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Abstract 
Zhou, Xiaoping; Hemstrom, Miles A. 2010. Timber volume and aboveground live 

tree biomass estimations for landscape analyses in the Pacific Northwest. Gen. 
Tech. Rep. PNW-GTR-819. Portland, OR: U.S. Department of Agriculture, Forest 
Service, Pacific Northwest Research Station. 31 p. 

Timber availability, aboveground tree biomass, and changes in aboveground 
carbon pools are important consequences of landscape management. There are 
several models available for calculating tree volume and aboveground tree biomass 
pools. This paper documents species-specific regional equations for tree volume 
and aboveground live tree biomass estimation that might be used to examine 
consequences of midscale landscape management in the Pacific Northwest. These 
regional equations were applied to a landscape in the upper Deschutes study area 
in central Oregon. We demonstrate an analysis of the changes in aboveground tree 
biomass and wood product availability at the scale of several watersheds on general 
forest lands under an active fuel-treatment management scenario. Our approach 
lays a foundation for further landscape management analysis, such as financial 
analysis of timber product and biomass supply, forest carbon sequestration, wildlife 
habitat suitability, and fuel reduction related studies. 

Keywords: Timber products, biomass supply, volume equation, biomass 
equation, carbon storage, Pacific Northwest, central Oregon.
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Introduction
Forest land managers and policymakers face substantial challenges in managing 
forest lands to meet evolving environmental, social, and economic demands. The 
Interagency Mapping and Assessment Project (IMAP) is an interagency1 effort 
to develop midscale assessment and planning tools for addressing fire risks, fuel 
conditions, wildlife habitats, old forests, forest products, potential biomass sup-
plies, and other landscape attributes. Interagency Mapping and Assessment Project 
integrates a suite of vegetation dynamics models with existing and potential 
vegetation information to project potential future vegetation conditions, natural 
disturbances, wildlife habitats, fuel conditions, and other landscape characteristics 
under different management approaches. The outputs from vegetation simulation 
models can be used for a variety of landscape analyses including timber products, 
biomass supply, and carbon accounting. In this report, we document the volume and 
biomass equations that can be used with IMAP models and illustrate the simulated 
changes over time in timber product availability and aboveground tree biomass in 
a central Oregon study area. The volume and biomass equations selected for use 
in the regional landscape study were the subject of comparison in an earlier paper 
(Zhou and Hemstrom 2009), in which the regional model was compared with other 
methods developed for broad-scale estimation.

Volume Equations for Landscape Analysis
Volume equations are expressions of tree forms used to estimate the cubic content 
of a tree with given three-dimensional shapes. Different tree species often have 
different shapes in the same region, or the same species may have different shapes 
in different regions. The Forest Inventory and Analysis (FIA) Program of the USDA 
Forest Service estimates total stem volume, merchantable volume, sawtimber 
volume, and other attributes from tree measurements on inventory plots. Three 
major types of timber volume estimation were summarized in the Timber Volume 
Estimator Handbook (USDA FS 1993). They are (1) stem profile equations, (2) 
direct volume estimators, and (3) product estimators. The Behre (1927) hyperbola, 
one of the stem profile models, has been used by the National Forest Systems in the 
Pacific Northwest Region (USDA FS 1978) for calculating tree volumes, whereas 

1 IMAP partners include USDA Forest Service Pacific Northwest Research Station, Pacific 
Northwest Region, Western Wildland Environmental Threats Center, Oregon Department 
of Forestry, Washington Department of Natural Resources, The Nature Conservancy, and 
others.
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the FIA Program in the Pacific Northwest Research Station (PNW-FIA) is using the 
direct volume equation and the tarif system2 for measured tree volume estimation. 

 For volume estimation in our midscale landscape study, we applied direct 
volume equations and the tarif system (Brackett 1973), the approach used by the 
PNW-FIA Program. Most of the equations were published from local tree studies 
and are documented by Waddell and Hiserote (2005). Two methods were used to 
calculate cubic volume in this approach: (1) using the cubic-foot volume of total 
stem from ground to tree tip (CVTS) to calculate the tarif number and the other 
volumes (table 1a); (2) using the cubic-foot volume from a 1-ft stump to a 4-in top 
(CV4) to calculate tarif number and other volumes (table 1b). These volume equa-
tions are for estimation of wood volume without bark. The defect is not included in 
the estimate. 

Equations listed in table 1a allow direct estimation of CVTS for different 
Pacific Northwest tree species, and can be applied to all diameter classes if the 
equations for specified species are available. The tarif numbers are calculated based 
on CVTS (Brackett 1973). The other volumes such as cubic-foot volume from a 1-ft 
stump to the tree tip (CVT) and CV4 are derived from CVTS and tarif numbers. 

Equations shown in table 1b calculate CV4 first, then the tarif numbers are 
derived from CV4 for calculating CVTS and CVT for trees over 5 inches in diam-
eter at breast height (DBH). For trees less than 5 inches in DBH, the CVTS was 
calculated by using direct equations shown in the same table. 

The saw-log volume estimates include saw-log cubic-foot volume (CV), Scrib-
ner volume (SV) and international volume (IV) (table 1c). The saw-log volume 
is the volume of wood in the central stem of a sample commercial species tree 
of sawtimber size (9.0 in DBH minimum for softwood and 11.0 in minimum for 
hardwood) from a 1-ft stump to a minimum diameter at top.

