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Abstract
Highly parameterized groundwater models can create 

calibration difficulties. Regularized inversion—the com-
bined use of large numbers of parameters with mathematical 
approaches for stable parameter estimation—is becoming a 
common approach to address these difficulties and enhance 
the transfer of information contained in field measurements 
to parameters used to model that system. Though commonly 
used in other industries, regularized inversion is somewhat 
imperfectly understood in the groundwater field. There is con-
cern that this unfamiliarity can lead to underuse, and misuse, 
of the methodology. This document is constructed to facilitate 
the appropriate use of regularized inversion for calibrating 
highly parameterized groundwater models. The presentation 
is directed at an intermediate- to advanced-level modeler, and 
it focuses on the PEST software suite—a frequently used tool 
for highly parameterized model calibration and one that is 
widely supported by commercial graphical user interfaces. A 
brief overview of the regularized inversion approach is pro-
vided, and techniques for mathematical regularization offered 
by PEST are outlined, including Tikhonov, subspace, and 
hybrid schemes. Guidelines for applying regularized inversion 
techniques are presented after a logical progression of steps 
for building suitable PEST input. The discussion starts with 
use of pilot points as a parameterization device and process-
ing/grouping observations to form multicomponent objective 
functions. A description of potential parameter solution meth-
odologies and resources available through the PEST software 
and its supporting utility programs follows. Directing the 
parameter-estimation process through PEST control variables 
is then discussed, including guidance for monitoring and opti-
mizing the performance of PEST. Comprehensive listings of 
PEST control variables, and of the roles performed by PEST 
utility support programs, are presented in the appendixes. 	

Introduction
Highly parameterized groundwater models are char-

acterized by having more parameters than can be estimated 
uniquely on the basis of a given calibration dataset—in some 
cases having more parameters than observations in the calibra-
tion dataset. Such models, which almost always lack a unique 
parameter-estimation solution, are commonly referred to as 
“ill posed.” Ill-posed models require an approach to model 
calibration and uncertainty different from the traditional 
methods typically used with well-posed models. Hunt and 
others (2007) define traditional model calibration as those for 
which subjective precalibration parameter reduction is used to 
obtain a tractable (well-posed or overdetermined) parameter-
estimation problem. Regularized inversion has been suggested 
as one means of obtaining a unique calibration from the funda-
mentally nonunique, highly parameterized family of calibrated 
models. “Regularization” simply refers to approaches that 
make ill-posed problems mathematically tractable; “inversion” 
refers to the automated parameter-estimation operations that 
use measurements of the system state to constrain model input 
parameters (Hunt and others, 2007).

Regularized inversion problems are most commonly 
addressed by use of the Parameter ESTimation code PEST 
(Doherty, 2010a). PEST is an open-source, public-domain 
software suite that allows model-independent parameter 
estimation and parameter/predictive-uncertainty analysis. 
It is accompanied by two supplementary open-source and 
public-domain software suites for calibration of groundwater 
and surface-water models (Doherty, 2007, 2008). This soft-
ware, together with extensive documentation, can be down-
loaded from http://www.pesthomepage.org/.

The optimal number of parameters needed for a repre-
sentative model is often not clear, and in many ways model 
complexity is ultimately determined by the objectives of 
that model (Hunt and Zheng, 1999; Hunt and others, 2007). 
However, many benefits can be gained from taking a highly 
parameterized approach to calibration of that model regard-
less of the level of complexity that is selected (Doherty, 2003; 
Hunt and others, 2007; Doherty and Hunt, 2010).  
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The foremost benefit is that regularized inversion interjects 
greater parameter flexibility into all stages of calibration than 
that offered by precalibration parameter-simplification (or 
oversimplification) calibration strategies such as a priori sparse 
zonation. This flexibility helps the modeler extract informa-
tion contained in a calibration dataset during the calibration 
process, whereas regularization algorithms allow the modeler 
to control the degree of parameter variation. Indeed, high 
numbers of parameters used in calibration can collapse to 
relatively homogeneous optimal parameter fields (as described 
by, for example, Muffels, 2008; and Fienen, Hunt, and others, 
2009). Thus, the twin ideals of parsimony—simple as pos-
sible but not simpler—are fully met. Finally, the regularized-
inversion approach is advantageous because it makes available 
sophisticated estimates of parameter and predictive uncertainty 
(Moore and Doherty, 2005, 2006).

Purpose and Scope
This document is intended for intermediate to advanced-

level groundwater modelers who are familiar with classical 
parameter-estimation approaches, such as those discussed by 
Hill and Tiedeman (2007), as well as the implementation of 
classical overdetermined parameter-estimation approaches in 
PEST, as described by Doherty (2010a). The purpose of this 
document is to provide
1.	 a brief overview of highly parameterized inversion and 

the mathematical regularization that is necessary to 
achieve a tractable solution to the ill-posed problem of 
calibrating highly parameterized models,

2.	 an intermediate and advanced description of PEST 
usage in implementing highly parameterized parameter 
estimation for groundwater-model calibration, and

3.	 an overview of the roles played by PEST utility 
support programs in implementing pilot-point-based 
parameterization and in calibration preprocessing and 
postprocessing.

The PEST software suite has already been extensively docu-
mented by Doherty (2010a,b); as such, lengthy explanation of 
all PEST functions and variables is beyond the scope of this 
report. Rather, the focus is on guidelines for applying PEST 
tools to groundwater-model calibration. The presentation is 
intended to have utility on two levels: advanced PEST users 
can go directly to specific sections and obtain guidelines for 
specific parameter-estimation operations; intermediate users 
can read through a logical progression of typical issues faced 
during calibration of highly parameterized groundwater mod-
els—a progression framed in terms of PEST input and output 
a modeler is likely to encounter. Appendixes are included to 
facilitate the relation of PEST variables and concepts used in 
the report body to the broader PEST framework, terminology, 
and definitions of Doherty (2010a,b). Descriptions provided 

herein are necessarily brief, and mathematical foundations are 
referenced rather than derived, in order to focus on appropriate 
application rather than already published theoretical underpin-
nings of regularized inversion. Thus, this document is intended 
to be an application-focused companion to the full scope 
of PEST described in the detailed explanations of Doherty 
(2010a,b) and theory cited by references included therein.

PEST and its utility software are supported by several 
popular commercial graphical-user interfaces. Through these 
interfaces, many of the methodologies discussed in this 
document are readily deployed, with many implementation 
details concealed from the user. However, some knowledge 
of the mathematical and philosophical underpinnings of 
regularized inversion is helpful for successful and efficient 
use of this methodology, even when its application is made 
relatively simple. For modelers who are comfortable working 
at the command-line level, calibration preprocessing and 
postprocessing functionality provided by PEST utility sup-
port software offers customized model-calibration capabilities 
not available through commercial modeling user interfaces. 
Some utility programs provided with PEST are mentioned in 
the body of this document; all are listed in the appendixes. 
Calibration tools can be further augmented with purpose-
specific utility programs written by the modelers themselves. 
This document is also confined to model calibration. A com-
panion document discusses parameter and predictive uncer-
tainty analysis in the highly parameterized context (Doherty, 
Hunt, and Tonkin, 2010).

Regularized Inversion

Similar to classical parameter estimation of overde-
termined problems, regularized-inversion approaches are 
grounded on principles of least-squares minimization (for 
example, Draper and Smith, 1998), where a best fit is defined 
by the minimization of the weighted squared difference 
between measured and simulated observations. In both meth-
ods, the computer code automatically varies model inputs, 
runs the model(s), and evaluates model output to determine the 
quality of fit. In both methods, parameters estimated through 
the calibration process are accompanied by error, which 
consists primarily of two sources. The first is that a model can 
simulate only a simplified form of a complex natural world; 
for example, the simulated aquifer has a hydraulic-conduc-
tivity distribution that is a simplified version of the complex 
actual distribution of spatially varied hydraulic properties. 
The second is that observations used to constrain estimates of 
parameter values contain measurement noise. When the model 
is used to simulate future system behavior, its predictions 
contain inherent artifacts that result from both types of error 
(Moore and Doherty, 2005, 2006; Hunt and Doherty, 2006).

