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Abstract

A number of recent vector supercomputer designs have featured main memories with
very large capacities, and presumably even larger memories are planned for future gener-
ations. While the memory chips used in these coriputers can store much larger amounts
of data than before, their operation speeds are rather slow when compared with the sig-
nificantly faster CPU (central processing unit) circuitry in new supercomputer designs.
A consequence of this speed disparity between CPUs and main memory is that memory
access times and memory bank reservation times (in CPU ticks) are sharply increased
from previous generations.

While it has been recognized that these longer memeory operation times would reduce
scalar pesformance, it has not been generally realized that vector performance could suffer
as well, due to a sharp increase in memory bank contention. This paper will examine this
phenomenon using both a Markov chain mathematical model and a Monte Carlo simulation
program. The potential for performance reduction will be described and techniques for
ameliorating this reduction will be proposed.

One significant conclusion of this analysis is that the number of independent memory
banks necessary to preserve a constant level of memory efficiency is (approximately) pro-
portional to the number of CPUs times the square of the memory bank reservation time
(in ticks). As a result, it appears that future generations of supercomputers will either
have to employ memory chips with significantly faster operation speeds or else feature
much larger numbers of independent memory banks.

The author is an employee of Informatics General Corp., under contract to the NAS (Numerical
Aerodynamic Simulation) program at NASA Ames Research Center. This work was performed
under contract NAS 2-11555,



Introduction

In recent years advances in fields such as computational fluid dynamics and plasma
physics have outstripped the main memory capacity of even the largest scientific computer
systems. Furthermore, users have found that using disk drives or other external storage
media for temporary data storage in these large problemas is seldom satisfactory, as it often
increases their wall clock run time by #everal orders of magnitude. Thus many scientific
programmers are now clamoring for vector supercomputers with vastly increased main
memory.

Fortunately for such users, the semiconductor industry has been remarkably successful
in recent years in producing memory chips with burgeoning capacity. 256 kilobit chips
are now readily available from suppliers, and prototypes of one megabit chips have re-
cently been displayed. Thus it is not too surprising that a number of recently announced
supercomputers have featured main memories as large as 256 million 64-bit words, and
presumably even larger memories are in the works for the next generation.

While the emphasis in the development of memory chips has been increased capacity,
the emphasis in the design of supercomputer CPU circuitry has been increased speed. CPU
clock “ticks” of ten nanoseconds or 8o are now commonplace, and supercomputers with four
nanosecond or even one nanogsecond CPVU cycle times are on the horizon. This disparity
in speed between CPU circuitry and memory bank circuitry means that the memory bank
reservation time and the memory access time, as measured in CPU clock ticks, are sharply
increaged for new supercomputers. While it has been recognized for some time that these
long operation times would lower the scalar performance of supercomputers, it is only
recently that the potential for vector performance reduction has come to light.

The reason for this potential reduction in vector performance is memory bank con-
tention —~ that is, delays encountered when a CPU attempts to access a bank of main
memory that has been reserved from a previous access by another (or even the same)
CPU. This article will analyze the phenomenon of memory bank contention ard discuss
both the potential for performance reduction and techniques for ameliorating this reduc-
tion.

A Markov Chain Model for Memory Bank Contention

The memory bank operation of a multiprocessor vector computer system may be ap-
proximately modeled using a relatively simple Markov chain model. While such a model
cannot precisely describe the phenomenon of memory bank contention in a real vector
computer, it does serve as a good introduction to the problem, and in fact some quan-
titative conclusions can be drawn from this simple model that do carry over to a more
realistic model.