Volume equations do not exist for all tree species in the study area.  For those 
species without a volume equation, we chose equations from species with similar 
growth forms. The volume estimations for this study may include: 
1. Cubic-foot volume of the total stem from ground to tree tip (CVTS). 
2. Cubic-foot volume from a 1-ft stump to the tree tip (CVT).
3. Cubic-foot volume from a 1-ft stump to a 4-in top (CV4). 
4. Saw-log cubic-foot volume from a 1-ft stump to 6-in top for softwoods 

(CV6) and to an 8-in top for hardwoods (CV8). 

2 The tarif system is a comprehensive tree volume calculation procedure and was adapted 
from the European system to the Pacific Northwest. The tarif system provides a series of 
preconstructed local volume tables applicable to the specific stand. The volume computa-
tion procedure of the tarif system was presented in a flow chart by Brackett (1973).
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5. Scribner board-foot volume to a 6-in top in 16-ft logs (SV616) and in 32-ft 
logs (SV632),  and to an 8-in top in 16-ft logs (SV816) and in 32-ft logs 
(SV832).

6. International board-foot volume to a 6-in top (IV6) for softwood and to an 
8-in top (IV8) for hardwood.

Biomass Equations for Midscale Landscape Analysis
Tree biomass estimation has become increasingly important for at least two rea-
sons: (1) forest land plays an important role in carbon sequestration for mitigating 
global climate changes, and (2) biomass from forests might be used to generate 
energy. Various tree biomass calculation methods are applied on forest lands in 
the United States. The USDA Forest Service has used the Jenkins equation system 
(Jenkins et al. 2004) to assess forest biomass at national scales and for forest carbon 
estimates used in official greenhouse gas and carbon sequestration assessments for 
the United States (US EPA 2008). The national forest resources report for the Forest 
and Rangeland Renewable Resources Planning Act has used the component ratio 
method (CRM) to estimate tree biomass for consistency across regions. The objec-
tive of CRM is to provide national-scale biomass and carbon estimates consistent 
with FIA volume estimates at the tree level (Heath et al. 2008). However, these 
methods produce generalized biomass estimates compared to regional, detailed 
allometric equations (Zhou and Hemstrom 2009). Regional models are usually tree 
species-specific and result from detailed tree studies. We assume these regional 
models will be suitable for analyses of midscale landscapes (e.g., areas of hundreds 
of thousands to a few million acres).

Live tree biomass includes belowground biomass (root biomass) and above-
ground biomass.  We examined aboveground tree biomass using regional volume 
and biomass models including total stem wood biomass, bark biomass, and branch 
biomass. The foliage biomass is not included in this study. 

 Tree stem wood biomass from ground to tip (including stump) was estimated 
using volume equations (tables 1a, 1b, and 1c) multiplied by the wood density: 

WB = (CVTS × Wd)
where 

CVTS = total stem volume from ground to tip (cubic feet) (tables 1a and 1b),
Wd  = wood density (kilogram/cubic foot)3,
WB = stem wood biomass (kilogram).

3 Wood density is calculated by specific gravity times density of water (62.4 lb/ft3 or 1000 
kg/m3).



4

GENERAL TECHNICAL REPORT PNW-GTR-819

The equations for estimating tree branch biomass are listed in table 2, and 
bark biomass equations are in table 3. These biomass equations are also from local 
tree studies, and most of them were from published papers and have been used for 
PNW-FIA live tree biomass estimation (Means et al. 1994, Waddell and Hiserote 
2005).  The assignments of volume, biomass equations for each major species 
within different geographic regions of the Pacific Northwest are in table 4. The 
specific gravities of wood and bark by species (Miles and Smith 2009) for calculat-
ing wood or bark density are presented in table 5.

There are important constraints to consider when applying these equations to 
measured tree data (tables 1a-c, 2, and 3). For example, bark biomass equations 
(27), (29), and (32) in table 3 may produce negative bark biomass when DBH is less 
than 2 in. We programmed those constraints along with the various volume and 
biomass equations into a SAS®4 (SAS Institute Inc. 2008)  script for our analysis. 

4 The use of trade or firm names in this publication is for reader information and does not 
imply endorsement by the U.S. Department of Agriculture of any product or service.

Case Study
The upper Deschutes landscape is an area of about 2 million acres that extends 
from just north of Redmond, Oregon, to south of Gilchrist in central Oregon (fig. 
1).  We focused on the general forest lands managed by the USDA Forest Service 
for our analysis; about 500,000 ac, or 25 percent of the upper Deschutes landscape.  
General forest lands are outside reserved areas (e.g., late-successional reserves, 
wilderness, national monument).  We modeled potential trends in forest vegetation 
structure and vegetation composition under the scenario of active fuel treatment 
management with natural disturbances (wildfire and insect outbreaks) that moved 
dry forests toward more open conditions dominated by large trees of early-seral 
species. This management scenario is likely much more active, in terms of area 
treated per year, than currently occurs on general forest lands. It is assumed in 
this scenario that general forest lands are managed for multiple uses, including 
restoration of forests to conditions more resistant to uncharacteristic wildfire and 
insect outbreaks, recreation, wildlife habitat, and generation of forest products (e.g., 
biomass and timber), and that some level of salvage may occur following stand-
replacement natural disturbances, but that the level is generally low. The Vegetation 
Dynamics Development Tool (VDDT) (ESSA Technologies Ltd. 2007), a state-
and-transition model, was used in this study. VDDT has been used in other similar 
landscape analyses in the interior Pacific Northwest (Hann et al. 1997, Hemstrom et 
al. 2007).  We ran this active fuel-treatment scenario for 300 years with 30 Monte 
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Figure 1—The upper Deschutes study area and land ownership/allocation classes in central Oregon.