Appropriate simplification of real-world complexity is 
an indispensable part of model conceptualization and calibra-
tion. Traditionally, parameter simplification is done before 
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calibration by delineating what is hoped to be a parameter set 
that is simplified enough for its values to be uniquely estima-
ble, but hopefully not so oversimplified that it fails to capture 
salient aspects of the system. As the parameter-estimation 
process progresses, and after it has reached completion, much 
of the subsequent analysis is evaluating whether that precali-
bration simplification may have been too strong or too weak. 
If either is found to be true, reparameterization of the model 
must take place, and the calibration process must then be 
repeated.

Calibration as implemented through regularized inversion 
is founded on a different approach. Parameter simplification 
necessary for achieving a unique solution to the inverse prob-
lem of model calibration is done through mathematical means, 
as part of the calibration process itself. Thus, the modeler is 
not required to define a simplified parameter set at the start 
of the calibration process. Indeed, as discussed by Hunt and 
others (2007), the modeler ideally provides parameterization 
detail in the calibration process that is commensurate with 
hydraulic-property heterogeneity expected within the model 
domain, or at least at a level of detail to which predictions of 
interest may be sensitive. Although including flexibility gained 
from use of many parameters, the properly formulated regular-
ized-inversion process yields an optimal parameter field that 
expresses only as much complexity as can be supported by the 
calibration dataset. Heterogeneity expressed in this optimal 
parameter field arises at locations, and in manners, that are 
warranted by the data. The information content of the calibra-
tion dataset does not therefore need to be placed into simpli-
fication schemes or zones that are predefined by the modeler. 
It can be shown that model predictions made on the basis of 
such parameter fields approach minimum error variance in the 
statistical sense (Moore and Doherty, 2005). Furthermore, the 
potential for wrongness in these predictions can be properly 
quantified. Inasmuch as a prediction may depend on param-
eterization detail that cannot be represented in a calibrated 
model, that detail (which is suppressed during the calibration 
process) can be formally addressed when the uncertainty of 
the prediction is explored.

Mathematical Regularization

Using more parameters than can be constrained uniquely 
by observations results in formulation of an ill-posed inverse 
problem; numerical solution of that problem must include the 
use of one or more regularization mechanisms to stabilize the 
numerical solution process and identify a unique solution. 
Although regularization in the broadest sense can include the 
use of mechanisms to translate subsets of node-by-node grid 
parameterization to the parameter-estimation process (such as 
pilot points), mathematical regularization as discussed here is 
reduced into two broad categories: Tikhonov regularization 
and subspace regularization. A third hybrid category—a com-
bination of these two—is also available and discussed herein.

Tikhonov Regularization

Integrity of the calibration process requires that intui-
tive knowledge and geological expertise be incorporated into 
the calibration process, together with information of histori-
cal measurements of system state. Tikhonov regularization 
(Tikhonov, 1963a, 1963b; Tikhonov and Arsenin, 1977) 
provides a vehicle for formally incorporating this “soft” infor-
mation into the calibration process by augmenting the mea-
surement objective function with a regularization objective 
function that captures the parameters’ deviation from the user-
specified preferred condition (see Doherty, 2003, p. 171–173). 
Minimization of this combined objective function is a means 
for determining a unique solution to the inverse problem that 
balances the model’s fit to the observed data and adherence to 
the soft knowledge of the system. The regularization objective 
function supplements the calibration observed dataset through 
a suite of special pseudo-observations, each pertaining to a 
preferred condition for one or more parameters employed by 
the model. Collectively, these constitute a suite of fallback 
values for parameters, or for relations between parameters, in 
the event little or no information pertaining to those param-
eters resides in the observations of the calibration dataset. 
Where the information content of a calibration dataset is insuf-
ficient for unique estimation of certain parameters, or combi-
nations of parameters, the fallback value prevails.

Apart from providing a default condition for parameters 
and relations between parameters, Tikhonov regularization 
also constrains the manner in which heterogeneity supported 
by the calibration dataset emerges in the estimated param-
eter field. If properly formulated, Tikhonov constraints can 
promote and govern geologically realistic departures from 
background parameter fields. Without such constraints, fields 
that result in a good fit with the calibration dataset may 
nonetheless be considered suboptimal because of geologi-
cally unrealistic parameter values. Indeed, much of the art of 
formulating appropriate Tikhonov constraints for a particular 
parameter-estimation problem is directed at obtaining a good 
fit with geologically reasonable parameter values. 

As implemented in PEST, Tikhonov regularization is con-
trolled by a variable that prevents the achievement of model-
to-measurement fit that is too good given the level of noise 
associated with the calibration dataset. As is further discussed 
later, the modeler supplies a “target measurement objective 
function” that sets a limit on how good a fit the calibration 
process is allowed to achieve. PEST adjusts the strength with 
which Tikhonov constraints are applied as the lever through 
which respect for this target is maintained, relaxing Tikhonov 
constraints to achieve a tighter fit, and strengthening these 
constraints if a looser fit is required. This topic is covered 
in depth by Doherty (2003) and Fienen, Muffles, and Hunt 
(2009). 

Although use of Tikhonov regularization normally results 
in parameter fields that are geologically realistic, numeri-
cal instability of the calibration process can occur as the fit 
between model outcomes and field measurements is explored. 
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This instability arises from mathematical 
difficulties associated with strong applica-
tion of default geological conditions in 
areas where data are limited simultaneous 
with weaker application of those condi-
tions where data are plentiful. This problem 
can be partly overcome through use of 
subspace-enhanced Tikhonov regularization 
capabilities (Doherty, Fienen, and Hunt, 
2010) provided with PEST, through which 
differential weighting is applied to individ-
ual Tikhonov constraints where calibration 
information is unavailable for the param-
eters to which the constraints apply. In 
addition, subspace regularization can also 
be used in conjunction with Tikhonov regu-
larization to maintain numerical stability.

Subspace Regularization

In contrast to Tikhonov regularization, 
which adds information to the calibration 
process in order to achieve numerical sta-
bility, subspace methods achieve numerical 
stability through subtracting parameters, 
and/or parameter combinations, from the 
calibration process (Aster and others, 
2005). As a result of the subtraction, the 
calibration process is no longer required 
to estimate either individual parameters 
or combinations of correlated parameters 
that are inestimable on the basis of the 
calibration dataset. These combinations 
are automatically determined through 
singular value decomposition (SVD) of the 
weighted Jacobian matrix (see Moore and 
Doherty, 2005; Tonkin and Doherty, 2005: 
and Appendix 4). 

The Jacobian matrix consists of the 
sensitivities of all specified model outputs 
to all adjustable model parameters; each 
column of the Jacobian matrix contains 
the sensitivity of all model outputs for a 
single adjustable parameter. Individual 
parameters, or combinations of parameters, 
that are deemed to be estimable on the 
basis of the calibration dataset constitute 
the “calibration solution space.” Those 
parameters/parameter combinations that are 
deemed to be inestimable (these constitut-
ing the “calibration null space”) retain 
their initial values. It is thus important that 
initial parameter values be reasonable given 
what is known about the pre-calibration 

When large numbers of parameters are added to a model, some 
can expected to be insensitive and others highly correlated with other 
parameters. As a result, even though a parameter may be estimable 
(therefore worth including in the calibration process), it doesn’t mean that it 
actually is estimable. What is needed is an intelligent calibration tool—one 
that detects what can and cannot be inferred from the calibration dataset and 
then estimates what it can and leaves out what it can’t—all automatically, 
without user intervention. Singular value decomposition (SVD) is such a tool.

SVD is a way of processing matrices into a smaller set of linear approxi-
mations that represent the underlying structure of the matrix; thus, it is called 
a “subspace” method. It is used widely in other industries for such tasks 
as image processing (fig. B1–1)—for example, as commonly experienced 
in the sequentially updated resolution of images displayed by the software 
Google Earth. In this use, SVD allows a user to get useful information from 
an even somewhat blurry image earlier rather than waiting for the entire 
image to download. In the context of groundwater-model calibration, rather 
than solving the problem in a space defined by the total number of base 
parameters and observations in the model, SVD describes a reduced repre-
sentation of parameter and observation space that shows their relationship 
to each other in the context of a specific calibration dataset. On the basis of 
the weighted Jacobian matrix, SVD defines a reduced set of axes for param-
eter and observation space where certain combinations of observations are 
uniquely informative of certain combinations of parameters; these combina-
tions define the new reduced set of axes that span each space. Similar to the 
image-processing example, the subspace represents a more blurry view of 
the subsurface than exists in the natural world, but a view that defines where 
combinations of informative observations run out, thereby leaving combina-
tions of parameters inestimable. 

