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1. Introduction/Background 

Today’s enemy has been relying heavily on Improvised Explosive Devices (IEDs) to defeat 
vehicles used by the U.S. and its allies.  Thus, there is a push to rush the immediate armoring of 
less protected vehicles.  However, with added armor comes added weight, less maneuverability, 
and more frequent maintenance.  It is the mission of U.S. Army Research Laboratory (ARL) to 
develop suitable designs that take into account the practicality of superior strength with the 
necessity of lighter weight.  The problem that engineers face is determining how material can be 
removed without jeopardizing the integrity of the structure.  Another aspect for the engineer to 
consider is that each physical test of a vehicle’s resistance to blast loading typically destroys the 
armor and/or the vehicle, making repeated tests both expensive and time consuming (1).  In an 
effort to address the compromise between strength and weight while minimizing research 
expense, Livermore Software Topology Optimization (LS-OPT)/Topology appears to be a 
valuable tool for the development of lightweight armor kits.  It is one of the first to explore the 
field of non-linear problems with dynamic loading.  Physical nonlinearities are abundant in the 
process of a blast event (2).  The topology optimization in the context of impact analysis is a 
very complex problem due to non-linear interactions among material non-linearities, geometry, 
and the transient nature of the boundary conditions.  Conventional methods are not practical for 
solving these non-linear topology optimization problems due to the high computational cost and 
the lack of sensitivity information (3). 

2. Theory 

2.1 Topology 

LS-OPT/Topology is a novel optimization software that optimizes the size, shape, and topology 
of a model through reconstruction.  Topology is an important factor in this process, because it 
deals with the material as well as the material properties.  Figure 1 demonstrates an example of 
the topology optimization process.  Topology is defined as a field in mathematics which focuses 
on an object’s spatial properties as they are preserved during deformations such as bending or 
twisting but not to include tearing (4).  The topology aspect of LS-OPT/Topology essentially 
takes a raw or developed lump of clay then reshapes it to optimize the piece’s structural integrity 
while keeping it within its specific constraints.  In the same manner, the program will also 
minimize the size and shape of the piece by removing cells from which it is made; yet the 
program will not cut the model into more than one piece.  Design for structural topology 
optimization is a method of distributing material within a design domain of prescribed 
dimensions.  This domain is discretized into a large number of elements in which the 
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Figure 1.  Hybrid cellular automata based topology 

optimization method. 
 
optimization algorithm removes, adds, or maintains the amount of material.  The resulting 
structure maximizes a prescribed mechanical performance while satisfying functional and 
geometric constraints (2). 

2.2 Hybrid Cellular Automata (HCA) 

Over the years, several methods have been developed to analyze the mathematical field of 
topology.  The LS-OPT/Topology developers believe that the most successful method for 
analyzing dynamically loaded problems is HCA.  A cellular automaton (CA) is a collection of 
“colored” cells on a grid of a specified shape that evolves through a number of discrete time 
steps according to a set of rules based on the states of neighboring cells (5).  However, for the 
structural optimization problems, the state of a cellular automaton is defined by rules that 
combine the local neighborhood information with the field variables that are calculated globally 
(6, 7), which makes the method a hybrid.  The globally calculated field variables refer to those 
held within the entire model.  Control rules drive a defined field variable to an optimum state or 
set point.  The expression for the field variable and the value of the set point are derived from the 
optimality conditions of the structural design problem.  Among different topology optimization 
algorithms, the hybrid cellular automaton HCA method has proven to be efficient and robust in 
problems involving large, plastic deformations (2).  The idea of HCA can be seen in equation 1.  

 
 (1)

 
(Ui) = energy density of ith cellular automata lattice 
n= amount of neighbors/adjacent cells 
(The number one is in the denominator so the denominator sums to n.)

http://mathworld.wolfram.com/Grid.html�
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2.2.1 Internal Energy Density (6, 7) 

In the context of HCA, the field variables are subjected to the neighborhood update rule first and 
then the design variables are updated.  This process is iterated until equilibrium is established 
among all state variables (6, 7).  HCA is a simple yet effective method for analyzing the 
topology of a model as can be seen in figure 2. 

 

 
 

Figure 2.  Hybrid cellular automata based topology optimization flowchart (6, 7). 