Land ownership and allocation classes

USDA Forest Service, general forest

USDI Bureau of Land Management

USDA Forest Service, late-successional reserves

State

Wilderness and national monument

Private

Carlo simulations of different combinations of fire and insect outbreaks using 
methods developed by Hemstrom et al. (2008).

Existing vegetation conditions came from Gradient Nearest Neighbor (GNN) 
imputation of inventory plots to 30-m pixels (Ohmann and Gregory 2002; http://
www.fsl.orst.edu/lemma/method/methods.php). Each 30-m pixel with an associated 
inventory plot (PNW-FIA data and USDA Forest Service Pacific Northwest Region 
inventory data) was assigned to one of the state classes in the VDDT model.  Then 
area is summarized in each state class within each watershed and ownership/alloca-
tion class to develop initial conditions for our models, breaking forest structure into 
classes that combine overstory tree size and canopy density: 
1. Grass/forb, seedling, and sapling—Tree canopy less than 10 percent cover 

but potentially forested or trees less than 1 in DBH.
2. Pole—Tree canopy over 10 percent and dominant/co-dominant tree diam-

eter 1 to 5 in DBH.
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3. Small tree—Tree canopy over 10 percent and dominant/co-dominant tree 
diameter 5 to 10 in DBH.

4. Medium tree—Tree canopy over 10 percent and dominant/co-dominant tree 
diameter 10 to 20 in DBH.

5. Large tree open—Tree canopy 40 to 60 percent cover and dominant/co-
dominant tree diameter >20 in DBH.

6. Large tree closed—Tree canopy >60 percent cover and dominant/co-domi-
nant tree diameter >20 in DBH.

The average volume and biomass are estimated using inventory plot data and 
allometric equations for each VDDT state class, with the same assignment of 
inventory plots to state classes.  The result was a large look-up table that linked 
VDDT model state class to volume and biomass estimates.  Landscape projections 
of changes to volume and biomass by watershed, ownership/allocation, and state 
class were developed by linking our volume and biomass look-up tables to modeled 
future area in each state class within landscape strata of watersheds and ownership/
allocations. The process was coded and run in the SAS software package.

Results
Forests of seedlings/saplings, poles, small, and medium-sized trees currently 
dominate vegetation conditions in the study area (fig. 2).  The active fuel-treatment 
scenario in this study produces a general forest landscape dominated by open 
stands of large trees with abundant openings over the 300-year simulation period.

Figure 2—Proportion of the study area in forest structure classes over a 300-year simulation period 
in the study area. 
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At present, the standing pool of merchantable volume is 571 million cubic 
feet in the study area for general forest land, mostly in forest structure classes of 
small trees and relatively dense stands (figs. 2 and 3).  Over the first 50 years of the 
300-year simulation period, the standing pool of merchantable volume declined 
to 460 million cubic feet (fig. 3). Average 47 percent (range from 40 to 59 percent) 
of the total removal of live tree volume from the landscape in the first 50 years 
was from active treatments that generated forest products (including salvage) and 
the remaining from wildfires, insect outbreaks, and other disturbances where no 
salvage occurred.  Initially, total loss of live tree volume was 170 million cubic feet 
per decade or 17 million cubic feet per year, but losses slowed and stabilized after 
50 years.  For the remaining 250 years of our simulations, the total removal was 
50 million cubic feet per decade, or 5 million cubic feet per year.  After 50 years, 
however, growth outpaced volume loss so that the landscape once again contained 
570 million cubic feet of merchantable volume around simulation year 275.  Much 
of the recovered volume is in the structure class of large trees of early-seral species 
(e.g., ponderosa pine) by the end of the simulation.

Pools of sawtimber follow a similar trajectory (fig. 4).  The landscape sawtim-
ber pool is currently 2.75 billion board feet, much of that in the structure classes 
of small (average 5 to 10 in DBH) and medium (average 10 to 20 in DBH) sized.  
Over the first 30 years, the sawtimber pool declines to 2.33 billion board feet. The 
sawtimber pool then begins to rebound and ends 17 percent above initial conditions 
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by the end of the 300-year simulation period. Timber harvest averages 50 percent 
(range from 43 to 62 percent) of the sawtimber removals during the 300-year 
projection period, and the remaining is from natural disturbances.

The pool of aboveground tree biomass in the study area begins at 12.6 million 
tons and declines to 10.2 million tons by the end of the first 50 years (fig. 5).  Total 
annual removals of aboveground tree biomass decline from 0.4 million tons (or 4 
million tons per decade) at the start of the simulation period to 0.15 million tons per 

Figure 4—Total sawtimber volume inventory and 10-year removals by management and natural disturbances.

Figure 5—Total biomass inventory and 10-year removals by management and natural disturbances.
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year (or 1.5 million tons per decade) after the third decade.  Harvest averages 46 
percent (range from 39 to 60 percent) of aboveground live tree biomass removals 
and the rest is from other natural disturbances.  Over the last 250 years of the simu-
lation period, the average annual removal is 1.2 percent of the total aboveground 
live tree biomass inventory. The total aboveground tree biomass pool does not quite 
recover to initial levels after 300 years, instead ending at 11.6 million tons.