What are inestimable combinations? In some cases they are individual 
parameters that are insensitive and thus have no effect on model-generated 
counterparts to observations. In other cases they are parameter groups that 
can be varied in combination with each other in ratios that allow their effects 
on these model outputs to offset and cancel each other out. The calibration 
dataset cannot inform these parameters individually. Collectively, these 
two define the “calibration null space.” SVD-based parameter estimation 
reformulates the inverse problem by truncating the singular values carried 
in the parameter estimation processes so that estimation of these parameter 
combinations is not even attempted. Their initial values (either individually 
or as combinations) are then retained. Parameter combinations that are 
not confounded by insensitivity or correlation comprise the complimentary 
“calibration solution space.” Because this space is defined specifically by 
using parameter combinations that are estimable, solution of the inverse 
problem is unique and unconditionally stable.

1 Kalman, Dan, 1996, A singularly valuable decomposition—The SVD of a matrix:  
College Mathematics Journal, v. 27, no. 1, p. 2–23.

A “Singularly Valuable Decomposition”1 —
Benefits of SVD for Model Calibration
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Figure B1-1.  An example of singular value decomposition of a photograph image. When the matrix is perfectly known (as is the case 
with pixels in the original image), the highest resolution for a given number of singular values can be shown visually. For reference, 
the image with 20 singular values represents less than 10 percent  of information contained in the original image in the upper left, yet 
it contains enough information that the subject matter can be easily identified. Although information of groundwater systems is not 
as well known as that in this image, a similar concept applies: if too few singular values are selected, a needlessly coarse and blurry 
representation of the groundwater system results. Moreover, when the information content of the calibration dataset is increased, 
a larger number of data-supported singular values can be included, resulting in a sharper “picture” of the groundwater system. 
(Image from and SVD processing by Michael N. Fienen, USGS.)
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geological setting. This requirement is in contrast to tra-
ditional parameter estimation where estimated parameter 
values are theoretically independent of their initial values. 

Demarcation between the calibration solution and 
null spaces is achieved through singular value truncation 
specified by the user. Parameter combinations (also called 
eigencomponents) associated with singular values that are 
greater than a certain threshold are assigned to the calibra-
tion solution space, whereas those associated with singular 
values that are smaller than this threshold are assigned to 
the calibration null space. In practical applications, if too 
many combinations of parameters are estimated, the prob-
lem will still be numerically unstable; if too few parameters 
are estimated, the model fit may be unnecessarily poor, and 
predictive error may be larger than that for an optimally 
parameterized model. Moreover, the SVD approach can be 
ruthless in its search for a best fit, resulting in calibrated 
parameter fields that often lack the aesthetic appeal of those 
produced by Tikhonov regularization.

PEST offers the option of using the LSQR algorithm 
of Paige and Saunders (1982) as a replacement for SVD. 
LSQR allows faster definition of solution-space eigencom-
ponents than does SVD in calibration problems with large 
numbers of parameters (greater than about 2,500); however, 
their definition is not quite as exact as that provided by 
SVD (Muffels, 2008), and information needed for uncer-
tainty quantification, such as the resolution matrix, is not 
calculated. 

SVD-Assist and the Hybrid of Tikhonov and SVD

Although SVD can provide stable and unique model 
calibration, it does not alleviate the high computational 
burden incurred by the use of many parameters; that is, the 
full Jacobian matrix (calculated by perturbing each base 
parameter) is still calculated each time the parameters are 
updated. Nor are parameter fields as aesthetically pleas-
ing or geologically reasonable as results obtained from 
Tikhonov calibration (where reasonableness is built into the 
regularization process through use of a preferred parameter 
condition). Two approaches have been developed for PEST 
to overcome these difficulties.

Tonkin and Doherty (2005) describe the “SVD-Assist” 
scheme that is implemented in PEST whereby definition of 
the calibration solution and null subspaces takes place just 
once on the basis of the Jacobian matrix calculated at initial 
parameter values. Before the calibration process starts, a set 
of “superparameters” is defined by sensitivities calculated 
from the full set of native or base parameter values, thereby 
reducing the full parameter space to a subset of the full 
set of base parameters (Tonkin and Doherty, 2005). These 
combinations of parameters are then estimated as if they 
were ordinary parameters; whenever derivatives are calcu-
lated for the purpose of refining and improving parameter 
estimates, these are taken with respect to superparameters 

rather than individual base parameters. Each iteration of the 
revised parameter-estimation process then requires a Jacobian 
matrix calculated by using only as many model runs as there 
are estimable parameter combinations. Because this number of 
combinations is normally considerably less than the total num-
ber of parameters used by the model, a large computational 
savings is achieved.

If superparameters are few enough, their values can be 
estimated by using traditional calibration methods for well-
posed inverse problems. If not, Tikhonov regularization (with 
default conditions applied to base parameters) can be included 
in a “hybrid” SVD-Assist/Tikhonov parameter-estimation 
process. Large reductions in run times are achieved because 
the number of runs needed in each iteration of the parameter-
estimation process is related to the number of superparam-
eters. Simultaneous application of Tikhonov-regularization 
constraints allows the user to interject soft knowledge of the 
system into the parameter estimation process and thus rein in 
the pursuit of a best fit to a suitably chosen target measurement 
objective function. Because of the complimentary increase in 
speed and likelihood of obtaining geologically realistic param-
eter fields, the hybrid SVD-Assist/Tikhonov approach is the 
most efficient, numerically stable, and geologically reasonable 
means of highly parameterized groundwater-model calibra-
tion. However, for highly nonlinear models, the subdivision 
of parameter space into solution and null subspaces based on 
initial parameter values may not be applicable for optimized 
parameter values. In practice, this obstacle is normally over-
come by estimating more superparameters than are required 
for formulation of a well-posed inverse problem and applying 
Tikhonov regularization or SVD on the superparameters to 
maintain stability. Also, if necessary, superparameters can be 
redefined partway through a parameter-estimation process fol-
lowing recomputation of a base-parameter Jacobian matrix.

Before Running PEST: Model 
Parameterization 

Regularized inversion can be employed for estimat-
ing any type of parameter employed by a model. However, 
certain parameterization schemes and types of parameters are 
more able to exploit the benefits of regularized inversion than 
are others. In order to decide how best to use the regularized 
inversion approach, some understanding of the underlying 
parameterization concepts is useful.

Parameterization Philosophy

Those who are new to regularized inversion are required 
to adopt a different philosophy of parameterization than 
that behind traditional calibration methods (Hunt and oth-
ers, 2007). Rather than requiring the modeler to simplify 
the parameters a priori and subjectively before calibration, 
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regularized inversion allows the modeler to carry forward 
any parameter that is of potential use for calibration and 
prediction. If parameters are properly defined, Tikhonov 
constraints are properly formulated, and/or the solution sub-
space is restricted to a small enough number of dimensions, 
a minimum-error variance solution to the inverse problem of 
model calibration can be obtained irrespective of the number 
of parameters employed. Indeed, Doherty, Fienen, and Hunt 
(2010) show that achievement of a minimum-error variance 
parameter field is more likely to be compromised by the use of 
too few parameters than by the use of too many. A regularized-
inversion philosophy to parameterization, then, can be sum-
marized as “if in doubt, include it.”

One of the attractions of highly parameterized model 
calibration is that a modeler is relieved of the responsibility 
of deciding which parameters to include and which to exclude 
from the parameter-estimation process, and/or which param-
eters to combine, in order to reduce the number of parameters 
requiring estimation and thereby achieve a well-posed inverse 
problem. Parameters, or parameter combinations, that are 
inestimable will simply adhere to their initial values or to 
soft-knowledge default values specified by the modeler (which 
should be the same) unless the calibration dataset dictates 
otherwise. In principle, model parameters often not consid-
ered for estimation in traditional calibration contexts (such as 
those pertaining to boundary conditions and/or sources/sinks 
of water) could also be included in the parameter-estimation 
process. Although this extension to nontraditional parameters 
may, or may not, prove beneficial in some calibration contexts, 
it could be valuable for postcalibration uncertainty analysis if 
a modeler is unsure of these parameters’ values and if one or 
more critical model predictions may be sensitive to them.