2.3 Criteria for Evaluating Elements 

The basic principles behind how LS-OPT/Topology functions are easy to follow.  The topology 
design problem is defined by the allowable geometric domain, how the part will be used, and 
properties of the part (8).  These aspects are assigned in the initial LS-Prepost modeling.  When 
the model is built within LS-Prepost, it is required that it be constructed using 
PIECEWISE_LINEAR_PLASTICITY using only eight-noded solid elements (8).  A design 
variable is directly linked to each of these material elements such that each cell has its own 
material model (8).  The objective for optimization is to obtain a maximum uniform internal 
energy density among all of these elements (7, 9).  The formulation of the optimization problem 
can be seen in equations 2 and 3.  

 
 (2)

 
U = energy density of the ith element 
w= weighted parameter 
U*= internal energy set point
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L= amount of load cases 
x = relative density/design variable 
Optimization problem (6, 7) 

  

 (3)

 
Vi = volume of the ith element 
ρ = density of the material 
M*= updated mass of the structure 
x = relative density/design variable 
 
Optimization Problem Constraints (6, 7) 

The solid isentropic material with a penalization model is used to interpolate the material 
properties as can be seen in the equations 4, 5, and 6. 

   (4) 
ρ = density of the material 
0 = refers to the base material properties 
x = relative density/design variable 
 
2.3.2 Density (6, 7) 

  (5) 
E = Young’s modulus 
0 = refers to the base material properties 
x = relative density/design variable 
p= material linearity exponent 
 
Young’s Modulus (6, 7) 

  
 (6)

 
σ = yield stress 
0 = refers to the base material properties 
x = relative density/design variable 
q= material non-linearity exponent 
 
Yield Stress (6, 7) 

  
 (7)

 
Eh = strain hardening modulus
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0 = refers to the base material properties 
x = relative density/design variable 
q= material non-linearity exponent 
 

2.3.1 Strain Hardening Modulus (6, 7) 

Internal energy most often consists of elastic and plastic deformations.  By decreasing the mass 
of the entire model, an increase in the total internal energy per total mass can be obtained (8).  
When the blast pressure wave hits the targeted structure, the fluids kinetic energy is transformed 
into strain energy (SE) inside the solid medium.  Maximum attenuation is reached when SE is 
maximized.  Along with an optimum use of material, this condition is satisfied when SE is 
uniformly distributed in the design domain (2).  When setting LS-OPT/Topology, several 
constraints can be set such as the number of design iterations, the desired mass fraction, and 
minimum density fraction before deleting an element.  However, such constraints as maximum 
displacement are not accounted for within the current version of the LS-OPT/Topology software.  

3. Operation 

3.1 LS-Prepost 

Operating the LS-OPT/Topology software is quite simple once the user becomes familiar with 
the operational concepts.  First, a user must create a model in LS-Prepost which will set the limit 
constraints for the final optimized model.  The model must be created using the 
PEICEWISE_LINEAR_PLASTICITY material with eight-noded solid elements and it must also 
be defined using “*Part”.  A user can include holes in the piece and if extrusions in the final 
model are desired the user can specify them in LS-Prepost.  

3.2 Opening/Information 

As with other software, LS-OPT/Topology’s graphical user interface (GUI) can be opened from 
the file pull down menu.  When the GUI window appears, the first item the user sees is the 
“information tab” with license and working directory information as well as a place to insert a 
problem description.  The problem description is used for reference so anything can be written.  

3.3 Cases 

The next tab titled “cases” is where all of the input file information will be inserted.  First a user 
must select the “new” button at the bottom of the window.  In the “edit cases” pop up window a 
“general” tab will be selected.  The user must create a name for the case as well as specify the 
weight which is simply a scaling factor if multiple loads are used.  One of two types of analysis 
need to be selected:  linear or non-linear.  At this point the model that was created in LS-PrePost 
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can be imported into the program by browsing the input file name.  LS-OPT/Topology requires a 
Livermore Software Dynamic Analysis (LS-DYNA) executable to solve which can be specified 
by browsing the execution command.  Advanced users typically modify the “scheduling” tab by 
choosing to limit the number of concurring jobs, choosing a Queue system, and setting an 
environmental variable.  The default settings on these options are sufficient for this experiment.  
When done, the user can select the “ok” button to finish the selection. 

3.4 Problem 

After selecting the “problem” tab a design-part id needs to be specified.  The design-part 
identification is a means of referring to the place where all elements in the design domain have 
been placed in the LS-DYNA input deck.  This reference number can be found in the model’s 
viewing window.  If the LS-Prepost model has an extrusion specified, the extrusion set number 
can be inserted into the extrusion set box.  On the bottom of the “problem” tab is a box labeled 
mass fraction.  This refers to the amount of material that is desired to be eliminated where a 
value of 1 would conserve the original model and a value of 0 would remove the entire model.  