Discussion
Active fuel treatment with natural disturbances interacted to produce substantial 
changes to landscape pools of aboveground live tree volume and biomass over 300 
years in our simulations.  The combination of timber harvest from fuel treatments 
and natural disturbances (wildfire and insect outbreaks) caused an initial decline 
of 14 to 19 percent in each pool over the first 30 to 50 simulation years.  The pools 
then began slow recovery as growth on large, fire-resistant trees in open stands 
outstripped harvest and natural disturbance losses.  Since our active fuel-treatment 
scenario was designed to reduce wildfire and insect outbreak losses rather than 
maximize timber output, the forested landscape pools continued to recover to levels 
equal to or above initial conditions over the last 250 years of the simulations.  Inter-
estingly, the sawtimber pool exceeded initial conditions by the end of the simulation 
because growth occurred on large trees that contain proportionately more sawtim-
ber than the small and medium-sized trees that currently dominate the landscape.

The results in this study suggest that an active fuel-treatment management 
approach might initially reduce aboveground tree pools of volume, sawtimber, 
and live tree carbon stock but might, over the longer term, move forest conditions 
toward similar pool sizes in more sustainable forest conditions, as suggested by 
Boerner et al. (2008).  It seems logical that open forests of large, fire-tolerant tree 
species would be less susceptible to sudden loss to severe wildfire or insect out-
breaks (e.g., Hartsough et al. 2008, Hurteau and North 2009) though the effects of 
management on forest carbon pools are debatable (e.g., Finkral and Evans 2008, 
Harmon et al. 1996, Hudiburg et al. 2009, Hurteau and North 2009, Kurz et al. 
1997).  For example, Finkral and Evans (2008) estimated that thinning treatments in 
northern Arizona ponderosa pine stands released more carbon than stand-replacing 
wildfire might have, largely owing to the fate of thinned trees sold as firewood 
rather than for longer lasting wood products.  They did not examine the longer 
term recovery of carbon on large, fire-tolerant trees. The fate of harvested trees 
was not examined in this active fuel-treatment scenario.  It is suspected, however, 
that a similar result would apply; trees sold for firewood could quickly contribute 
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to atmospheric carbon, whereas those destined to become long-term wood products 
would contribute more slowly.

Several cautions and needs are suggested for additional work.  This study 
did not include the potential future effects of climate change in our active fuel-
treatment scenario.  Certainly, climate change could alter the rate of natural distur-
bances and tree growth, changing the aboveground pools.  It also did not examine 
soil carbon changes that might accompany an active fuel-treatment management 
approach.  It is possible that the active fuel-treatment scenario used in this study 
treats a much higher proportion of the general forest landscape than currently 
occurs and that modeling a current management scenario would produce consider-
ably different results.  However, a landscape modeling approach that includes 
dynamic interactions between management activities, natural disturbances, and tree 
growth over a long period is useful for considering management impacts on timber 
volume, aboveground tree biomass, and carbon storage.

Conclusions
Timber supply and biomass estimation can be important to landscape management 
analysis, depending on the questions asked.  Although there are several models 
available for calculating tree volume and aboveground biomass, most of the species-
specific regional volume and biomass equations presented in this paper are applied 
in the PNW-FIA Program (Donnegan et al. 2008), and these regional models would 
be suitable for mid- and fine-scale landscape analyses (Zhou and Hemstrom 2009). 
The application of these regional models to the upper Deschutes area provides an 
example of how such an analysis might be implemented at the scale of several or 
many watersheds.  Localized information on trends in these landscape character-
istics should help managers, policymakers, and others evaluate different manage-
ment scenarios in terms of biomass, timber availability, and aboveground tree 
carbon pools over time.  Because such analysis provides information at the scale 
of land ownerships within watersheds, the long-term conditions and sustainability 
of these pools could be mapped for midscale analysis and evaluation. This paper 
lays a foundation for further analyses of landscape management practices, such as 
financial analysis of timber products, biomass supply, and aboveground tree carbon 
sequestration for differing landscape management scenarios while including critical 
interactions with natural disturbances.  
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Equivalents
When you know: Multiply by: To get:

Acres (ac) 0.405 Hectares (ha)
Feet (ft)   .305 Meters (m)
Cubic feet (ft3)   .0283 Cubic meters (m3)
Inches (in) 2.54 Centimeters (cm)
Pounds (lb)   .454 Kilograms (kg)
Tons   .907 Metric tones
Pounds per cubic  
  foot (lb/ft3) 16.02 Kilograms per cubic meter (kg/m3) 
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Table 2—Pacific Northwest tree branch biomass (BCH) equations

Eqn Branch equation Major speciesa Reference

1 
 

mH
cmDBH

BCH _
2

100

_
4.120.13 ×× 





  Grand fir Standish et al. 1985

2 
 

mH
cmDBH

BCH _
2

100

_
2.446.3 ×× 





  Subalpine fir Standish  et al. 1985

3   cmDBHeBCH
_ln3324.21817.4 ×−  Noble fir Gholz et al. 1979

4 
 

mHcmDBHBCH _
2

100
_

4.148.16 ×× 






  Engelmann spruce Standish et al. 1985

5 
 

mH
cmDBH

BCH _
2

100
_

0.227.9 ×× 






  Sitka spruce Standish et al. 1985

6   cmDBHeBCH
_ln1382.26941.3 ×−  Douglas-fir (PNWW) Gholz et al. 1979

7   mHcmDBHeBCH
_ln(0424.1)_ln5177.11068.4 ××−  Ponderosa pine Cochran et al. 1984

