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ABSTRACT 

In this paper, the exemplary results of the IEA Wind Task 30 “Offshore 
Code Comparison Collaboration Continuation” (OC4) Project – Phase I, 
focused on the coupled simulation of an offshore wind turbine (OWT) 
with a jacket support structure, are presented. The focus of this task 
has been the verification of OWT modeling codes through code-to-code 
comparisons. The discrepancies between the results are shown and the 
sources of the differences are discussed. The importance of the local dy
namics of the structure is depicted in the simulation results. Furthermore, 
attention is given to aspects such as the buoyancy calculation and meth
ods of accounting for additional masses (such as hydrodynamic added 
mass). Finally, recommendations concerning the modeling of the jacket 
are given. 

KEYWORDS 

Offshore wind turbine; coupled simulation; aero-hydro-servo-elastic 
codes; jacket support structure; code verification; code-to-code compari
son; OC4 

INTRODUCTION 

The analysis of offshore wind turbines relies on aero-hydro-servo-elastic 
simulation codes. These coupled time-domain-based tools take into ac
count an interaction of various environmental conditions and the entire 
structural assembly of the turbine, including its control system. Due to 
the complexity of the models, verification and validation of the codes is 
required. Limited availability of measurement data impedes the valida

tion of these simulation tools. Therefore, there is a need to perform code-
to-code comparisons (verification) instead. The first international project 
dedicated to verification of simulation tools for wind turbines, including 
hydrodynamic loads, was undertaken within the “Offshore Code Com
parison Collaboration” (OC3) Project (Jonkman and Musial, 2010). The 
cooperation was focused on coupled simulations of an offshore wind tur
bine supported by a variety of support structures. Further research needs 
triggered a follow-on project, the “Offshore Code Comparison Collabo
ration Continuation” (OC4) Project. The OC4 project was formed under 
the International Energy Agency (IEA) Wind Task 30 in 2010 to investi
gate wind turbine coupled simulations with a jacket support structure and 
a semisubmersible platform. Complex hydrodynamics of the latter and 
local vibration phenomena of the former have not been broadly studied 
yet, and therefore, their analysis is of interest. 

A number of academic and industrial project partners from 10 countries 
participate in the task. Those actively involved in Phase I are: Fraun
hofer Institute for Wind Energy and Energy System Technology IWES 
(Germany), the National Renewable Energy Laboratory (NREL) (USA), 
Technical University of Denmark, Department of Wind Energy, campus 
Risø, Roskilde, Denmark (Risø DTU) (Denmark), Fedem Technology 
AS (Norway), Garrad Hassan & Partners Ltd. (UK), Institute for En
ergy Technology (IFE) (Norway), Pohang University of Science and 
Technology (POSTECH) (Korea), Centre for Ships and Ocean Struc
tures (CeSOS) at the Norwegian University of Science and Technology 
(NTNU) (Norway), National Technical University of Athens (NTUA) 
(Greece), Institute of Steel Construction at the Leibniz Universität Han
nover (LUH) (Germany), the Endowed Chair of Wind Energy at the 
Institute of Aircraft Design at Universität Stuttgart (SWE) (Germany), 
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Norwegian University of Science and Technology (NTNU) (Norway), 
Knowledge Centre WMC (The Netherlands), Energy Research Centre of 
the Netherlands (ECN) (The Netherlands), American Bureau of Shipping 
(ABS) (USA), REpower Systems SE (Germany) and China General Cer
tification (CGC) (China). Each one of the participants has their own area 
of expertise, and therefore, their own unique contribution to the project. 

A set of the state-of-the-art simulation codes for OWT modeling are rep
resented in the OC4 project. Table 1 shows these codes and briefly sum
marizes some of their simulation capabilities that are important in Phase I 
of the project. 

Table 1: Overview of simulation capabilities of aero-hydro-servo-elastic 
codes used within the OC4 project, Phase I. 

Code Aerodynamics (aero) Hydrodynamics (hydro) Control (servo) Structural (elastic) 

3DFloat BEM or GDW Airystr or UD Stream + 
ME 

UD FEM 

ADAMS + AeroDyn BEM or GDW + DS Airystr or UD or Stream + 
ME 

DLL or UD MBS 

ADCoS-Offshore BEM + DS Airystr or UD or Stream + 
ME 

DLL or UD FEM 

ASHES BEM + DS Airystr + ME Internal control 
system 

FEM 

Bladed V3.8X BEM or GDW + DS Airystr or UD or Stream + 
ME 

DLL or UD FEMp + Modal/MBS 

Bladed V4 Multibody BEM or GDW + DS Airystr or UD or Stream + 
ME 

DLL or UD MBS 

FAST-ANSYS BEM or GDW + DS 
(AeroDyn) 

Airystr or UD + ME DLL or UD or SM Support structure: FEM, 
Turbine: FEMp + 
Modal/MBS 

FEDEM WindPower BEM or GDW + DS 
(AeroDyn) 

Airy, Airystr , Stream + 
ME 

DLL or UD or 
Internal control 
system 

MBS/FEM Modal 
(CMS) 

Flex-ASAS BEM or DS Airystr or UD + ME DLL Modal, FEM 

Flex5-Poseidon BEM or GDW + DS Airystr or UD or Stream + 
ME, Interface to 
WaveLoads 