3.5 Method 

Under the method tab is the termination criteria.  The most often used termination criteria is the 
number of design iterations.  LS-OPT/Topology will terminate when this number of iterations is 
reached.  The convergence tolerance terminates the program when the topology begins making 
few changes.  This is controlled by the density redistribution history variable.  The proximity 
tolerance is based on the uniformity of neighboring elements.  Elements with a density less than 
the minimum density fraction specified in the minimum density fraction box will be deleted on a 
given iteration. 

3.6 Solution 

After selecting the “run” tab, the only visible button is “run”.  Upon clicking on this button, the 
user will be prompted to save the solution.  A storage location and a name are given to the run, 
“ok” is selected, and the solution begins.  Each iteration has a percent completion bar displayed 
at the top of the page and an engine output display is visible at the bottom.  At any time the run 
can be stopped and deleted or stopped to be restarted later. 

3.7 View 

The “view” tab allows a user to see a graph of the density redistribution as well as a graph of the 
total internal energy density.  As the number of iterations increases the graphs readjust to show 
the new data.  From the “view” tab a user can also open LS-Prepost to post process the iterations 
displaying the changes that have been made to the model.  The iterations can be viewed 
individually or simultaneously in a window with regards to density or internal energy density. 
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4. Experiment 

4.1 Observation 

After seeing LS-OPT/Topology presented, or solving example problems from the user’s manual, 
it can be concluded that this technology could be used in the design and analysis of blast 
protection.  The examples within the LS-OPT/Topology user’s manual exhibited examples 
solved with beams but plates are also feasible models.  

4.2 Hypothesis 

It is hypothesized that in the utilization of LS-OPT/Topology for the designing and testing of 
armor plates, a model containing more initial elements will be developed into a more accurate 
optimized piece compared to a model containing fewer but larger initial elements.  Since LS-
OPT/Topology removes whole elements, removing several smaller elements would be more 
precise and thorough than removing larger elements. 

4.3 Procedure 

To test the hypothesis, it was decided that a plate under pressure loading would be tested.  Figure 
3 demonstrates the model with dimension, loading, boundary conditions and material properties.  
The plate was 48 × 48 × 6 in with boundaries set along opposite edges with a bottom pressure 
loading in order to imitate a blast load from an underbody IED.  The plate was assigned a mass 
density of 7850 kg/m3, a Young’s modulus of 2.068 ×1011 Pa and a yield stress of 0.27 MPa.  
The first, second, third, and fourth effective strain values were 0.0, 0.0055, 0.0152, and 0.0248 
respectively.  The fifth, sixth, seventh, and eighth effective strain values were 0.0627, 0.16, 0.28, 
and 0.42, respectively.  The first, second, third, and fourth corresponding yield stress value to 
effective strain values were 7.922 × 108 Pa, 9.23 × 108 Pa, 9.610 × 108 Pa, and 9.830 × 108 Pa, 
respectively.  The fifth, sixth, seventh, and eighth corresponding yield stress value to effective 
strain values were 1.029 × 108 Pa, 1.077 × 109 Pa, 1.098 × 109 Pa, and 1.104 × 109 Pa, 
respectively. 



 

8 

 

Figure 3.  Topology optimization method simulation model. 

The only difference between the two plates was that the course mesh plate was created with 1 × 1 
× 1 in elements where the fine mesh plate was created with 0.5 × 0.5 × 0.5 in elements (finer 
mesh).  In the experiment, the only variable that was changed was the mass fraction.  Each plate 
would be optimized for:  (1) 0.75 mass fraction, (2) 0.5 mass fraction, and (3) 0.25 mass fraction.  
However, the solutions ended up including 0.4 mass fraction, 0.5 mass fraction, and 0.75 mass 
fraction.  Preliminary solutions showed that under the operating system used, an initial iteration 
could not be completed for a 0.25, 0.3, or a 0.35 mass fraction on the coarse mesh plate; 
therefore, a 0.4 mass fraction was used.  Each solution consisted of a non-linear analysis with the 
number of iterations set to 100.  Other values were left as defaults.  Most solutions were made 
overnight due to the length of time required to make all of the iterations. 