8  cmDBHeBCH
_ln3648.3637.7 ×−  Sugar pine Gholz et al. 1979

9 

 

mH
cmDBH

BCH _
2

100
_

8.165.9 ×× 







 Western white pine Standish et al. 1985

10  
  mHcmDBHBCH _2_00381.0199.0 ××  Western redcedar Shaw 1977

11 
 

mHcmDBHBCH _
2

100
_

3.128.7 ×× 







 Lodgepole pine Standish et al. 1985

12   cmDBHeBCH
_ln271.2570.4 ×−  Western hemlock Sachs 1983

13   cmDBHeBCH
_ln3337.22775.7 ×−  Western juniper Gholz et al. 1979

14 
 

mH
cmDBH

BCH _
2

100
_

2.267.1 ×× 






  Quaking aspen Standish et al. 1985

15 
 

mH
cmDBH

BCH _
2

100
_

8.365.2 ×× 







 Black cottonwood Standish et al. 1985

16 
 

mH
cmDBH

BCH _
2

100
_

5.211.8 ×× 






  Red alder Standish et al. 1985

17   cmDBHeBCH _ln6045.22581.5 ×−  Mountain hemlock (CA) Gholz et al. 1979

18 
 

mHcmDBHBCH _
2

100
_

7.225.4 ×× 






  Pacific silver fir Standish et al. 1985

19 
 

mH
cmDBH

BCH _
2

100
_

7.93.5 ×× 






  Alaska yellow-cedar Standish et al. 1985
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Table 2—Pacific Northwest tree branch biomass (BCH) equations (continued)

Eqn Branch equation Major speciesa Reference

20 
 

mH
cmDBH

BCH _
2

100
_

7.74.20 ×× 






  Western larch Standish et al. 1985

22 
 

mH
cmDBH

BCH _
2

100
_

5.236.12 ×× 






  Douglas-fir Standish et al. 1985

23  
  mHcmDBHBCH _2_00413.0047.0 ××  Western hemlock (OR/WA) Shaw 1977

24 
 

mH
cmDBH

BCH _
2

100
_

4.172.4 ×× 







 Mountain hemlock (OR/WA) Standish et al. 1985

25 
 

mH
cmDBH

BCH _
2

100
_

1.456.0 ××− 






  White birch (OR/WA) Standish et al. 1985

Note: 
   1. Biomass in kilogram (kg), DBH_cm is diameter in centimeters (cm), H_m is tree height in meters (m).
   2. For branch equation 12, if site is thinned, the coefficient -4.570 will be replaced with -4.876 and all the other items kept the same.
   3. Branch equation 25 may produce negative numbers when DBH < 3.5 inches, so it is suggested to use constraint: branch biomass = 0  
       when formulas produce negative numbers.
   4. PNWW = Pacific Northwest West includes western Oregon and Washington.
   5. CA = California, OR = Oregon, WA = Washington, WOR = western Oregon.
a Major species—the species or similar species for which the equation was referred for use in reference. 
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Table 4—Assignment of volume and biomass equations to major tree species in the study region