DLL or UD FEM + Modal 

GAST BEM or 3DFW + DS Airystr + PF or Stream + 
ME 

DLL or UD MBS/FEM 

HAWC2 BEM or GDW + DS Airystr or Stream or UD + 
ME 

DLL or UD or SM MBS/FEM 

OneWind BEM or GDW + DS Airystr or UD + ME DLL or UD MBS/FEM 

Phatas-WMCfem BEM or GDW + DS Airystr or Stream + ME DLL or Internal 
modeling 

Rotor-FD, Tower: FEM 
+ Craig Bampton 

USFOS-vpOne BEM + DS Airystr or Stokes’ 5th 

order or Stream + ME 
DLL or UD FEM 

3DFW – Free Wake Vortex particle method GDW – Generalized Dynamic Wake Theory, it is not distinguished between 
Airy – Airy theory GDW theory, which is simplified potential flow theory and GDW as BEM 
Airystr – Airy theory with stretching method modeled using different approaches to account for dynamic inflow. 
BEM – Blade Element Momentum Theory MBS – Multibody-dynamics formulation 
CMS – Component Mode Synthesis ME – Morison’s Formula 
DLL – External dynamic link library Modal – Modal reduced system 
DS – Dynamic Stall Implementation Rotor-FD – Nonlinear partial differential equations of the rotating and 
FEM – Finite-element method elastically deforming rotor (slender beams) solved by finite difference 
FEMp – Finite-element method for mode method and cubic spline for deformation field. 
pre-processing only SM – interface to Simulink with Matlab 
PF – Linear potential flow with radiation and Stream – Dean’s stream function 
diffraction UD – User-defined subroutine 

DEFINITION OF OFFSHORE WIND TURBINE 

The term OWT refers to the entire assembly of a wind turbine. In this 
case, this includes a rotor nacelle assembly (RNA) and a jacket support 
structure. In the OC4 project, the ”NREL 5-MW Offshore Baseline Tur
bine” defined by Jonkman et al. (2009) is supported by the UpWind refer
ence jacket model developed by Vemula et al. (2010) and further adopted 
by Vorpahl et al. (2011) for the needs of this benchmark exercise. The 
definition of the jacket support structure, used within the OC4 project, 
consists of a jacket substructure, a transition piece and a tower. Four legs 
of the jacket are supported by piles, which are modeled as being clamped 

at the seabed. The legs are inclined from the vertical position and stiff
ened by four levels of X-braces. Additionally, mudbraces are placed just 
above the mudline to minimize the bending moment at the foundation 
piles. The jacket and the tower are connected through a rigid transition 
piece. The elevation of the entire support structure is 88.15 m, whereas 
the hub height is 90.55 m. The OWT is analyzed for a site of 50 m water 
depth. 

The definition of the OWT should be as simple as possible to minimize 
the effort and modeling errors in its implementation in various codes. On 
the other hand, its complexity should allow it to mimic the structural be
haviour of a real OWT and to depict differences in results between the 
simulation codes. For simplification reasons, it is decided not to include 
appurtenances on the jacket structure such as boat landings, J-tubes, an
odes, cables, ladders etc. Also, joint cans are not taken into account in 
the setup of the model. It was shown in Cordle et al. (2011) that the 
modeling of joint cans does not to lead to significant changes in the sim
ulated loads. At joints, the connecting nodes of elements are defined at 
the intersection points of the members’ centerlines. This leads to overlap 
of elements in the analyzed jacket. Due to the overlapping members, the 
mass of the jacket is overestimated by about 9.7 %, though there is only 
a marginal influence coming from overlapping parts on eigenfrequencies 
and simulated loading as proved in Kaufer et al. (2010). The additional 
masses such as: hydrodynamic added mass, water in flooded legs and 
marine growth, have a strong influence on the dynamic response of the 
structure, and therefore, are included in the model description. Marine 
growth mass and hydrodynamic added mass are overestimated by about 
9.2 % and 4.6 %, respectively, due to the presence of overlapping mem
bers. 

DEFINITION OF LOAD CASES 

A set of 17 load cases of increasing complexity was defined to allow 
for a stepwise comparison of results and to enable the OC4 participants 
to trace back possible errors coming from different models and methods 
used among the codes. This is the same approach as already realized in 
the OC3 project. The load-case sets are specified in Table 2 and briefly 
described within this section. A detailed description of these load cases, 
including a precise definition of environmental conditions, simulation 
setup and output sensors, has been prepared within the project and can 
be found in Vorpahl and Popko (2011). 

The load-case set 1.0x is meant for the examination of modal properties 
of the structure, where eigenfrequencies should be calculated either with 
or without structural damping and gravity terms. This analysis is per
formed for a fully flexible OWT and for a flexible jacket support struc
ture with a rigid RNA atop, respectively. The load-case set 2.X refers to a 
rigid OWT excited by diverse, non-combined wind and wave loads. The 
load sources are applied individually on the structure. In the next load-
case set 3.X, a flexible onshore wind turbine is simulated. The jacket 
support structure is replaced with a tubular tower described in Jonkman 
et al. (2009). This set is dedicated to verify basic aerodynamics and 
control responses of the turbine, including aero-elastic effects. In the 
load-case set 4.X, a flexible support structure with a rigid RNA (but no 
aerodynamics), is examined under different wave loadings. The most 
complicated load-case set 5.X accounts for a fully flexible OWT under 
the combined action of wind and wave loads. 

Turbulent wind fields are generated at Risø DTU (Larsen, 2011) accord
ing to the specification given in Vorpahl and Popko (2011). The stochas
tic wind data could also be generated individually by each project partner, 
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Table 2: Overview of load cases. 