5. Results 

Each solution ended with a different number of iterations and all ended with error terminations 
due to negative volume.  Negative volume is often the result of deforming an element so 
extensively that it is inverted inside out.  Tables 1 and 2 summarize the iteration results. 
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Table 1.  Coarse mesh (1 × 1 × 1 in, non-linear). 

Mass 
Fraction 

Vertical 
Deformation  

(in) 

Initial 
Mass  
(kg) 

Final 
Mass  
(kg) 

No. of 
Iterations 

 Density 
Redistribution 

Internal   
Energy Density 

(KN/m2) 

0.75 0.35 1778.42 1333.84 11 
Initial 0.072 4.6E+011 
Final 0.015 3.1E+011 

0.5 0.63 1778.42 889.149 7 
Initial 0.062 9E+011 
Final 0.055 5.5 E+011 

0.4 0.87 1778.42 711.319 5 
Initial 0.06 3.5E+012 
Final 0.055 0.75E+012 

 

Table 2.  Fine mesh (0.5 × 0.5 × 0.5 in, non-linear). 

Mass 
Fraction 

Vertical 
Deformation 

(in) 

Initial 
Mass  
(kg) 

Final 
Mass  
(kg) 

No. of 
Iterations 

 Density 
Redistribution 

Internal Energy 
Density 
(KN/m2) 

0.75 0.5118 1778.42 1333.84 4 
Initial 0.072 4.52E+012 
Final 0.072 3.69E+012 

0.5 1.142 1778.42 889.149 2 
Initial N/A N/A 
Final N/A N/A 

0.4 N/A 1778.42 N/A 0 
Initial N/A N/A 
Final N/A N/A 

Note:  N/A = not applicable.  

5.1 The 0.75 Mass Fraction (Coarse Mesh) 

The 0.75 mass fraction solution of the coarse mesh plate ended in an error termination due to a 
negative volume on its eleventh iteration.  The density distribution increased to 0.072 then 
leveled off to around 0.015 (figure 4).  The total internal energy density dropped from 4.6 × 1011 
KN/m2 and leveled off at 3.1 × 1011 KN/m2 (figure 5).  Figure 6 shows that the final iteration 
(right) had symmetrical crescent shapes removed from the blue surface of the plate.  Figure 7 
demonstrates the mass fraction density redistribution. 
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Figure 4.  Coarse mesh 0.75 mass fraction density 
redistribution. 

 
 

 

Figure 5.  Coarse mesh 0.75 mass fraction total 
internal energy density. 
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      Initial Mass = 1778.42 kg Optimized Mass = 1333.84 kg 

Mass reduction = 25% 
 

 

Figure 6.  Coarse mesh 0.75 mass fraction initial vs. optimized. 

 

 

Figure 7.  Coarse mesh 0.75 mass fraction density redistribution. 

5.2 The 0.50 Mass Fraction (Coarse Mesh) 

The 0.5 mass fraction solution of the coarse mesh plate ended in an error termination due to a 
negative volume on its seventh iteration.  The density distribution increased to 0.062 then leveled 
off to around 0.055 (figure 8).  The total internal energy density dropped from 9 ×1011 KN/m2 
and leveled off at 5.5 ×1011 KN/m2 (figure 9).  Figure 10 demonstrates the final iteration (right) 
had symmetrical crescent shapes removed from the blue surface of the plate.  Figure 11 
demonstrates the mass fraction density redistribution.



 

12 

 

Figure 8.  Coarse mesh 0.5 mass fraction density 
redistribution.  

 
 

 

Figure 9.  Coarse mesh 0.5 mass fraction total 
internal energy density.  
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Initial Mass = 1778.42 
   

Optimized Mass = 889.149 kg 
Mass reduction = 50%           
  

Figure 10.  Coarse mesh 0.5 mass fraction initial vs. optimized. 

 

 

Figure 11.  Coarse mesh 0.5 mass fraction density redistribution. 

5.3 The 0.4 Mass Fraction (Coarse Mesh) 

The 0.4 mass fraction solution for the coarse mesh plate ended in an error termination due to a 
negative volume on its fifth iteration.  The density distribution increased to 0.06 then leveled off 
to around 0.055 (figure 12).  The total internal energy density dropped from 3.5 ×10 12 KN/m2 
and leveled off at 0.75 × 1012 KN/m2 (figure 13).  Figure 14 demonstrates that the final iteration 
(right) had symmetrical crescent shapes removed from the blue surface of the plate.  Figure 15 
demonstrates the mass fraction density redistribution.
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Figure 12.  Coarse mesh 0.4 mass fraction density 
redistribution. 