The current practical limit to the total number of param-
eters that can be employed in the parameter-estimation process 
is around 5,000. It results from the following factors:
1.	 If parameters are large in number, each individual 

parameter may consequentially be of diminished sensitiv-
ity. This diminished sensitivity may erode the precision 
with which derivatives of model outputs with respect 
to individual parameters can be computed by using 
finite-parameter differences.

2.	 If parameter sensitivities are computed by using finite-
parameter differences, many model runs are required 
to fill the Jacobian matrix. Even where the SVD-Assist 
method is employed for solution of the inverse prob-
lem, sensitivities of model outputs with respect to all 
base model parameters must be computed at least once 
at the start of the parameter-estimation process so that 
superparameters can be defined.

3.	 Memory requirements can overwhelm resources when 
many parameters are employed in conjunction with a 
large calibration dataset.

4.	 Where there are many observations and many param-
eters (>2,500), singular value decomposition of a large 
Jacobian matrix may require an inordinate amount of 
computing time. LSQR techniques employed in PEST 
can mitigate this restriction, however.

Spatial Parameterization

Spatial parameterization of a model domain may use 
zones of piecewise constancy, pilot points, or a combination of 
these, with or without the concomitant use of other parameter-
ization devices.

Zones of Piecewise Constancy
Zones of piecewise constancy have a long history in 

traditional parameter estimation as a means for simplifying 
the natural-world complexity in the model domain. Such an 
approach can also be used in the regularized-inversion context, 
where they are commonly chosen to coincide with mapped 
geological units (thus allowing more geological units to be 
represented in the parameter-estimation process than would 
otherwise be possible). Or, they may be used in areas that 
are mapped as geologically homogeneous but in which head, 
concentration, and/or other historical measurements of system 
state suggest the presence of intraformational property hetero-
geneity. They are probably less suited for use in the latter role, 
however, because they constitute a cumbersome mechanism 
for representing continuous spatial variation of hydraulic prop-
erties when compared to the other parameterization methods 
described below.

Pilot Points
Model parameterization by use of pilot points is dis-

cussed by de Marsily and others (1984), Doherty (2003), 
Alcolea and others (2006, 2008), Christensen and Doherty 
(2008), Doherty, Fienen, and Hunt (2010), and references cited 
therein. Briefly, parameter values are estimated at a number 
of discrete locations (pilot points) distributed throughout the 
model domain; cell-by-cell parameterization then takes place 
through spatial interpolation from the pilot points to the model 
grid or mesh. Hydraulic properties ascribed to the pilot points 
are estimated through the model-calibration process are then 
automatically interpolated to the rest of the model domain. 
Currently, the only spatial interpolation device supported by 
the PEST Groundwater Data Utilities suite is kriging; how-
ever, Doherty, Fienen, and Hunt (2010) suggest that a mini-
mum-error variance solution to the inverse problem of model 
calibration may be better attained through use of orthogonal-
interpolation functions. 
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The general goal of pilot points is to provide a middle ground between cell-by-cell variability and 
reduction to a few homogeneous zones for characterizing natural-world heterogeneity in groundwater 
models. Figure B2–1 depicts a schematic representation of the pilot-point implementation. In Figure 
B2–1A, a heterogeneous field is depicted overlain by a model grid. This illustrates that, even at the 
model-cell scale, the representation of heterogeneity requires simplification. In figure B2–1B, a network 
of pilot points is shown in which the size of the circle is proportional to the parameter value and the color 
represents the value on the same color scale as in Figure B2–1A. The general pattern of variability in the 
true field is visible in this image, but the resolution is much coarser than reality. Figure B2–1C shows the 
pilot-point values interpolated onto a very fine grid and illustrates that much of the true heterogeneity can 
be reconstructed from a subset of sampled values provided that appropriate interpolation is performed. 
Figure B2–1D shows the interpolated version of the pilot-point values in Figure B2–1B on the model-cell 
grid scale, which represents the version of reality that the model would actually see. 

In reality, rather than directly sampling the true field as in this illustration, the pilot points are 
surrogates for the real parameter field estimated from observations in the calibration dataset   and are 
therefore likely to include some error not depicted on this figure. However, the schematic representation 
depicts the best possible representation of the real field given the displayed density of pilot points.

Conceptual Overview of Pilot-Point Use  
(excerpted from Doherty, Fienen, and Hunt, 2010)

Figure B2–1:  Conceptual overview of representing complex hydrogeological conditions through 
use of pilot points. Panel a) shows the inherent property value overlain by the model grid in gray. 
Panel b) is a representation of the true property values by a grid of pilot points in which symbol size 
indicates value. Panel c) shows an interpolated representation of panel b) on an arbitrarily fine grid 
scale. Panel d) shows the value from the pilot points interpolated to the computational-grid scale. 
Interpolation in all cases was done by using ordinary kriging. The same color scale applies to all 
four panels.
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Pilot-point emplacement can be regular or irregular, 
allowing the user to increase pilot-point density where data 
density is high and to decrease it where data density is low. 
This maximizes the ability of a given number of pilot-point 
parameters (this number normally being set by available 
computer resources) to respond to the information content 
of a given calibration dataset. Some groundwater modeling 
graphical-user interfaces support both automatic and manual 
pilot-point emplacement. A user can select pilot-point loca-
tions by clicking on those locations and/or by dragging pilot 
points to new locations. Any mapping software that supports 
a digitizing option can also be used to designate pilot-point 
locations.

Pilot points can be employed to represent any spatially 
variable property: hydraulic conductivity, specific yield, poros-
ity, and so on. Software provided with the PEST Groundwater 
Data Utilities suite presently supports only two-dimensional 
spatial interpolation from pilot points to a model grid or mesh. 
However, functionality is available within this utility suite 
for vertical interpolation among pilot-point arrays located at 
various levels within a multilayer hydrostratigraphic unit to 
intermediate layers within that unit (see the PARM3D utility).

An immutable set of rules for pilot-point emplacement 
does not exist. However, the following suggestions, based 
on a mathematical analysis of pilot-point parameterization 
suggested by Doherty, Fienen, and Hunt (2010), are salient: 
1.	 Place pilot points so as to avoid large gaps or “outpost” 

locations. Often a uniform grid of pilot points can be used 
to ensure some minimal level of coverage of the model 
domain, which is then augmented with additional pilot 
points assigned in areas of interest.

2.	 Place pilot points used to estimate horizontal hydraulic 
conductivity between head-observation wells along the 
direction of groundwater gradient.

3.	 In addition, place pilot points at wells where pumping 
tests have been done so that these hydraulic-property 
estimates can serve as initial and/or preferred parameter 
values.

4.	 Place pilot points used to estimate storage parameters at 
the locations where temporal water-level variations are 
included in the calibration dataset.

5.	 Ensure that pilot points used to estimate hydraulic-
conductivity parameters are placed between outflow 
boundaries and upgradient observation wells.

6.	 Increase pilot-point density where data density is greater.

7.	 However, do not place pilot points any closer together 
than the characteristic length of hydraulic-property 
heterogeneity expected within the model domain.

8.	 If pilot-point numbers are limited by computing resources, 
consider using fewer pilot points for representing vertical 
hydraulic conductivity in confining or semiconfining units 
than for representing horizontal conductivity in aquifers.

Pilot Points in Conjunction with Zones
Pilot points and zones of piecewise constancy are not 

mutually exclusive. For example, some zones may have many 
pilot points, and others just one. When a single pilot point is 
assigned to a zone, the parameter-estimation process substi-
tutes one value for each node contained in that zone, thus mak-
ing the pilot-point parameter act as a piecewise-constant zone. 
In the case of many pilot points in a zone, pilot-point-support 
software provided through the Groundwater Data Utilities 
suite allows assignment of families of pilot points to differ-
ent zones. Spatial interpolation from pilot points to the model 
grid or mesh does not take place across zone boundaries. With 
appropriate regularization in place, the parameter-estimation 
process is thus given the opportunity to introduce heterogene-
ity preferentially at zone boundaries and to then introduce 
intrazonal heterogeneity if this is supported by the calibration 
dataset. In the case of one pilot point in a zone, the application 
of the parameter to the zone is insensitive to the location of the 
pilot point within the zone. 