Load Case Enabled DOF Wind Conditions Wave Conditions 

1.0x1 Support structure or all No air No water 

2.1 None No air Still water 

2.2 None, Rotor speed and blade Steady, uniform, no shear: No water 
pitch via controller Vhub = 8 m/s 

2.3a None No air Regular Airy: H = 6 m, T = 10s 

2.3b None No air Stream function: 
H = 8 m, T = 10s 

2.4a None: Rotor speed and blade NTM (Kaimal): No water 
pitch via controller Vhub = 11.4 m/s 

2.4b None: Rotor speed and blade 
pitch via controller 

NTM (Kaimal): Vhub = 18m/s No water 

2.5 None No air Irregular Airy with PM: 
Hs = 6m, Tp = 10s 

3.2 All, Rotor speed and blade pitch Steady, uniform, no shear: No water 
via controller Vhub = 8 m/s 

3.4a All, Rotor speed and blade pitch NTM (Kaimal): No water 
via controller Vhub = 11.4 m/s 

4.3b Support structure No air Stream function: 
H = 8 m, T = 10s 

4.5 Support structure No air Irregular Airy with PM: 
Hs = 6m, Tp = 10s 

5.6 All, Rotor speed and blade pitch Steady, uniform, no shear: Stream function: 
via controller Vhub = 8 m/s H = 8 m, T = 10s 

5.7 All: Rotor speed and blade pitch 
via controller 

NTM (Kaimal): Vhub = 18m/s Irregular Airy with PM: 
Hs = 6m, Tp = 10s 

NTM – Normal turbulence model T p – peak-spectral wave period 
PM – Pierson-Moskowitz wave spectrum V hub – average wind speed at the hub height 
H – wave height x1 – a and b cases without gravity and damping, c and d cases with 
Hs – significant wave height gravity and damping, a and c cases only support structure DOF 
T – wave period enabled, b and d cases all DOF enabled 

based on the above document. The alternative is given for those partic
ipants, whose codes are not able to utilize the provided wind fields due 
to a different grid format (i.e. Phatas and Flex5 utilize polar grid) or 
limitations imposed on the grid resolution (i.e. ADCoS-Offshore). The 
clear advantage of having these two possibilities is that the codes can be 
broken down into two groups for further comparison. The utilization of 
not the same time series of wind fields, even though they are based on 
the same definition of turbulence and stochastic properties, is an interest
ing source of discrepancies affecting the structural response. However, 
since only single cases are simulated, it is not possible to distinguish 
whether differences seen are caused by differences in turbulence model
ing or stochastic uncertainty caused by the random seed selection. 

Deterministic and stochastic wave loads were generated individually by 
each project participant. Irregular waves may be generated based on the 
spectral input or the exact time history of the data could be reproduced. 
For the latter possibility, 50 wavelets with defined wave number, ampli
tude, phase angles and angular frequencies are specified in Vorpahl and 
Popko (2011). The simulation time for the deterministic load cases is 
30 s. The stochastic cases are run with one seed and the simulation time 
of 3600 s to get statistically comparable results. 

The load cases with deterministic inputs are compared in terms of time-
series outputs, whereas those with stochastic inputs are examined in 
terms of probability density functions (PDF), power spectral densities 
(PSD), and damage-equivalent loads (DEL). For each load case, the out
puts are recorded at a number of nodal points (called sensors), located 
on the RNA and the jacket support structure as shown in Fig. 1. Sen
sor names result from leg numbering, side numbering, height level and 
joint type. TP stands for Transition Piece. The position of sensors is 
carefully chosen to provide maximum information regarding the OWT 
behaviour with the minimal effort necessary for data acquisition and 

post-processing. Those sensors located on the RNA are meant to capture 
aeroelastic response of a turbine and its power production. The support 
structure sensors are used for capturing global and local dynamics of the 
jacket. For example, local vibrations of the structure are studied at sev
eral places of the lowest X-braces, whereas global bending moments and 
forces are calculated at the very bottom, mudline points. There are also 
four additional sensors monitoring the environmental conditions such as 
the wind speed at the hub height and the sea elevation at the center of the 
structure. 

L3 L4 
L1 L2 

X4S3 

mudbraceL4 

X2S3 

K1L4 

mudbraceL2 

X4S2 

X2S2 

K1L2 

mudlineL2 

mudlineL3 
mudlineL4 

mudlineL1 

B59 
B61 

TP 

X 

Y 

Blade 50% 
span 

Tower top 

Blade root 

Generator 

Low-speed shaft 
at main bearing 

High-speed 
shaft 

Blade tip 

Fig. 1: Placement of sensors on jacket support structure (left) and wind 
turbine (modified sketch from GL (2005)) (right). 

COMPARISON OF THE RESULTS 

This section presents the exemplary results of the coupled simulations. 
The most interesting load cases and output sensors, according to the au
thors, are presented herein. Chosen results are meant to give a general 
overview of code-to-code differences and diverse approaches in model
ing, that influence estimation of loads. The results shown herein are the 
effect of several revisions, which were necessary due to the complexity 
of models, user errors, the ongoing development of some of the codes 
etc. These account for corrections at all stages of OWT modeling, its 
simulation and post-processing of the data. Project participants put some 
effort into ensuring that their models: (1) are implemented according to 
the provided specification of the OWT, (2) initial conditions of the simu
lations are fulfilled and simulation start-up transients are eliminated, (3) 
use proper coordinate systems for the data outputs. However, some errors 
caused by a human factor may persist in the results. 