Species Volume equationa Branch equationb Bark equationc

code Common name PNWW PNWE CA PNWW PNWE CA PNWW PNWE CA

11 Pacific silver fir 11 10 11 18 18 18 22 22 22
14 Santa Lucia fir or  
   bristlecone fir 18 18 18 1 1 1 2 2 2
15 White fir 18 18 18 1 1 1 1 1 1
17 Grand fir 11 10 18 1 1 1 2 2 2
19 Subalpine fir 11 10 18 2 2 2 3 3 3
20 California red fir 18 18 18 3 3 3 4 4 4
21 Shasta red fir 18 18 18 3 3 3 4 4 4
22 Noble fir 11 10 18 3 3 3 5 5 5
41 Port-Orford-cedar 9 9 8 10 10 10 13 13 13
42 Alaska yellow-cedar 9 8 8 19 19 10 23 23 13
50 Cypress 9 9 9 10 10 10 13 13 13
51 Arizona cypress 9 9 9 10 10 10 13 13 13
54 Monterey cypress 9 9 9 10 10 10 13 13 13
55 Sargent’s cypress 9 9 9 10 10 10 13 13 13
56 McNab cypress 9 9 9 10 10 10 13 13 13
62 California juniper 21 21 21 13 13 13 16 16 16
64 Western juniper 21 21 21 13 13 13 16 16 16
65 Utah juniper 21 21 21 13 13 13 16 16 16
66 Rocky Mountain juniper 21 21 21 13 13 13 16 16 16
72 Subablpine larch 22 22 22 20 20 20 24 24 24
73 Western larch 22 22 22 20 20 20 24 24 24
81 Incense-cedar 9 9 9 10 10 10 13 13 13
92 Brewer spruce 13 12 12 4 4 4 7 7 7
93 Engelmann spruce 13 12 12 4 4 4 7 7 7
98 Sitka spruce 13 12 12 5 5 5 6 6 6
101 Whitebark pine 15 15 15 9 9 9 11 11 11
102 Bristlecone pine 15 15 15 11 11 11 14 14 14
103 Knobcone pine 15 15 15 11 11 11 14 14 14
104 Foxtail pine 15 15 15 11 11 11 14 14 14
108 Lodgepole pine 15 15 15 11 11 11 14 14 14
109 Coulter pine 4 4 4 7 7 7 9 9 9
113 Limber pine 15 15 15 11 11 11 14 14 14
116 Jeffrey pine 4 4 4 11 11 11 9 9 9
117 Sugar pine 4 4 4 8 8 8 10 10 10
119 Western white pine 15 15 4 9 9 9 11 11 11
120 Bishop pine 15 15 15 11 11 11 14 14 14
122 Ponderosa pine 4 4 4 7 7 7 9 9 9
124 Monterey pine 15 15 15 11 11 11 14 14 14
127 Gray pine 4 4 4 7 7 7 9 9 9
130 Scotch pine 17 17 17 24 24 17 21 21 21
133 Singleleaf pinyon 21 21 21 13 13 13 16 16 16
137 Washoe pine 4 4 4 7 7 7 9 9 9
201 Bigcone Douglas-fir 1 2 3 6 22 6 8 25 8
202 Douglas-fir 1 2 3 6 22 6 8 25 8
211 Redwood 24 24 24 10 10 10 17 17 17
212 Giant sequoia 24 24 24 10 10 10 17 17 17
231 Pacific yew 9 8 8 10 10 10 13 13 13
242 Western redcedar 9 8 8 10 10 10 13 13 13
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251 California nutmeg 9 8 8 10 10 10 13 13 13
263 Western hemlock 6 6 6 23 23 12 26 26 15
264 Mountain hemlock 17 17 17 24 24 17 21 21 21
298 Unknown softwood 17 17 17 24 24 17 21 21 21
312 Bigleaf maple 37 37 37 16 16 16 20 20 20
313 Boxelder 38 38 38 16 16 16 30 30 30
321 Rocky Mountain maple 30 30 30 16 16 16 20 20 20
322 Bigtooth maple 30 30 30 16 16 16 20 20 20
326 Chinkapin oak 43 43 43 16 16 16 31 31 31
330 Buckeye 43 43 43 16 16 16 31 31 31
333 California buckeye 43 43 43 16 16 16 31 31 31
341 Tree of heaven 28 28 28 14 14 14 18 18 18
351 Red alder 25 25 25 16 16 16 20 20 20
352 White alder 25 25 25 16 16 16 20 20 20
361 Pacific madrone 40 40 40 16 16 16 34 34 34
374 Water birch 25 25 25 25 25 25 27 27 27
375 Paper birch 25 25 25 25 25 25 27 27 27
376 Western paper birch 25 25 25 25 25 25 27 27 27
431 Golden chinkapin 32 32 32 16 16 16 32 32 32
475 Curlleaf mountain-mahogany 32 32 32 16 16 16 32 32 32
492 Pacific dogwood 25 25 25 16 16 16 29 29 29
500 Hawthorn 34 34 34 15 15 15 36 36 36
510 Eucalyptus 31 31 31 15 15 15 36 36 36
511 Tasmanian bluegum 31 31 31 15 15 15 36 36 36
540 Ash 38 38 38 16 16 16 20 20 20
542 Oregon ash 38 38 38 16 16 16 20 20 20
591 Holly 29 29 29 25 25 25 27 27 27
600 Walnut 38 38 38 16 16 16 30 30 30
603 Northern California walnut 38 38 38 16 16 16 30 30 30
631 Tanoak 34 34 34 15 15 15 36 36 36
660 Apple 42 42 42 15 15 15 31 31 31
730 California sycamore 27 27 27 15 15 15 28 28 28
740 Cottonwood and poplar spp. 27 27 27 15 15 15 28 28 28
741 Balsam poplar 27 27 27 15 15 15 28 28 28
742 Eastern cottonwood 27 27 27 15 15 15 28 28 28
745 Plains cottonwood 27 27 27 15 15 15 28 28 28
746 Quaking aspen 28 28 28 14 14 14 18 18 18
747 Black cottonwood 27 27 27 15 15 15 28 28 28
748 Fremont cottonwood 27 27 27 15 15 15 28 28 28
755 Mesquite 27 27 27 15 15 15 28 28 28
756 Western honey mesquite 27 27 27 15 15 15 28 28 28
758 Screwbean mesquite 27 27 27 15 15 15 28 28 28
760 Cherry 27 27 27 15 15 15 28 28 28
763 Chokecherry 27 27 27 15 15 15 28 28 28
768 Bitter cherry 27 27 27 15 15 15 28 28 28
800 Oak-deciduous 43 43 43 15 15 15 31 31 31
801 California live oak 43 43 43 15 15 15 31 31 31
805 Canyon live oak 42 42 42 15 15 15 31 31 31
807 Blue oak 39 39 39 15 15 15 30 30 30

Table 4—Assignment of volume and biomass equations to major tree species in the study region (continued)

Species Volume equationa Branch equationb Bark equationc

code Common name PNWW PNWE CA PNWW PNWE CA PNWW PNWE CA
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810 Emory oak 39 39 39 15 15 15 30 30 30
811 Englemann oak 36 36 36 15 15 15 30 30 30
815 Oregon white oak 41 41 41 15 15 15 35 35 35
818 California black oak 38 38 38 15 15 15 30 30 30
821 California white oak 35 35 35 15 15 15 35 35 35
839 Interior live oak 44 44 44 15 15 15 31 31 31
901 Black locust 41 41 41 15 15 15 35 35 35
920 Willow 40 40 40 15 15 15 34 34 34
922 Black willow 40 40 40 15 15 15 34 34 34
926 Balsam willow 40 40 40 15 15 15 34 34 34
928 Scouler's willow 40 40 40 15 15 15 34 34 34
981 California-laurel 33 33 33 14 14 14 33 33 33
990 Tesota (desert ironwood) 33 33 33 14 14 14 33 33 33
998 Unknown hardwood 25 25 41 16 16 16 20 20 20
999 Unknown tree 25 25 25 16 16 16 20 20 20
Note: Tree species code (SPP) 298 and 326 in the table are not in the Forest Inventory and Analysis tree species list, but are defined in the study area. 
PNWW = Pacific Northwest West includes western Oregon and Washington.
PNWE = Pacific Northwest East includes eastern Oregon and Washington.
CA = California, 
a Equation numbers refer to those in table 1a and 1b.
b Equation numbers refer to numbers in table 2.
c Equation numbers refer to numbers in table 3. 

