of the flow passages and rotor tip
clearance regions than is typically practiced with structured codes. The paradigm presented herein facilitates CFD simulation of previously
impractical geometries and flows. These methods are validated and demonstrate improved computational efficiency when applied to
complicated geometries and flows.
15. SUBJECT TERMS
Computational Fluid Dynamics (CFD); Geometry; Clearance; Efficient; Tip; Flow; Compressor; TURBO; Unsteady

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
 ABSTRACT

UU

18. NUMBER
 OF
 PAGES

19

19a. NAME OF RESPONSIBLE PERSON
STI Help Desk (email:help@sti.nasa.gov)

a. REPORT
U

b. ABSTRACT
U

c. THIS
PAGE
U

19b. TELEPHONE NUMBER (include area code)
443-757-5802

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std. Z39-18