Comparison of Mass 

Prior to the simulation of the prescribed load cases, a verification of the 
different implementations of the OWT is conducted in terms of structural 
and additional masses. The comparison of masses is important, as they 
are directly related to the structural dynamics. Structural masses encom
pass the jacket, transition piece, tower and RNA. Additional masses in
clude marine growth, water in flooded legs and the hydrodynamic added 
mass imposed by water surrounding the structure. The results, obtained 
from 18 different models, are compared against each other in Fig. 2 and 
Fig. 3, respectively. 

3



349.0

349.5

350.0

350.5

351.0

Rotor Nacelle Assembly

M
as

s 
[t

]

215.0

215.5

216.0

216.5

217.0

217.5

218.0

Tower

M
as

s 
[t

]

666.0

668.0

670.0

672.0

674.0

676.0

678.0

Jacket

M
as

s 
[t

]

Fraunhofer IWES/ADCoS-Offshore
FEDEM/WindPower
GLGH/Bladed V4.0

POSTECH/Bladed V3.85
SWE/Flex5-Poseidon

 CeSOS-NTNU/USFOS-vpOne
IFE/3DFloat
NTUA/GAST

LUH/Flex5-Poseidon
ECN-WMC/Phatas-WMCfem

Risø DTU/HAWC2
ABS/ANSYS-BModes
REpower/Flex-ASAS

Fraunhofer IWES/OneWind
CGC/Bladed V3.80

NTNU/ASHES
LUH/ABAQUS

LUH-IWES/ADAMS

Fig. 2: Structural masses. 

In general, a very good agreement between the implemented models is 
observed. The achievement of such results involved a widespread dis
cussion about modeling strategies and implementation methods. The 
differences in RNA masses are mainly a result of discretization of the 
blade and its mass integration. Dissimilarities in the tower masses are 
attributed to whether stepped or conical elements are used for its im
plementation. Standard deviations of blade and tower masses coming 
from different codes are 0.2 t and 0.4 t, respectively. Discrepancies in the 
jacket mass are the result of slightly different modeling of the structure 
in diverse tools, though the standard deviation of 2.3 t is also very small. 
The transition piece is defined as a point mass of 666 t by most of the 
participants. Small discrepancies should not have a profound influence 
on the eigenfrequencies of the OWT. 

Hydrodynamic added mass and water in the flooded legs are defined from 
the mean sea level (MSL) to the seabed at -50 m. Marine growth is only 
implemented within the range of -40 m to -2 m. The discrepancies in 
masses mainly arise from the discretization of these threshold regions in 
the support structure. 

610.0
620.0
630.0
640.0
650.0
660.0
670.0
680.0
690.0
700.0

Hydrodynamic added mass to MSL

M
as

s 
[t

]

197.0

198.0

199.0

200.0

201.0

202.0

203.0

204.0

205.0

Water mass in free flooded legs to MSL

M
as

s 
[t

]

170.0

172.0

174.0

176.0

178.0

180.0

182.0

Growth mass

M
as

s 
[t

]

Fraunhofer IWES/ADCoS-Offshore
FEDEM/WindPower
GLGH/Bladed V4.0

POSTECH/Bladed V3.85
SWE/Flex5-Poseidon

 CeSOS-NTNU/USFOS-vpOne
IFE/3DFloat
NTUA/GAST

LUH/Flex5-Poseidon
ECN-WMC/Phatas-WMCfem

Risø DTU/HAWC2
ABS/ANSYS-BModes
REpower/Flex-ASAS

Fraunhofer IWES/OneWind
CGC/Bladed V3.80

NTNU/ASHES

Fig. 3: Additional masses. 

Eigenanalysis 

Four load cases are defined for eigenmodes analysis. The exemplary 
results from LC 1.0b are shown in Fig. 4. 
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Fig. 4: Exemplary eigenfrequencies, LC 1.0b. 

Eigenmodes are identified based on their visualization. Additionally, the 
energy of the modal components could be used for this purpose. How
ever, such information can be extracted only from a limited number of 
codes making the comparison rather difficult. 

Values of the very first eigenmodes are in a good agreement. Discrep
ancies increase for higher modes. This is expected, as different codes 
incorporate a different number of degrees of freedom (DOF) and some
what dissimilar ways of structural modeling. Besides that, energy of 
higher modes usually originates from several different DOF, from which 
it is supplied in a different percentage. Consequently, it is difficult to 
clearly assess which coupled vibration mode, for the high frequency 
modes, is induced based on mode visualization. Furthermore, some of 
the codes use different reduction methods for solving the eigenvalue 
problem. Phatas-WMCfem and FEDEM WindPower utilize the Craig-
Bampton method (with the Guyan Reduction in case of FEDEM), to re
duce the size of their FEM models. Flex5-Poseidon calculates frequen
cies based on a “partly” reduced approach. Flex5 reduces the flexible 
beam elements of a tower and blades by Modal Decoupling, whereas 
no reduction of the substructure is performed by Poseidon, described in 
Böker (2010). Then, both parts are coupled on the synthesis of the equa
tions of motion. In general, modal-based codes predict slightly higher 
frequencies compared to multibody- or FEM-based tools, which indi
cates a stiffer behaviour of a structure. Multibody and FEM codes ac
commodate more DOF and thus allow for more vibrational modes. This 
results in reduced stiffness of the structure, which should better mimic 
reality. This is well observed in the case of HAWC2, which predicts 
slightly higher frequencies than the modal-based Bladed V3.8X. The nat
ural frequency for the fore-aft mode is slightly higher than for the side-
to-side mode of the same order. The support structure is symmetric with 
respect to these modes. The RNA should be the only source of difference 
in the natural frequencies, as for instance, there are different moments of 
inertia of the nacelle, hub and rotor around two horizontal axes of sym
metry. A number of codes have difficulty in detecting the 1st edgewise 
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collective mode. Those that are able to capture it, show quite distinct 
frequencies due to the couplings with other modes. Bladed may overes
timate the frequency, as the rotor inertia has to be artificially increased 
during the eigenanalysis to prevent the rotor from idling. This mode is 
close to the uncoupled edgewise vibration of the rotor. 3DFloat, Flex5 
and USFOS-vpOne show significant coupling of the collective edgewise 
blade motion with the 1st drivetrain mode, while in ADCoS-Offshore, 
the coupling with the 2nd side-to-side mode is present. 