Table 4—Assignment of volume and biomass equations to major tree species in the study region (continued)

Species Volume equationa Branch equationb Bark equationc

code Common name PNWW PNWE CA PNWW PNWE CA PNWW PNWE CA
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Table 5—Specific gravity for major tree species wood and bark 

   Wood- Bark- 
FIA   specific specific 
code Common name Scientific name gravity  gravity 

11 Pacific silver fir Abies amabilis (Douglas ex Louden) Douglas ex Forbes 0.4 0.44
14 Santa Lucia or  
   bristlecone fir Abies bracteata (D. Don) D. Don ex Poit. 0.36 0.49
15 White fir Abies concolor (Gord. & Glend.) Lindl. ex Hildebr. 0.37 0.56
17 Grand fir Abies grandis (Douglas ex D. Don) Lindl. 0.35 0.57
19 Subalpine fir Abies lasiocarpa (Hook.) Nutt. 0.31 0.5
20 California red fir Abies magnifica A. Murray 0.36 0.44
21 Shasta red fir Abies x shastensis (Lemmon) Lemmon [magnifica × procera] 0.36 0.49
22 Noble fir Abies procera Rehd. 0.37 0.49
41 Port-Orford-cedar Chamaecyparis lawsoniana (A. Murr.) Parl. 0.39 0.4
42 Alaska yellow-cedar Chamaecyparis nootkatensis (D. Don) Spach 0.42 0.4
50 Cypress Cupressus L. 0.41 0.42
51 Arizona cypress Cupressus arizonica Greene ssp. arizonica 0.41 0.42
54 Monterey cypress Cupressus macrocarpa Hartw. ex Gord. 0.41 0.42
55 Sargent's cypress Cupressus sargentii Jeps. 0.41 0.42
56 MacNab's cypress Cupressus macnabiana A. Murray 0.41 0.42
62 California juniper Juniperus californica Carrière 0.45 0.4
64 Western juniper Juniperus occidentalis Hook. 0.45 0.4
65 Utah juniper Juniperus osteosperma (Torr.) Little 0.68 0.4
66 Rocky Mountain  
  juniper Juniperus scopulorum Sarg. 0.45 0.4
72 Subalpine larch Larix lyallii Parl. 0.49 0.32
73 Western larch Larix occidentalis Nutt. 0.48 0.33
81 Incense-cedar Calocedrus decurrens (Torr.) Florin 0.35 0.25
92 Brewer spruce Picea breweriana S. Watson 0.36 0.44
93 Engelmann spruce Picea engelmannii Parry ex Engelm. 0.33 0.51
98 Sitka spruce Picea sitchensis (Bong.) Carr. 0.33 0.55
101 Whitebark pine Pinus albicaulis Engelm. 0.43 0.4
102 Rocky Mountain  
   bristlecone pine Pinus aristata Engelm. 0.43 0.4
103 Knobcone pine Pinus attenuata Lemmon 0.39 0.38
104 Foxtail pine Pinus balfouriana Balf.  0.43 0.4
108 Lodgepole pine Pinus contorta Douglas ex Louden 0.38 0.38
109 Coulter pine Pinus coulteri D. Don 0.43 0.4
113 Limber pine Pinus flexilis James 0.37 0.5
116 Jeffrey pine Pinus jeffreyi Grev. & Balf. 0.37 0.36
117 Sugar pine Pinus lambertiana Dougl. 0.34 0.35
119 Western white pine Pinus monticola Dougl. ex D. Don 0.36 0.47
120 Bishop pine Pinus muricata D. Don 0.45 0.45
122 Ponderosa pine Pinus ponderosa P. & C. Lawson 0.38 0.35
124 Monterey pine Pinus radiata D. Don   0.4 0.4
127 Gray or California  
   foothill pine Pinus sabiniana Douglas ex Douglas 0.4 0.4
130 Scotch pine Pinus sylvestris L. 0.43 0.4
133 Singleleaf pinyon Pinus monophylla Torr. & Frém. 0.43 0.4
137 Washoe pine Pinus washoensis H. Mason & Stockw. 0.43 0.4
201 Bigcone Douglas-fir Pseudotsuga macrocarpa (Vasey) Mayr 0.45 0.44
202 Douglas-fir Pseudotsuga menziesii (Mirb.) Franco 0.45 0.44
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211 Redwood Sequoia sempervirens (Lamb. ex D. Don) Endl. 0.36 0.43
212 Giant sequoia Sequoiadendron giganteum (Lindl.) J. Buchholz 0.34 0.34
231 Pacific yew Taxus brevifolia Nutt. 0.6 0.59
242 Western redcedar Thuja plicata Donn ex D. Don 0.31 0.37
251 California torreya 
   (nutmeg) Torreya californica Torr. 0.41 0.42
263 Western hemlock Tsuga heterophylla (Raf.) Sarg. 0.42 0.5
264 Mountain hemlock Tsuga mertensiana (Bong.) Carr. 0.42 0.41
312 Bigleaf maple Acer macrophyllum Pursh 0.44 0.48
313 Boxelder Acer negundo L. 0.42 0.5
321 Rocky Mountain maple Acer glabrum Torr. 0.47 0.53
322 Bigtooth maple Acer grandidentatum Nutt. 0.47 0.53
330 Buckeye,  
   horsechestnut spp. Aesculus spp. 0.33 0.5
333 California buckeye Aesculus californica (Spach) Nutt. 0.33 0.5
341 Tree of heaven  
   (Ailanthus) Ailanthus altissima (Mill.) Swingle 0.46 0.45
351 Red alder Alnus rubra Bong. 0.37 0.56
352 White alder Alnus rhombifolia Nutt. 0.37 0.56
361 Pacific madrone Arbutus menziesii Pursh 0.58 0.6
374 Water birch Betula occidentalis Hook.  0.51 0.58
375 Paper birch Betula papyrifera Marsh. 0.48 0.56
431 Giant chinkapin,  
   golden chinkapin Chrysolepis chrysophylla (Dougl. ex Hook.) Hjelmqvist 0.42 0.42
475 Curlleaf mountain- 
   mahogany Cercocarpus ledifolius Nutt. 0.52 0.53
492 Pacific dogwood Cornus nuttallii Audubon ex Torr. & Gray 0.58 0.58
500 Hawthorn spp. Crataegus spp. 0.52 0.53
510 Eucalyptus spp. Eucalyptus fruticetorum F. Muell. 0.52 0.53
511 Tasmanian bluegum Eucalyptus globules Labill. 0.52 0.53
540 Ash spp. Fraxinus spp. 0.51 0.46
542 Oregon ash Fraxinus latifolia Benth. 0.5 0.5
591 Holly Ilex spp. 0.5 0.5
600 Walnut spp. Juglans spp. 0.44 0.37
603 Northern California  
   black walnut Juglans hindsii (Jeps.) Jeps. ex R.E. Sm. 0.44 0.37
631 Tanoak Lithocarpus densiflorus (Hook. & Arn.) Rehd. 0.58 0.62
660 Apple spp. Malus spp. 0.61 0.5
730 California sycamore Platanus racemosa Nutt. 0.46 0.6
740 Cottonwood and poplar  Populus spp. 0.35 0.46
741 Balsam poplar Populus balsamifera L. 0.31 0.5
742 Eastern cottonwood Populus deltoides Bartram ex Marsh. 0.37 0.38
745 Plains cottonwood Populus deltoides Bartram ex Marsh. ssp. monilifera 
    (Aiton) Eckenwalder 0.35 0.46
746 Quaking aspen Populus tremuloides Michx. 0.35 0.5
747 Black cottonwood Populus balsamifera  L. ssp. trichocarpa 
     (Torr. & A. Gray ex Hook.) Brayshaw 0.31 0.4
748 Fremont cottonwood Populus fremontii S. Watson 0.41 0.41