 

 

Figure 13.  Coarse mesh 0.4 mass fraction total internal 
energy density. 

 

      
                    
 
 

Initial Mass = 1778.42 kg   Optimized Mass= 711.319 kg  
Mass reduction = 60% 
  

Figure 14.  Coarse mesh 0.4 mass fraction initial vs. optimized.
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Figure 15.  Coarse mesh 0.4 mass fraction density redistribution. 

5.4 The 0.75 Mass Fraction (Fine Mesh) 

The 0.75 mass fraction solution of the fine mesh plate ended in an error termination due to a 
negative volume on its fourth iteration.  The density distribution increased to 0.072 then leveled 
off as shown in figure 16.  The total internal energy density dropped from 4.52 × 1012 KN/m2 and 
steadily declined as shown in figure 17.  Figure 18 demonstrates that the final iteration (right) did 
not have any material removed at the time of testing.  Figure 19 demonstrates the mass fraction 
density redistribution.  Solving the 0.75 mass fraction with the fine mesh took roughly 2 days  
(46 h) to complete.   

 

 

Figure 16.  Fine mesh 0.75 mass fraction density 
redistribution.
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Figure 17.  Fine mesh 0.75 mass fraction total internal 
energy density. 

 

                                                                       
                                                                           
 
 
 

Initial Mass = 1778.42 kg Optimized Mass = 1333.84 kg 
Mass reduction = 25% 

 

Figure 18.  Fine Mesh 0.75 mass fraction initial vs. optimized. 
 

 

Figure 19.  Fine mesh 0.75 mass fraction density redistribution.
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5.5 The 0.50 Mass Fraction (Fine Mesh) 

The 0.5 mass fraction solution of the fine mesh plate ended in an error termination due to a 
negative volume on its second iteration.  Since the program was unable to begin to remove 
material as of the second iteration, neither the density redistribution nor the total internal energy 
density graphs could be drawn.  However, the initial iteration was able to produce an analyzed 
plate as shown in figure 20.  Figure 21 demonstrates the mass fraction density redistribution. 

 

                                                               
                                                                           
 
 
 

Initial Mass = 1778.42 kg Optimized Mass= 889.149 kg 
Mass reduction = 50% 

 

Figure 20.  Fine mesh 0.5 mass fraction initial vs. optimized 

 

 

Figure 21.  Fine mesh 0.5 mass fraction density redistribution.
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The 0.4 mass fraction solution of the fine mesh plate ended in an error termination due to a 
negative volume on its first iteration.  Since the first iteration was not completed, no data can be 
viewed concerning its potential form. 

6. Summary and Conclusion 

Initially, it was believed that an error termination was acceptable since most solutions displayed 
an optimized model before they were terminated.  However, it was discovered subsequently that 
the coarse mesh plate used for this experiment can be solved to completion using a mass fraction 
of 0.25 since LSTC was using massively parallel processing (MPP) on a Linux operating system 
while the ARL simulation experiment was conducted using symmetric multiprocessing (SMP) 
on a Windows operating system.  If the experiment had been successful and every case solved 
through completion, each resulting model would show a plate that would progressively reduce 
mass in order to reflect the required mass fraction.  A model with a finer mesh should portray a 
more accurate depiction of the optimized form.  In the experiment, the solutions with lower mass 
fractions ended with less number of iterations, most likely because the program had more mass 
that was required to be removed so that the initial removal could be substantial.  The solutions of 
the model containing the finer mesh also ended with a less number of iterations.  However, the 
iterations themselves took much longer to complete than those of the coarser mesh.  This is 
possibly due to the fact that more elements had to be removed to equal the amount of larger 
elements removed from the coarser meshed model.  Upon completion of the experimental study, 
further analysis will be presented in future publications.
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List of Symbols, Abbreviations, and Acronyms 

ARL  U.S. Army Research Laboratory 

CA  cellular automaton 

GUI  graphical user interface 

HCA  Hybrid Cellular Automata 

IEDs  Improvised Explosive Devices 

LS-DYNA Livermore Software Dynamic Analysis 

LS-OPT Livermore Software Topology Optimization 

MPP  massively parallel processing 

N/A  not applicable 

SE  strain energy 

SMP  symmetric multiprocessing 
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