In order to facilitate analysis, certain simplifying assumptions will be made. It will be
assumed that the computer system being modeled has m CPUs and n banks of interleaved
memory (i.e., successive data words are in successive memory banks). Whenever cne of
the CPUs accesses a word of memory (either to store or recall), a reservation of ¢ ticks is
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placed on the bank containing that word. This means that for the next ¢ system ticks, any
CPU wishing to access a word in that bank of memory must wait before it may complete
its access, At every system clock tick, it is assumed that each CPU that is not waiting
tosses a coin with probability of heads equal to r, and attempts to access memory (from a
memory bank chosen at random) if the coin turns up heads. It will be assumed that when
a CPU attempts to access to a bank that is busy from a prior reservation, its remaining
reservation is uniformly distributed between 1 and ¢. The infrequent case where more than
one CPU is waiting to access a single reserved bank will be ignored for the time being.
A final approximating assumption is that the {raction of memory banks that are busy at
any time is approximately a constant z. Such an assumption may be made assuming that
the process has achieved a steady state.

It should be mentioned that in real vector computer operation, a CPU i3 typically
either attempting to access memory cells every tick, as part of a long vector fetch or
store, or else it is “crunching” and not attempting to access memory at all. Further, most
memory accesses are from consecutive memory banks, instead of from randomly chosen
memory banks. This is the most serions deviation from a real vector coraputer system in
the model, but it appears to be necessary to make such an assumption in order to render
the model tractable for exact solution.

T'he operation of each CPU may now be approximately modeled by a Markov chain on
the t + 1 states sq, 81, 82;...,9¢. Here 3 denotes the free state and s; denotes the state of
waitiiig for a bank that has a reservation of k ticks remaining, Let T denote the Markov
transition matrix T for this model (i.e., T}; is the probability that the next state is j, given
that the current state is 1). Then T may be written as

(1—rz rz/t rzft .- rz/t rz/t

1 0 o . 0 0

0 1 o .- 0 0

r=| 2 0 L0
.\ 0 o o - 1 o0 )

It may easily be verified that the Markov chain described by this transition matrix is
a regular (ergodic) process. This means that the a priori probability of any state is equal
to the limiting frequency of appearance of that state (for almost every sample sequence),
Let p = (po, P1sP2;+..,P1) denote the vector of a priori probabilities of the ¢ + 1 states.
These probabilities may be determined from the relationship pT' = p (see [11], p. 72).
This equivalence yields the linear system of equations
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p{l—=rz) + p = po
porz/t + pp =
porz/t + Py = p
porz/t + B = P
porz/t = p

When combined with the fact that the probabilities p; must sum to one, the solution
is easily found to be

1

Po = 14 rz(t+1)/2
_ res

v = T )2
_ rz(t —1)

P2 = W+rait+ D2
_ 2rz

Pt = T Frat+1)/2]
_ rz

P M+ret+1)/2

Since it was assumed that the fraction z of banks that are in a reservation cycle is
constant, the expected number of banks initially reserved at any instant must equal the
number whose reservation expires at that instant. This can be expressed by the relation

rmpy = nz/t

where it is assumed that at each time 1/t of the busy banks are freed. This relation
combined with the above yields the solution

Vi+2mett+1)/n — 1
£ = rt +1)

so that
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2
P = T+ lremett +1)/n

The remaining py can be similarly calculated.

Now that the probability vector p has been found, a memory efficiency statistic may be
calculated. Let E denote the ratio of the expected number of memory accesses divided by
the sum of this figure and the expected time spent in wait states. This efficiency statistic
can be written as

Do
F =
reo + (1 - po)
2r

2r-1 + \?l + 2mr2t(t + 1)/n

Implications of the Markov Chain Model

The efficiency statistic derived in the previous section from the Markov chain model
does not, unfortunately, agree closely with most actual vector supercomputer operation.
The main problem appears to be, as mentioned above, that most vector computer memory
accesses are from consecutive banks (or at least from banks differing by some constant
stride) instead of from randomly chosen banks. Even so, some cunclusions can be drawn
from this Markov chain result that do carry over to the more realistic model described
below.