Other Parameter Types
Parameters other than those representing two- and three-

dimensional spatially variable properties are also readily 
employed in the regularized-inversion process. The follow-
ing are some examples of parameter types that have been 
employed: 
1.	 Conductance of river/stream beds, drains and general-

head boundaries, with spatial variability represented by 
zones of piecewise constancy or through interpolation 
between pilot points placed along these linear features.

2.	 Spatially varying multipliers for recharge, with multipliers 
represented by pilot points.

3.	 Elevations of general-head boundaries, these being 
represented by zones of piecewise constancy and/or pilot 
points.

4.	 Transport source terms, these being represented by zones 
of piecewise constancy.

5.	 Elevation and spread of a freshwater-saltwater inter-
face, represented by pilot points and variables govern-
ing concentration spread across the interface—see the 
ELEV2CONC utility listed in appendix 3.
The model-independent/universal design of PEST allows 

for virtually unlimited flexibility in definition of “a model.” 
A model can in fact be composed of a suite of executable 
programs encapsulated in a batch or script file. For example, 
an unsaturated-zone model and/or irrigation-management 
model may compute recharge for the use of a groundwater-
flow model. This, in turn, may provide a flow field that is used 
by a transport model for computation of contaminant move-
ment. Parameters pertaining to any or all of these models can 
be estimated simultaneously by PEST on the basis of a diverse 
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set of data pertaining to many different types of measurement 
of historical system state. As stated previously, considerations 
of what is estimable, and what is not estimable, on the basis 
of the current calibration dataset need not limit the design of 
the parameter-estimation process; mathematical regularization 
ensures that estimates are provided only for parameters and/or 
parameter combinations that are estimable given the calibration 
data available. Moreover, the design of a suitable Tikhonov-
regularization strategy will help ensure that the complex 
parameter field that emerges from the calibration process is 
geologically reasonable.

Initial Parameter Values

Implementation of nonlinear-parameter estimation 
requires that an initial value be provided for each parameter 
that is adjusted through the calibration process. In traditional, 
overdetermined parameter-estimation contexts, initial values 
assigned to parameters often do not adversely affect the param-
eter estimation. Provided that no local optima exist and the 
model is not too nonlinear, PEST will find the global minimum 
of the objective function and optimal parameter set, irrespec-
tive of parameter starting values. Nevertheless, the following 
guidelines may make that process more efficient:
1.	 Assign initial values to parameters that are within an order 

of magnitude of those that are expected to be estimated for 
them through the calibration process.

2.	 If parameters vary in sensitivity within that range, assign 
initial values to parameters in the more sensitive area of 
their reasonable range.
When regularized inversion is used, these guidelines are 

no longer relevant. If subspace methods are employed in the 
parameter-estimation process (for example, if this process is 
implemented through SVD or through SVD-Assist), the initial 
values supplied for parameters should be their “preferred val-
ues” from a geological perspective. This is because, as stated 
previously, the values assigned to individual parameters, and/or 
to combinations of parameters, that are found to be inestimable 
on the basis of the current calibration dataset will not change 
from the initial values during the parameter-estimation process. 
Thus, geologically reasonable parameter values specified at the 
start of the parameter estimation process will ensure the return 
of geologically reasonable parameter values at the conclusion 
of the parameter estimation process. If Tikhonov regulariza-
tion is employed, the preferred condition should ensure that 
parameters are assigned geologically reasonable values. Thus, 
regularization constraints encapsulated in the Tikhonov-
regularization scheme should be such that these constraints are 
perfectly met by initial parameter values, this resulting in an 
initial “regularization objective function” (see below) of zero.

A problem in implementing this strategy is that a 
modeler may not know, ahead of the parameter-estimation 
process, what the preferred value of each parameter actually is. 
This problem can be addressed in the following ways:

1.	 Initial values can be assigned on the basis of maximum 
geological plausibility; such values are then, by defini-
tion, of minimum statistical precalibration error variance. 
The minimum error variance status of inestimable param-
eters, and parameter combinations, is thereby transferred 
to the postcalibration parameter field.

2.	 Prior to regularized inversion on a large parameter set, 
parameters can be tied or grouped on a layer-by-layer (or 
even broader) basis. This allows estimation of broad-scale 
system properties through an overdetermined parameter-
estimation exercise based on simplifying assumptions 
such as that of parameter field uniformity. Layerwide 
(or even modelwide) parameter values arising from this 
exercise can then be employed as starting values for 
an ensuing highly parameterized inversion exercise, in 
which system-property details are estimated. This was the 
approach taken by Tonkin and Doherty (2005); Fienen, 
Hunt, and others (2009); and Fienen, Muffles, and Hunt 
(2009).

Tikhonov Regularization Strategies 

Tikhonov regularization interjects soft knowledge into 
the parameter-estimation process, and the PEST framework 
is flexible with regard to how this soft information is applied. 
Regularization constraints can be supplied through prior-
information equations (in which case these constraints must be 
linear) or as observations (in which case they can be linear or 
nonlinear).

In implementing Tikhonov regularization, PEST 
evaluates two criteria simultaneously:
1.	 the misfit between measured values (such as heads 

and flows) and their simulated counterparts (quantified 
through the traditional “measurement-objective function”) 
and 

2.	 the departure of the current parameter set from its pre-
ferred condition as specified through Tikhonov constraints 
(encapsulated in the “regularization-objective function”). 

Quantification of model-to-measurement misfit is an essen-
tial component of all parameter-estimation methodologies; 
quantification of departure from a preferred parameter state 
is not. In calculating the regularization objective function, 
PEST applies a global weight multiplier to all regularization 
constraints, whether these are encapsulated in observations 
or in prior-information equations. This multiplier is adjusted 
in order that a user-supplied “target measurement-objective 
function” (=the PEST Control File variable PHIMLIM) is 
respected. The target measurement-objective function specifies 
a level of model-to-measurement misfit that PEST attempts to 
achieve but not reduce beyond. Its value is set under the prem-
ise that any improvement in fit beyond that specified by the 
user via PHIMLIM is gained only at the cost of “overfitting,” 
with a consequential deterioration in the plausibility of the 
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estimated parameter field. This degradation is most commonly 
expressed by extreme parameter values; where pilot points 
are used this is expressed as “bullseyes” of extreme parameter 
values in a field of more uniform parameter values. 

Relative weights applied to Tikhonov-regularization 
constraints can be set by the modeler. Optionally, this rela-
tive weight can be overridden by PEST in the course of the 
parameter-estimation process via the IREGADJ regulariza-
tion-control variable (“InterREGularization group weights 
ADJustment” variable, which is specified in the PEST Control 
File, as described in appendix 1). If IREGADJ is set to a 
number greater than zero, PEST adjusts the weights applied 
to individual or grouped Tikhonov constraints in ways that 
complement data inadequacy. This capability is discussed in 
more detail below. 

An important principle for designing a regularization 
scheme is that regularization should be pervasive if it is to be 
effective, thereby providing a fallback value for every param-
eter and/or combination of parameters that is inestimable 
on the basis of the current calibration dataset. Because the 
estimability of every parameter is generally not known before 
the parameter-estimation process begins, this fallback offers a 
safeguard against the assignment of aberrant values to param-
eters that are poorly informed by the calibration dataset.

A description of the many Tikhonov-regularization strate-
gies that could be employed in calibration of a highly param-
eterized groundwater model is beyond the scope of this docu-
ment and, even if offered here, would likely be superseded as 
research on this topic goes forward. Instead, the discussion 
below is confined to two broad Tikhonov-regularization 
options that are readily implemented through PEST utility sup-
port software: preferred-value regularization and preferred-dif-
ference regularization. Each, or both, can be employed within 
the same calibration process; they can be applied to different 
parameter types or same parameter type, or even to the same 
set of parameters.