The influence of gravity and damping on the eigenanalysis of the fully 
flexible OWT is analyzed in LC 1.0d. Gravity and damping terms 
are taken accounted for in Bladed, GAST, FEDEM WindPower and 
ANSYS-BModes. Whereas, HAWC2 and Phatas-WMCfem account for 
the damping term. The remaining codes neglect the influence of these 
two terms. A very low influence of gravity and damping on the eige
nanvalues is observed; in general, much less than 1.5 %. In most of the 
cases, a slight decrease of frequency occurs. The highest, relative reduc
tion is visible for the global modes such as side-to-side and the fore-aft. 
This is expected as gravity tends to reduce the bending stiffness of a ver
tical beam as shown in e.g. Jonkman (2003). A very small increase of 
frequencies for asymmetric flapwise and edgewise modes is observed. In 
general, the multibody code HAWC2 is expected to match GAST, Bladed 
V4.0 and FEDEM WindPower results. However, a much smaller change 
in the frequencies of global modes is observed, as only the damping term 
is used in the analysis (results not shown here). 

FEM- and multibody-based codes can be used to study higher local vi
brational modes of the jacket. Mode-shape based tools might not accu
rately predict these vibrations due to the limited number of mode shapes 
used for the model. Local dynamics in the jacket are observed at higher 
frequencies, where diverse couplings with the RNA and the global struc
tural modes are found by many multibody and FEM tools. Exemplary 
results are shown in Fig. 5. There is a distinct range of frequencies, 
where the lowest modes of the local jacket vibrations are detected by dif
ferent tools. Therefore, more detailed analysis is necessary in the future. 
The presented modes do not account for hydrodynamic added mass. The 
presence of hydrodynamic added mass significantly reduces the frequen
cies of local modes as shown in i.e. Moll et al. (2010), which will bring 
the local brace bending frequencies closer to the low frequency modes 
(with higher energy content). 

(a) ADCoS (b) USFOS (c) 3DFloat (d) Fedem (e) GAST 5.59 Hz. 
Offshore VPOne 6.29 Hz. WindPower 
2.67 Hz. 5.40 Hz. 4.67 Hz. 

Fig. 5: Exemplary eigenmodes including local jacket vibrations and cou
plings detected by various codes. 

Rigid OWT 

In the load-case set 2.X, special attention is given to proper calculation of 
buoyancy. There has been a wide discussion within the OC4 project con
cerning the modeling strategy for buoyancy and its physical correctness. 
Buoyancy can be accounted for based on the displaced volume method 
or the pressure integration method. The former estimates weight of water 
displaced by submerged elements of the structure. The latter integrates 
the external pressure acting on the surface of a structure accounting for 
all pressure forces imposed on individual members. The pressure integra
tion method provides more accurate estimation of buoyancy and should 
be used in the analysis of jackets. This method accounts for hydrody
namic and hydrostatic pressures. The hydrostatic pressure is associated 
with pressure exerted by a column of water due to the gravity force. The 
hydrodynamic pressure refers to kinetic energy of water particles. 

The structure modeled within the OC4 project is cut and clamped fixed 
at the mudline (see Fig. 6a). In such a case, there is no upward buoyant 
force acting on the bottom, cross sectional area of a pile that is in contact 
with the seabed, as described in Clauss et al. (1992). As the piles are 
modeled as cut at the mudline (they do not penetrate the seabed), the 
pore water pressure in the seabed is also ignored in the modeling. 

(a) Pile modeled as cut and fixed at 
the mudline, arrows indicate the areas 
where pressure is integrated. 
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case, LC 2.1. 
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(c) Vertical force at mudline for Airy wave with 
Wheeler stretching case, LC 2.3a. 

Fig. 6: Resulting vertical force at the base of the structure and modeling 
strategy of a pile at the mudline. 

The resulting vertical forces at the base of the structure, for LC 2.1 and 
LC 2.3a, are shown in Fig. 6b and Fig. 6c, respectively. The shifts in 
the mean values of force are due to the diverse modeling approaches 
in accounting for buoyancy. Those project participants, that considered 
in their modeling strategies, that the structure is clamped fixed at the 
seabed, ended up with a mean force at about -16600 kN (a force directed 
upward) at the mudline. Other participants that did not adapt this ap
proach, ended up with about -15800 kN. In those cases, the buoyancy 
force was exerted at the bottom surfaces of piles. In Bladed V4.0, there 
is an additional pressure force applied on the top of the grouted piles that 
leads to about -17150 kN. In Flex5-Poseidon utilized by SWE, buoyancy 
of legs was ignored, as the code could not handle hollow tubes at the 
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time this paper was written. Pressure integration was only applied on 
the surface of sealed braces, which led to the mudline vertical force of 
about -17100 kN. 