First of all, one can conclude from the formula above for the memory efficiency that if
the number of processors m is increased by a factor g, then the number of banks n must
also be increased by a factor g to preserve the same level of efficiency. Secondly, if the bank
reservation time ¢ is increased by a factor g, then the number of banks must be increased
by a factor of about ¢ to maintain the same memory efficiency. As it turns out, these two
relations also hold (to a good approximation) in the following more detailed model.

Monte Carlo Simulations of Memory Bank Contention

A more sophisticated (and realistic) model of memory bank contention will now be
presented. Above it was assumed that each free CPU tosses a coin with a certain proba-
bility and ~iempts to access a single randomly chosen memory bank if the coin turns up
heads. It will now be assumed that each free CPU instead initiates a vector access (fetch
or store) of a certain length if its coin turns up heads. The starting bank number for this
vector access is assumed chosen at random, but thereafter the bank number advaaces with
some constant stride through the duration of the vector access. The length of the vector
access is assumed chosen at random according to a distribution that is uniform on the
get {1,2,...,V}, except that a specified larger fraction v of the vector lengths have the
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maximum value V. Similarly, the memory stride is assumed to be ¢hosen from a uniform
distribution on the set {1,2,...,n}, except that a certain specified larger fraction s of the
strides arc 1.

It should be noted that strides greater than n do not need to be considered, because
such strides are equivalent for our purposes to their remainder when divided by n. It
should also be noted that the mean restart time R between vector accesses is merely
the reciprocal of the coin toss probability r, a fact that can Ls easily demonstrated from
elementary probability theory. Unlike the Markov chain model, this model will not ignore
the case where two or more CPUs are waiting to access the same memory bank - it will
be assumed that the CPUs merely take turns until all accesses have been completed.

This model is not intended to exactly mimic the memory operation of any actual
supercomputer. Instead it is intended tc enable the general problem of memory bank
contention to be simulated and apnalyzed. However, variations of this model have been
shown to quite closely mimic a number of real computers. For example, the Cray-2 memory
has been successfully analyzed [1] by using this basic model with an enhancement that
mimics the operation of the Cray-2 quadrants. The Cray X-MP/48 memory has similarly
been studied using this model with enhancements that handle the multiple memory ports
from each CPU,

Unfortunately, it is does not seem possible to analyze this model with the elementary
Markov chain techniques of the previous section. It is possible, however, to run Monte
Carlo simulations based on such a model. Such a simulation program has been written,
and numerous runs with it have been made on the Cray X-MP/12 belonging to the NAS
(Numerical Aerodynamic Simulation) program at the NASA Ames Research Center. Each
separate assumption of the above parameters was run for one million ticks, enough for the
resulting empirical efficiency figures to be reliable to within a percent or two.

Results of the Monte Carlo Simulation Runs

Several plots displaying important simulation results are shown in the pages following
the end of the article. Except where indicated otherwise, these results are for the case
n=256, m=4, V=128, R =100, { =40, v =0.75, s = 0.75, These parameters were
chosen for a “generic” vector computer, roughly a composite of a number of current and
projected supercomputers.

Figure 1 shows how the memory efficiency E decreases as the reservation time ¢ in-
creases. The four separate curves represent results for various numbers of CPUs. Figure 2
shows how efficiency increases as the fraction s of unit atride varies from gero to one. Each
curve in this figure represents results for different reservation times. Figure 3 shows how
efficiency decreases with large numbers of processors. The four curves on this figure are for
different numbers of banks. Figures 4 and 5 present a different slant on the problem: with
other parameters held fixed, the number of banks necessary to preserve a constant level
of memory efficiency (75%) is shown as a function of increasing reservation time (figure 4)
and as a function of increasing numbers of processors (figure 5), In figure 4 the separate
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curves represent results for different numbers of banks, and in figure 5 each curve gives
results for different reservation times.