Preferred-Value Regularization
In implementing this form or regularization, a prior-infor-

mation equation is provided for every adjustable parameter. 
Each such equation assigns that parameter a value deemed to 
be of minimum error variance for that parameter. Each such 
prior-information equation can be given an individual weight. 
Alternatively, a covariance matrix can be employed for groups 
of such equations—for example, all prior-information equa-
tions that pertain to pilot points that represent a property such 
as hydraulic conductivity within a single model layer. This 
covariance matrix is often based on a variogram. If spatial 
correlation implied in the covariance matrix is a reflection 
of plausible geological variability, this strategy promotes 
emergence of heterogeneity in a manner that is of maximum 
geological likelihood.

Preferred-Difference Regularization
Through this mechanism, preferred values are entered on 

the basis of differences between parameters. Most commonly, 
a “preferred-homogeneity” condition is used, where the pre-
ferred difference between parameters is set to zero in the prior-
information equations that express parameter differences. This 
approach designates uniformity as the preferred parameter 
condition. When pilot points are employed as a parameteriza-
tion device, weights assigned to prior-information equations 
that express parameter differences of zero can be uniform. 
Alternatively, they can be calculated according to a variogram 
that purports to describe spatial variability of the pertinent 
hydraulic property type within the model domain; greater 
weights are then ascribed to prior-information equations link-
ing parameters that show a high degree of spatial correlation 
(taking directional anisotropy into account) than to those that 
show a smaller degree of spatial correlation (for example, 
parameters assigned to pilot points located further apart). 

Utility software supplied with PEST allows preferred-dif-
ference linkages to be implemented both within and between 
model layers. In the latter case, the preferred value of param-
eter differences need not be zero. Where parameters are log-
transformed during the parameter-estimation process (as many 
non-negative parameters should be), these differences actually 
apply to the logs of parameter values and hence provide the 
parameter-estimation process with a preferred ratio for inter-
layer parameter values. However, because such a ratio is rarely 
known or estimated, the use of interlayer preferred-difference 
regularization is not widespread.

Nevertheless, the issue of interlayer regularization may 
be important. As stated previously, for Tikhonov regulariza-
tion to be effective, it must be applied liberally throughout 
the model domain. PEST utility support software facilitates 
construction of a series of layer-specific, intralayer preferred-
difference regularization schemes; yet, an ill-posed inverse 
problem can still result if solution nonuniqueness can exist on 
a layer-by-layer basis, given the information content of the 
calibration dataset. This problem can be overcome by
1.	 use of interlayer difference regularization (as stated 

previously),

2.	 use of preferred-value regularization instead of (or in 
addition to) intralayer preferred difference regularization, 
and/or 

3.	 concomitant use of subspace regularization, through 
adoption of truncated SVD and/or SVD-Assist for solu-
tion of the inverse problem of model calibration.

Of these, the third option is likely to be most easily imple-
mented in most calibration contexts. 
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Before Running PEST: Observations 
Used in Inversion Process 

There is no universal prescription for the manner in which 
observations should be processed and weighted for model cali-
bration. However, a short discussion as it applies particularly to 
highly parameterized inversion is presented here. 

It is often suggested that the weight assigned to each mea-
surement be inversely proportional to the noise associated with 
that measurement. Ideally, where noise is correlated between 
measurements, a weight matrix should be employed instead of 
individual measurement weights, this matrix being proportional 
to the inverse of the overall covariance matrix of measurement 
noise as it applies to the correlated set of measurements. Where 
a parameter estimation problem is well posed, this strategy 
ensures that estimated parameter values approach those of 
minimum error variance.

Suspect observations should be given low weights to pre-
vent corruption of parameters estimated through the calibration 
process. Rigorous pursuit of the above weighting strategy, how-
ever, is often not optimal in real-world groundwater modeling 
practice because of the following factors.
1.	 Such an approach may result in an unbalanced regression 

such that large numbers of observations of one type domi-
nate the total objective function.

2.	 Where regularization is done though mathematical means 
as part of the parameter-estimation process itself, weight-
ing on the basis purely of measurement noise, and not 
accounting for an observation’s importance for a predic-
tion of specific interest, may degrade the model’s ability to 
make that prediction (Moore and Doherty, 2005; Doherty 
and Welter, 2010).

3.	 Model-to-measurement misfit is commonly dominated by 
structural noise rather than by measurement noise. Struc-
tural noise results from a model’s inability to simulate 
real-world processes exactly, as well as from the parameter 
simplifications that constitute the manual or mathemati-
cal regularization necessary to achieve a unique solution 
to the inverse problem of model calibration. As Cooley 
(2004), Cooley and Christensen (2006), and Doherty and 
Welter (2010) demonstrate, this noise shows a high degree 
of spatial correlation in even a simple groundwater model; 
Gallagher and Doherty (2007) explain that structural noise 
shows a high degree of temporal correlation for a surface-
water model, with the correlation between similar flow 
events being greater than that between flows that are in 
temporal juxtaposition. Unfortunately, except for synthetic 
cases, the covariance structure of this noise cannot be 
known. 

4.	 Even if the covariance matrix of structural noise could be 
determined, its use in the inversion process would be com-
putationally difficult when a large number of observations 
are featured in the calibration dataset.

Thus, other observation-weighting approaches are often 
used in highly parameterized models, some of which are 
described below.

Formulation of an Objective Function

In most calibration contexts a “multicomponent” objec-
tive function is recommended, with each component of this 
objective function calculated on the basis of different groups 
of observations or of the same group of observations pro-
cessed in different ways (for example, Walker and others, 
2009). As discussed below, if properly designed, such an 
approach can extract as much information from a calibration 
dataset as possible and transfer this information to estimated 
parameters. Ideally, each such observation grouping should 
illuminate and constrain the estimation of parameters per-
taining to a separate aspect of the system under study. Fur-
thermore, relative weighting between groups should be such 
that, at the start of the parameter-estimation process at least, 
contributions by different groups to the overall objective 
function should be roughly equal so that none of these groups 
dominates the objective function or is dominated by the contri-
bution to the overall objective function made by other groups. 
PEST facilitates this process by listing the contribution made 
to the overall objective function by all user-defined observa-
tion groups at the start of every parameter-estimation iteration. 

Objective-Function Components

In this subsection, some suggestions are presented as to 
how observations can be collected into separate groups, each 
informative of different aspects of the system under investiga-
tion. When employed in the calibration process, weighting 
within each group should be such that less reliable measure-
ments are penalized for their lack of integrity. However, 
weighting among groups should be such that each is visible in 
the measurement objective function, at least at the start of the 
calibration process; this ensures that no group is ignored by 
PEST and that parameters that are informed by each separate 
group are seen by the parameter-estimation process. An excep-
tion to such an approach is the inclusion of model-run infor-
mation (reported mass balance, number of iterations or dry 
cells, and so on) that is given zero weight and included simply 
for reporting purposes rather than for informing the parameter-
estimation process. Because such a zero-weight group does 
not affect parameter estimation, it is not further considered 
here.

In the examples presented below, each observation group 
may be composed of raw data (for example, head measure-
ment) or processed data (for example, drawdown calculated by 
the time-series processor TSPROC). In the case of processed 
data, identical processing should be applied to both the field 
observations and their model-generated counterparts so that 
“apples are compared to apples.” Simulated observations 
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should be temporally and spatially interpolated to the times 
and locations of pertinent field measurements before they are 
processed. All data-processing functionality described below 
is provided by PEST utility support software.

Data of Different Types
Data of different types should be included in the parame-

ter-estimation process to the extent possible (Hunt and others, 
2006). These should be placed into different observation 
groups to facilitate monitoring the progress of the parameter-
estimation process. However, because different observation 
groups will likely have different populations, and because 
different measurement types employ different units, it is 
unlikely that each group will have equal visibility in the initial 
measurement objective function. Therefore, the user likely 
will have to intervene to implement an appropriate weighting 
strategy that either promotes equal visibility or encourages 
the parameter estimation process to fit aspects of field mea-
surements that are most closely aligned with key predictions 
required of the model.