Table 5—Specific gravity for major tree species wood and bark (continued)

   Wood- Bark- 
FIA   specific specific 
code Common name Scientific name gravity  gravity 
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755 Mesquite  Prosopis spp. 0.78 0.65
756 Honey mesquite Prosopis glandulosa var. torreyana (L.D. Benson) M.C. Johnst. 0.78 0.65
758 Screwbean mesquite Prosopis pubescens Benth. 0.78 0.65
760 Cherry and plum Prunus spp. 0.47 0.63
763 Chokecherry Prunus virginiana L. 0.47 0.63
768 Bitter cherry Prunus emarginata (Dougl. ex Hook.) D. Dietr. 0.47 0.63
800 Oak  Quercus spp. 0.59 0.58
801 California live oak Quercus agrifolia Née 0.59 0.58
805 Canyon live oak Quercus chrysolepis Liebm. 0.7 0.64
807 Blue oak Quercus douglasii Hook. & Arn. 0.59 0.58
810 Emory oak Quercus emoryi Torr. 0.59 0.58
811 Engelmann oak Quercus engelmannii Greene 0.59 0.58
815 Oregon white oak Quercus garryana Dougl. ex Hook. 0.64 0.63
818 California black oak Quercus kelloggii Newberry 0.51 0.45
821 California white oak Quercus lobata Née 0.55 0.55
839 Interior live oak Quercus wislizeni A. DC. 0.59 0.58
901 Black locust Robinia pseudoacacia L. 0.66 0.29
920 Willow  Salix spp. 0.36 0.5
922 Black willow Salix nigra Marsh. 0.36 0.5
926 Balsam willow Salix pyrifolia Andersson 0.36 0.5
928 Scouler's willow Salix scouleriana Barratt ex Hook. 0.36 0.5
981 California-laurel Umbellularia californica (Hook. & Arn.) Nutt. 0.51 0.55
990 Desert ironwood Olneya tesota Barratt ex Hook. 0.52 0.53
998 Unknown hardwood Unknown 0.52 0.53
999 Other or unknown 
    live tree Unknown 0.52 0.53
Note: Tree species code (SPP) 298 and 326 are not listed in the table (Miles and Smith 2009) and the specific gravities from similar tree species were 
applied.
Sources: Miles and Smith 2009. Missing species assigned specific gravity with similar species.

Table 5—Specific gravity for major tree species wood and bark (continued)

   Wood- Bark- 
FIA   specific specific 
code Common name Scientific name gravity  gravity 
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