Differences in the peak-to-peak amplitude of the vertical forces at the 
mudline, shown in Fig. 6c, are mainly based on whether the displaced 
volume or the pressure integration method is used for calculation of 
buoyancy. The integration of the hydrodynamic pressure results in a re
duced buoyancy effect seen at the mudline during the wave crest (higher 
upward buoyancy force at the wave crest), while it is increased during 
the wave through (lower upward buoyancy force at the wave through), 
compared to the displaced volume method. This is observed as smaller 
peak-to-peak amplitudes of the vertical force at the mudline. In reality, 
at the relatively deep position, the hydrostatic pressure does not change 
that much due to the changing water surface elevation. The influence of 
the hydrodynamic pressure is also small. Therefore, the variation in the 
vertical force at the mudline should also be small. This is observed in the 
results obtained with the pressure integration method. 

Summing up, the difference between the two furthest outliers is about 
9 %. This is acceptable, especially as different modeling assumptions for 
buoyancy were applied. Also, different masses of marine growth and the 
jacket substructure contributed to discrepancies. 

(a) Rotor speed. (b) Generator power. 
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(c) Low-speed shaft torque. 

Fig. 7: Rotor speed, torque and generator power, LC 2.2. 

A very good match of the rotor speed and the generator power is achieved 
in LC 2.2 for the majority of codes as shown in Fig. 7a and Fig. 7b, re
spectively. The tower blockage effect is captured by most of the tools as 
small fluctuations of the generator power and the rotor speed. In ADCoS-
Offshore, power production under rated power is highly affected by the 
flow stagnation effect in front of the tower. A miscalculation of this 
effect under certain conditions was discovered during the OC4 project. 
Results presented herein include the improved tower blockage model, 
though some further refinements are still necessary. The tower block
age model was not implemented in 3DFloat and USFOS-vpOne tools at 
the time this paper was written. Larger downward peaks, correspond
ing to 3P frequency at about 0.46 Hz, are visible in the low-speed shaft 
torque for most of the codes (Fig. 7c). Upward and downward peaks in 
the low-speed shaft torque are present in the results of Flex5, utilized 

by LUH, SWE and REpower. Differences in the implementation of the 
tower blockage model are indicated as possible sources of those discrep
ancies. However, this issue has to be investigated further. The low-speed 
shaft torque is indirectly calculated in ADCoS-Offshore, through which 
a smoothening effect of the signal is introduced. High oscillations of the 
Flex5 (REpower) signals are due to the flexible model of the RNA used 
in the simulation, instead of the rigid defined in the load-case set 2.X. 
The model setup in ASHES still needs some refinements. The results for 
the remaining codes match very closely. They differ less than 1 % for the 
rotor speed, generator power and low-speed shaft. 

Fig. 8 shows the fore-aft force at the base of the structure for LC 2.3a. 
Some differences in the peak-to-peak amplitude are caused i.e. by dis
similarities in implementations of wave kinematics. The lowest ampli
tude comes from FAST-ANSYS simulations and needs to be investigated 
further. The simulation results are also affected by differences originat
ing in the modeling of the support structure. Flex5-Poseidon, utilized 
by SWE, gives the largest amplitude of the fore-aft base shear force, 
whereas a lower amplitude is calculated by the same code used at LUH. 
To sum up, a good agreement is observed for most of the codes. The 
maximum difference of the peak-to-peak amplitudes is less than 11 % 
(for the majority of codes it is much less). 

Fig. 8: Fore-aft shear force at mudline, LC 2.3a. 

The PDF of the tower-top and base fore-aft shear forces for LC 2.4b, 
shown in Fig. 9a and Fig. 9b, are expected to be very similar. Results 
of FAST-ANSYS and GAST differ in the mean value, which is about 
10 % higher at the mudline. Such a shift is caused by the additional 
wind loads applied on the tower, which should not have been account for 
according to the definition of LC 2.4b. The mean fore-aft shear forces 
calculated in 3DFloat are higher than in other codes. 3DFloat has rigid 
blades, which are pitched according to the defined control system. One 
possible source of differences in the mean shear forces is the lack of the 
tower shadow model. The explanation of the higher mean of the Flex5
Poseidon (LUH) signal is not that straightforward. The mean value of 
the generator power is higher than expected, but the mean pitch angle 
is lower. These facts may indicate wrong settings of the control system 
of the turbine. The utilization of the stochastic wind files with not the 
same time series is also a source of discrepancy, as already mentioned. 
HAWC2, FAST-ANSYS, FEDEM WindPower, 3DFloat and GAST uti
lize the same stochastic wind files as an input, whereas Bladed V3.85, 
ADCoS-offshore, OneWind and Flex5-Poseidon use their own wind files. 
For example, there is less fluctuation in the longitudinal component of the 
wind speed in ADCoS-Offshore, which is reflected in the narrower PDF 
of the shear force. In general, a very good agreement of presented PDF 
results is observed. 

DEL values of the mudline shear forces in LC 2.4b diverge a lot, as 
shown in Fig. 9c. The biggest outliers are GAST and ADCoS-Offshore. 
The energy content of the mudline signal of ADCoS-offshore is of an 
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order less than other codes, and its distribution is narrower, resulting in 
the lowest DEL value. The opposite behaviour is observed for GAST (the 
PSD results are not shown herein). Apart from the outliers, the maximum 
difference between other tools is less than 20 %, which is a good result 
considering all the mentioned differences in the setup of LC 2.4b. 
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Fig. 9: Fore-aft forces at tower-top and mudline of the structure, LC 2.4b. 