Several definite trends can be quickly identified from these plots. First of all, from
figure 5 it ic clear that the relationship between banks and processors is exceedingly close
to linear - in fact the number of banks necessary to compensate for an increasing number
of processors appears to be very closely proportional to the number of processors minus
1. This relation, except for the minus 1, matches the relation found in the Markov chain
analysis above. Secondly, although it is not immediately clear from figure 4, logarithmic
regression of the simulation resulis shows that the number of banks necessary to compen-
sate for an increase in the bank reservation time ¢ is proportional to approximately ¢1-23,
The corresponding relation from the Markov chain analysis is ¢(¢ + 1), which is equivalent
to approximately ¢! over the range of the data in question. Relationships quite close to
these were also found in other cases that were run with the simulator program.

The reduction of memory efficiency whenever the fraction of strides that are equal to
one is not 100% (see figure 2) presents a dilemma of sorts to designers of supercomputers. It
is clear that significantly less memory bank contention would result by desigring hardware
that does not allow strides other than one on most vector memory accesses, This approach
has been taken, for example, by CDC in its Cyber 205 design. However, such a restriction
reduces the ability of a computer to efficiently process Fortran data arrays by other than
the first dimension. As a result most supercomputer users, particularly those who run
codes with large multidimensijonal arrays, feel that a variable memory stride is a definite
advantage in a vector computer design, Nevertheless, it clear from these simulation results
that memory efficiency will be lower with a variable stride architecture.

Conclusions

The analysis of the phenomenon of memory bank contention does indeed indicate the
potential for substantial reductions in performance in new generations of supercomputers.
For example, suppose a supercomputer were to be designed with eight central processing
units and a two nanosecond clock. A number of the current technology DRAM (dynamic
random access memory) chips now in production dictate a bank reservation time of roughly
160 nancseconds, or 80 ticks., According to simulation runs based on the generic vector
computer model described above, more than 10000 memory banks would be necessary to
achieve an average efficiency of roughly 75%. This number is considerably greater than
the 64 or 128 that characterize current designs. Thus it appears that future generations
of vector computers must either be designed with memory chips substantially faster than
those available today, or else they must feature much larger numbers of independent
banks of memory. Failure to address this problem will result in catastrophic performance
reductions.

In the future, it is likely that memory chips significantly faster than today’s typical
DRAM chips will be available for supercomputer memories. For example, a number of
supercomputers feature static RAM chips with faster operation speeds than dynamic RAM
chips. However, such fast chips cost considerably more and have only a fraction of the
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capacity of equivalent generation DRAM chips. This pattern can be expected to continue
for the foreseeable future. Thus it seems probable that future designers and purchasers
of supercomputers will have to make painful tradecffs between performance and memory
gize = computer systems may be available with either a smaller memory of faster chips and
minor memory contention, or with a much larger memory of slower chips and substantial
memory contention.

Increased memory size does of course have a number of advantages. In addition to
the ease of programming large-scale scientific application codes, larger memories reduce
the amount of time a supercomputer must spend transferring jobs in and out or waiting
for 1/O requests to be handled. Even with these advantages, though, it seems clear that
computational throughput will generally be degraded with the larger (slower) memories.

One possible solution to this dilemma is to design vector supercomputers with large
main memories of the slower chips, but with a ®cache” of much faster memory private to
each CPU. With such a scheme some programs could still access very large data arrays,
while other programs not requiring a large amount of data storage could use the cache
memory, thus lessening the competition for main memory banks, However, problems arise
with this design also. For one thing, swapping jobs in and out of a CPU would be much
more time consuming, due to the extra time required to save the entire cache memory. In
addition, nonstandard constructs may be required for the Fortran programmer to control
which type of memory is assigned to his or her data arrays. Finally, unless a fairly large
amount of cache memory is provided, most programs will be unable to perform a significant
amount of their required computation using cache memory.

In any event, it is clear that both manufacturers and potential users of supercomputers
must pay close attention to the problem of memory bank contention. It is thus hoped that
the techniques described in this paper will be of assistance to such persons and will help
prevent unacceptable reductions in supercomputer performance.
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