Special Considerations for Concentration Data
Head data alone are expected to provide little information 

on geological heterogeneity. On the other hand, concentration 
data, especially where the data pertain to a contaminant source 
whose location and timing are known, can provide information 
on hydraulic property heterogeneity of the material through 
which the contaminant plume has traveled. Both data types 
should therefore be included in the calibration process, espe-
cially if a modeling objective includes design of a remediation 
system. Heads and concentrations should be assigned to differ-
ent groups, and intergroup weighting should be such that each 
group is visible in the initial objective function.

Intragroup weighting of observations with widely rang-
ing values, such as concentration measurements, deserves 
special attention. Consideration should be given to weighting 
concentration measurements in inverse proportion to their 
magnitudes (with some upper limit for these weights). Thus, 
the outer reaches of a contaminant plume are highly visible in 
the objective function, these often being informative of local 
heterogeneity. On the other hand, simultaneous use of the 
same concentration data with uniform weights applied to all 
concentration measurements (these being assigned to a differ-
ent observation group) may promote better estimation of total 
contaminant mass within an aquifer.

One potentially useful approach for processing concen-
tration observations is assigning an observed concentration 
that falls below the nondetection threshold a value equal to the 
nondetection threshold itself. Model-generated counterparts to 
field-observed concentrations should be subjected to the same 
process after every model run. This will ensure that differ-
ences between modeled and observed concentrations that are 

both below the nondetection threshold are seen as zero by the 
calibration process. Furthermore, this strategy ensures that no 
discontinuities in derivatives are incurred as concentrations 
reach the nondetection threshold (as would occur if nondetec-
tions were assigned a concentration value of zero).

Temporal Head Differences
During transient-model calibration, the use of differ-

ences between subsequent head measurements, or between 
each head measurement and a user-specified reference level 
(perhaps the first measurement from each particular well), will 
often facilitate better estimation of storage and/or recharge 
parameters than would result if head values alone were 
employed in the calibration process. Thus, failure to exactly 
match heads need not compromise the ability of the calibra-
tion process to estimate a set of parameters that captures the 
system dynamics (for example, seasonal or multiseasonal head 
differences). The ability of a model to be employed for short- 
or medium-term aquifer management will be improved as a 
result.

Vertical Interaquifer Head Differences
A calibration process that explicitly includes (often small) 

interlayer head differences as a separate (and visible) compo-
nent of a multicomponent objective function can also ensure 
that these differences are seen by the calibration process and 
that vertical interlayer conductances are better estimated as a 
result.

Insight into this strategy (similar to that for temporal head 
differences) can be gained from noting that if x and y are two 
random variables, the variance of their difference is calculated 
as

	 σ2
x-y = σ 2

x + σ 2
y - 2 σxy	 (1)

Where correlation σxy between two measurements is high (as 
is often the case for vertically separated head measurements or 
for successive head measurements in the same well) the vari-
ance of the difference can be very small even though the vari-
ance of each head measurement may be large; the difference is 
thus worth fitting, even if individual measurements cannot be 
fit so well. The difference thus deserves visibility in the objec-
tive function and therefore requires a weight that allows it to 
be visible. In addition, head differences often constrain spe-
cific parameter types (such as vertical conductance or storage) 
even though head values by themselves are not as informative. 
This difference is therefore relatively easy to fit. 
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Joint Steady-State/Transient Calibration
Joint calibration of steady-state and transient MOD-

FLOW models can be done without difficulty as a result of 
MODFLOW’s ability to mix transient and steady-state stress 
periods in the same simulation. Simultaneous calibration of 
this kind brings with it the following advantages:
1.	 Information on conductance parameters contained within 

time-averaged head measurements employed in the 
steady-state component of the calibration dataset can 
directly inform estimation of these parameters.

2.	 Strong correlation between conductance and storage 
parameters that result where parameter estimation is done 
solely on the basis of a transient model is dramatically 
reduced.

3.	 Steady-state heads computed by the steady-state model 
can, under many conditions, be employed as initial heads 
for the ensuing transient model.
Steady-state heads should be assigned to a different 

observation group than that employed for transient heads. 
Transient-head differences should constitute another observa-
tion group. Intergroup weighting should be such that each 
group is visible in the initial objective function.

Declustering
Where more head measurements are available from some 

wells than from others, the user should consider increasing 
weights associated with heads measured in wells that are more 
sparsely sampled compared to those from which more samples 
were collected, especially if heads in these wells are very dif-
ferent. This weighting scheme prevents information from the 
more densely sampled wells from drowning out that from the 
more sparsely sampled wells purely because of the numerical 
preponderance of measurements. Similarly, where spatial den-
sity of measurement wells is highly variable, the user should 
consider assigning lower weights to heads from areas of high 
well density than those assigned to heads measured in solitary 
wells; the latter may be the sole repository of information on 
hydraulic conductivity over large parts of a model domain.

Digital Filtering
Where measured heads show high temporal variability 

due, for example, to proximity to pumping or recharge centers, 
digital filtering may be employed to remove this variability 
before attempting to fit that dataset to its (filtered) modeled 
counterpart, especially if the timing and magnitude of caus-
ative fluctuating stresses are not exactly known.

“Intuitive” and Other Soft Data
The calibration process is poorer if any pertinent infor-

mation is withheld from it. In many instances a single “intui-
tive observation” of long-term system behavior (for example 
the observation that total base flow is, on average, a certain 
percentage of total rainfall or that outflow through a certain 
boundary is roughly equal to a certain value) can make the 
difference between estimability and inestimabilty of a certain 
parameter or certain combination of parameters. On some 
occasions there may be a reluctance to include such a poorly 
known observation in the calibration process, because errors 
that are possibly associated with its value may be transferred 
to parameters that are estimated on its basis. However, if the 
outcomes of a model calibration process are to be at least 
partially assessed on the basis of whether such an observation 
is respected or not, then the calibration process is better served 
with the observation in question included in the calibration 
dataset, albeit with a low weight if its integrity is questionable. 
In addition, in some cases a modeler may wish to include in 
the PEST input dataset measurements that are of low integ-
rity (for example, drillers’ reports of head) to which weights 
of zero are assigned. These can then be used for qualitative 
assessment of the outcomes of the calibration process.

Temporal and Spatial Interpolation
Before being matched with field data, model outputs 

must undergo spatial and temporal interpolation to the sites 
and times at which field measurements were made. For inflow/
outflow measurements, spatial averaging is also required (for 
example, along pertinent stream or river reaches). Functional-
ity for all of these tasks is available through the PEST Ground-
water Data Utility suite (see appendix 3).

A modeler should ensure that the interpolation and aver-
aging steps that are a necessary precursor to the matching of 
model outputs with field measurements do not contribute to 
structural noise. For example, structural noise may be induced 
through any of the following processing tasks:
1.	 temporal interpolation where model time steps are large 

and stresses have recently changed,

2.	 spatial interpolation in areas of high potentiometric-sur-
face curvature.

3.	 spatial interpolation in regions of high concentration 
gradient, or 

4.	 summation of stream inflows over reaches where 
conductance is high, cell width is large, and/or reaches are 
sharply curved.
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A Note on Model Validation

It is sometimes recommended that a model be calibrated 
against one data type (for example, heads) and “validated” 
against another (for example, concentrations). Such a recom-
mendation ignores the fact that these different data types con-
tain information pertinent to different aspects of the modeled 
system; the calibration process is therefore poorer with either 
data type omitted.

Although the concept of “validation” is outside the scope 
of this report, it is worth noting that even the most carefully 
constructed model affords no guarantee of making a correct 
prediction. Rather, it is a foundation for developing predictions 
that lie within the realistic margins of uncertainty estimated by 
a carefully constructed and well-parameterized model. Where 
data are scarce, uncertainty margins will be wide—an inescap-
able consequence of data paucity. It follows, therefore, that a 
model cannot be validated; it can only be invalidated. Further-
more, it can only be invalidated at a certain level of confidence. 
Thus, the withholding of data from the calibration process 
for the purpose of “validation” should be done with caution. 
If some data are indeed withheld, consideration should then be 
given to including the omitted data in a final calibration exer-
cise before the model is employed to make important predic-
tions, for data previously withheld for the purpose of validation 
may add another dimension or two to the calibration solution 
space when returned to the calibration dataset. Any opportuni-
ties to inform the calibration process (and thereby decrease 
the dimensionality of the null space) before making important 
predictions should be encouraged.