Flexible Onshore Turbine 

In Fig. 10a, tip twist of Blade 1 for LC 3.2 is zero in the FAST, Flex5 and 
Bladed V3.85 outputs, as these codes do not consider torsion of the blade. 
USFOS/vpOne considers the torsional degree of freedom for the blade, 
however there is no output providing a time history of the tip angle. The 
blade torsion is included in the multibody release of Bladed V4.0 (no 
results presented herein) and should be soon implemented in FAST. The 
results of FEDEM WindPower and GAST match closely. The biggest 
outlier, with the highest peak-to-peak oscillation, is ADCOS-Offshore. 
This has to be investigated further. 

The fluctuations of the low-speed shaft torque in LC 3.2 are mainly 
caused by the tower blockage effect pronounced as 3P frequency at 
about 0.46 Hz and its higher harmonics as shown in Fig. 10b. Only the 
first 10 s of the time series are shown for better clarity. In ADCoS-
Offshore, the low-speed shaft torque is calculated indirectly through 
which a smoothening effect is introduced. The shift of HAWC2 signal 
corresponds to higher rotational speed of the rotor, achieved by this tool 
in LC 3.2. The low-speed shaft torque of Flex5, utilized by REpower, 
is not shown herein due to excessive oscillations of the signal. Further 
refinements of the model are necessary. In general, mean values of the 
low-speed shaft torque are close for all the tools. 

A very good agreement in the distribution of flapwise and edgewise shear 
forces at the blade root is observed among the codes in LC 3.4a, as shown 
in Fig. 11a and Fig. 11b, respectively. The greatest outlier is Flex5 (RE
power) due to the incorrect specification of the stochastic wind. Minor 
shifts in the mean values of the flapwise force distributions are caused by 
differences in the thrust force. For the spinning-rotor cases, rigid blades 
are used in 3DFloat. Nevertheless, the distributions of the blade root 
forces closely match other codes where a flexible rotor is defined. 
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(a) Blade 1 tip twist. (b) Low-speed shaft torque. 
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Fig. 10: Blade deflections and low-speed shaft torque, LC 3.2. 
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Fig. 11: PDF of blade root forces and pitching moment, LC 3.4a. 

The PDF of the pitching moment at the blade root is shown in Fig. 11c. 
The discrepancies originate from the rate and magnitude of the pitch
ing action, dependent on whether or not a rated speed of the rotor is 
achieved. HAWC2, FAST, FEDEM WindPower, 3DFloat and GAST uti
lize the same stochastic wind files as input; only Bladed V3.85 uses its 
own wind files. Thus, the sources of discrepancies in the pitching mo
ment at the blade root should mainly originate from the implementation 
of the blade model in various tools. For example, a shift of the blade 
mass center can affect the distribution of these values. Bladed V3.85 
is the biggest outlier. However, such a difference is not caused by the 
utilization of the wind files with not the same time series, as the PDF 
of the longitudinal wind component matches very well the same compo
nent in the wind files prepared by Risø DTU. The shift of the PDF of the 
pitching moment suggests incorrect setup of the model. For example the 
aerodynamic center, relative to the pitch axis, could be specified incor
rectly. However, in other stochastic LCs 2.4a, 2.4b and 5.7, PDF of the 
pitching moment of Bladed V3.85 matches other tools. Summing up, a 
good agreement of the PDF is observed for the majority of codes. 
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Flexible Support Structure Flexible OWT 

The out-of-plane displacement in the fore-aft direction, of the central 
joint X2S2 of X-brace (see Fig. 1), is shown in Fig. 12 for LC 4.3b. 
The OWT is excited with a deterministic wave, described by the 9th or
der stream function wave. The agreement of signal trends is remarkably 
good, though the peak-to-peak amplitude is very small. A frequency shift 
of the output of Flex5-Poseidon, utilized by SWE, is caused by a bug in 
the stream function wave. LUH also uses Flex5-Poseidon. However in 
their case, the WaveLoads tool was used to compute the stream function 
wave and then linked to Flex5-Poseidon by a DLL library. The relatively 
highest oscillation amplitude of 3DFloat requires further attention. 
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Fig. 12: Out-of-plane deflection at center of X-joint at level 2 on side 2, 
LC 4.3b. 

In LC 4.5, the OWT is excited with a stochastic irregular wave. The axial 
force of the member B59 at lowest X-brace (location presented in Fig. 1) 
is shown in Fig. 13. Frequency peaks at about 0.3 Hz, and in ranges of 1.1 
to 1.2 Hz and 2.6 to 2.8 Hz correspond to the 1st and 2nd global fore-aft 
modes and torsion, respectively, as detected in LC 1.0a and LC 1.0c. The 
results of the distribution of the axial member forces, shown in Fig. 13b, 
differ in the mean values mainly due to the differences in buoyancy mod
eling, discretization of the member, and therefore, slight offsets in place
ment of the output sensors. However, the widths and heights of most 
PDF are similar, indicating a good agreement in the fluctuation rate of 
the member axial force. 
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Fig. 13: Axial force in center of brace 59, LC 4.5. 

The DEL of the axial forces, for LC 5.7, from sensors K1L2 and mud
braceL2 (see Fig. 1) from Leg 2 are shown in Fig. 14a and Fig. 14b, 
respectively. The biggest outlier in the DEL of the axial force at K1L2 
located in the splash zone is Flex5-Poseidon utilized by SWE. This is 
due to the incorrect implementation of the stochastic wave, which is ob
served in the case of the code used at SWE. The remaining codes ended 
up with relatively small differences. The discrepancies at mudbraceL2 
are relatively high, as many diverse modeling strategies influenced it. 

Shifts in the mean values of the PDF of the axial force at the mudbrace 
shown in Fig. 14c are caused by different approaches in modeling of 
buoyancy as previously explained. FAST-ANSYS is under further de
velopment concerning the modeling of irregular waves, and the results 
for LC 5.7 are not shown in Fig. 14. However, the preliminary result 
comparison has provided valuable input to support this development. 
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(a) DEL – axial force in Leg 2 at K1L2. (b) DEL – axial force in Leg 2 at mudbraceL2. 
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Fig. 14: Damage equivalent loads at jacket leg, LC 5.7. 

CONCLUSION 

This paper presents the results of the OC4 project Phase I, focused on 
the coupled simulation of an offshore wind turbine with a jacket support 
structure. A detailed description of the support structure model is devel
oped within the project. A set of deterministic and stochastic load cases 
of increasing complexity is discussed and simulated. The load cases with 
deterministic inputs are compared in terms of time-series output, and the 
stochastic cases are compared in terms of probability density functions, 
power spectral densities, and damage equivalent loads. Exemplary re
sults of the simulations are presented in this paper. The exemplary dis
crepancies between the codes are shown and sources of differences are 
discussed. The presence of the local dynamic effects in the structure is 
depicted in the simulation results. Furthermore, attention is given to as
pects like the buoyancy calculation and methods of accounting for addi
tional inertia forces (such as from the hydrodynamic added mass), which 
were not analyzed extensively in the OC3 project. Finally, recommenda
tions concerning the modeling of the jacket are given. 

The setup of coupled OWT simulations is an elaborated and difficult pro
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cess, involving multidisciplinary engineering knowledge within the fields 
of structural engineering, control, hydrodynamics, aerodynamics, aeroe
lasticity, data pre- and post-processing etc. Thus, some of the obtained 
results are not free from the human-inherited errors. Furthermore, differ
ences in the implemented theories and diverse modeling strategies con
tributed to the discrepancies in the presented results. In the light of these 
facts, a very good agreement in the obtained results has been achieved. 

Through the participation in Phase I of the OC4 project, many of the 
participants have been able to verify their codes and methodologies de
veloped for the dynamic analysis of a wind turbine supported with a 
jacket. Some inconsistencies and errors in models were detected in a 
direct code-to-code comparison of the results. Furthermore, the compar
ison with other codes has provided the first sanity checks for the newly 
developed tools, i.e. 3DFloat, OneWind and ASHES. Some examples of 
improvements, corrections and bugs, present in the tools and models, are 
briefly mentioned herein. 

Several improvements of the hydrodynamic load models were applied 
in FEDEM WindPower. For example, the mudline response from wave 
loads has been smoothed out due to improved interpolation of forces 
applied on the beam elements. Also, the integration of AeroDyn with 
FEDEM WindPower has been verified. The tower shadow effects in 
ADCoS-Offshore and FAST-ANSYS were improved. A bug in the im
plementation of the stream function in Poseidon has been discovered. 
Furthermore, an extended implementation of buoyancy, an interface to 
WaveLoads for computation of the stream function and the Pierson-
Moskowitz spectrum have been verified in Poseidon. The development 
of 3DFloat has been accelerated by the participation in the project. It 
has resulted in the implementation of i.e. models for marine growth, 
flooded members, irregular waves by the constant-energy method for dis
cretization of the wave spectrum and stream function wave kinematics. 
In HAWC2, the position of the pitch axis in a blade model has been cor
rected and a bug in the Stream function wave theory implementation has 
been fixed. For calculation of the wave loads, the pressure integration 
method in USFOS-vpOne estimates the Froude-Krylov force by direct 
pressure integration using the incident wave velocity potential. During 
the modeling, it has been found out that this requires a correction on 
the mass coefficient so that the Froude-Krylov force is not accounted for 
twice. Then, it was checked that the wave loads obtained by the pres
sure integration method agrees well with those obtained by the Morison 
equation in the USFOS-vpOne tool. This was mathematically confirmed 
by Chung (1975). 

Overlapping members lead to increased material volume in the vicin
ity of joints. This leads to the overestimation of the structure weight, 
marine growth mass, buoyancy and hydrodynamic loads. The extent of 
the overestimation depends on a given jacket and varies due to the dif
ferent topology, thicknesses and number of intersecting braces. There
fore, it is recommended to remove overlapping sections from models of 
jacket support structures, even though the OC4 project chose to use a 
simpler model, due to the setup simplicity, in which members overlap at 
the joints. 

Only some codes account for gravity and damping in the eigenanalysis. 
It was shown that these terms have a marginal influence on eigenfrequen
cies. 

Local out-of-plane vibrational modes of lower X-braces in the jacket are 
detected by FEM- and multibody-based codes. It would be of interest to 
further study this phenomena, as it might contribute to fatigue of some 
parts of the structure. 

Buoyancy should be calculated with the integrated pressure method, as 
this approach ensures correct results for multibraced structures like jack
ets. The jacket modeled within the OC4 project is cut and clamped fixed 
at the mudline, through which there is no upward buoyant force acting 
on the bottom, cross sectional area of a pile. This modeling approach 
is not physically correct for the jacket with piles penetrating the seabed, 
though it was used for the simplification of the model setup. The negli
gence of the upward buoyant force at the base of the structure, which is 
in contact with the mudline, is physically correct for structures with i.e. 
gravity-based foundations. 
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