Before Running PEST: Preparing the Run 
Files

PEST requires three types of input files. These are as follows:
1.	 One or more template files used to insert estimated param-

eter values into model input files. Commonly one template 
file is used per model input file that contains parameters to 
estimate.

2.	 One or more instruction files that instruct PEST how 
simulated equivalents of observations are read from model 
output files.

3.	 A PEST Control File (*.pst) which supplies

a.	 initial values for all parameters included in the 
calibration process,

b.	 observed values and weights for all members of the 
calibration dataset,

c.	 regularization constraints, and

d.	 variables that control the operation of all aspects of 
the (regularized) inversion algorithm implemented by 
PEST.

A PEST-input dataset can be prepared by using a text 
editor, because all of its input files are ASCII files. Where 
parameter and/or observation numbers are large, software sup-
port is in many cases available through commercial graphical 
user interfaces (GUIs). Support for more complex parameter-
estimation problems, and/or for custom extensions to GUI-
constructed PEST input files, is also available through utility 
programs provided with PEST and through its Groundwater 
Data Utilities suite (see appendixes). Custom programming 
can also be used to supplement PEST utility support programs.

Although automatic PEST Control File construction 
removes much of the file-construction burden from the user, 
a number of issues are often still considered when preparing 
for a PEST run. Thus, discussion is now directed at a subset of 
variables within the PEST Control File whose settings control 
the operation of PEST’s inversion algorithm. The discussion 
herein is necessarily brief and incomplete; greater detail is 
available in PEST documentation. PEST input variables are 
described with names given in the PEST documentation. A list 
of PEST control variables, together with the positions that they 
occupy in the PEST Control File, can be found in appendix 1. 
For ease or reference, headers in this section follow those in 
a PEST Control File. However, not all headers are required in 
all cases; some alternative headers are also used.

Control Data

Memory Conservation
The MAXCOMPDIM variable instructs PEST to use 

compressed storage for the Jacobian matrix. Where parameter 
and observation numbers are large, this compression can make 
the difference between whether a PEST run can or cannot take 
place, given the computer memory to which it has access. 
Note, however, that the cost of using compressed Jacobian 
matrix storage is slower execution speed.

The Marquardt Lambda
The primary purpose of the Marquardt Lambda capability 

is to increase the efficiency of a nonlinear parameter-estima-
tion process, particularly in its early stages, through rotating 
the parameter upgrade vector towards the direction of steepest 
objective function descent. However, it also performs a sec-
ondary role as a de facto regularization device; high values of 
the Marquardt Lambda can allow an ill-conditioned parame-
ter-estimation process to proceed notwithstanding locally low 
parameter sensitivities and/or excessive parameter correlation.

In some instances, particularly where finite-difference 
derivatives are noisy because of numerical granularity of 
model outputs and/or where a model is highly nonlinear, 
calculation of trial parameter upgrades on the basis of widely 
different Marquardt Lambdas can increase the chances of a 
substantial reduction in the objective function during any one 
optimization iteration. A negative setting for the RLAMFAC 
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variable (−3 suggested) allows a much wider range of lambda 
values to be tested than would be the case if a value-inde-
pendent multiplier were employed. This should be comple-
mented by an initial lambda value (RLAMBDA1) of between 
0.01 and 100 (20 suggested), with the higher values used in 
cases that are suspected to be numerically troublesome. See 
Doherty (2010b) for additional description of this option.

Broyden’s Jacobian Update
Each iteration of the parameter-estimation process under-

taken by PEST consists of the following two stages:
1.	 computation of the Jacobian matrix; 

2.	 testing of one or several parameter upgrades calculated on 
the basis of different Marquardt Lambdas.
Implementation of Broyden’s Jacobian update methodol-

ogy blurs the distinction between these two stages, because 
information gained on model-output dependency on param-
eters through the testing of different parameter upgrades is 
employed to enhance the accuracy of the Jacobian matrix for 
use in computation of further parameter upgrades with new 
Marquardt Lambdas. 

Setting the JACUPDATE variable to 999 instructs PEST 
to implement Broyden’s Jacobian update methodology on each 
occasion that a new parameter upgrade is tested, during every 
iteration of the parameter-estimation process. Experience has 
demonstrated that, in many parameter-estimation contexts, this 
approach can lead to greater gains in objective-function reduc-
tion during each iteration of the parameter-estimation process 
than would otherwise be the case.

Number of Optimization Iterations
The NOPTMAX variable limits the number of optimiza-

tion iterations that PEST implements before ceasing execution. 
However, some of its settings have special significance. 

If NOPTMAX is set to 0, PEST will run the model once, 
compute the total objective function and contributions made 
to it by different observation groups, and cease execution. 
Information from such a run can assist the user in assigning 
weights to different observation groups to ensure that they are 
all visible in the initial objective function. In addition, this set-
ting allows the modeler to check the PEST setup, including the 
integrity of template and instruction files, the proper function-
ing of the model batch file and associated utility software used 
in conjunction with the model, and so on.

Setting NOPTMAX to −2 instructs PEST to compute a 
Jacobian matrix and to then cease execution. Computation 
of a Jacobian matrix is required before PEST’s SVD-Assist 
functionality can be implemented, because superparameters 
are constructed from native model parameters through singular 
value decomposition of this weighted matrix.

If NOPTMAX is set to −1, PEST performs in the same 
manner as if NOPTMAX were set to −2 but does a final model 
run after filling the Jacobian matrix, this run being based on 

initial parameter values. A complete set of statistics pertinent 
to the current parameter-estimation problem is also computed 
and recorded in pertinent PEST output files.

Automatic User Intervention
Setting the DOAUI variable to “aui” instructs PEST to 

implement its “automatic user intervention” functionality. 
This forces PEST to do a series of reformulations of an ill-
posed inverse problem during each iteration of the parameter-
estimation process, with insensitive parameters progressively 
(temporarily) removed from that process until the condition 
number of the inverse problem is low enough for a substantial 
improvement in the objective function to be made. Experience 
has demonstrated that this approach can be effective where
1.	 parameters are relatively few,

2.	 model numerical problems degrade finite-difference-based 
derivatives (and often thereby create local optima in the 
objective function), and

3.	 the model is highly nonlinear.
Unfortunately “automatic user intervention” requires many 
model runs and is not a parallelizable process. Hence, it should 
not be implemented if model run times are long. See Skahill 
and Doherty (2006) for more details. 

Solution Mechanism

Unless instructed to implement truncated SVD as a solu-
tion device, PEST employs a standard solution mechanism for 
the “normal equations” that arise from the Gauss-Marquardt-
Levenberg parameter-estimation process. The method (taken 
from the LINPACK subroutine library) is fast and robust, 
taking advantage of the positive definite status of the normal 
matrix. Alternatively, truncated SVD or LSQR can be invoked 
as a solution mechanism. Current experience suggests that 
LSQR is superior only for very highly parameterized inversion 
problems, especially those with many observations, where 
SVD is too slow.

Where truncated SVD is chosen as the solution mecha-
nism, the modeler must provide a truncation setting that 
sets the number of eigencomponents retained in the solution 
process (by using the MAXSING variable) or must specify 
the eigenvalue ratio at which truncation takes place (by 
using the EIGTHRESH variable). Although either can define 
the dimensionality of the calibration solution space, setting 
EIGTHRESH is preferable because it allows the number of 
retained eigencomponents to vary from iteration to iteration as 
parameter sensitivities change, while assuring well-posedness 
of the modified inverse problem. An EIGTHRESH value of 
between 10-5 and 10-7 results in stable inversion (5×10-7 is sug-
gested to start). Values on the 10-5 end of the range are more 
effective when the calibration dataset is accompanied by a 
large amount of measurement noise, or where numerical noise 
in derivatives calculation is generated by model imperfections. 
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The number of eigencomponents that are actually retained 
can then be checked through inspection of the *.svd file 
written by PEST during each iteration of the parameter-esti-
mation process. If set on the low end of the suggested range, 
EIGTHRESH should be increased if instability is encountered, 
of if overfitting occurs.

In theory, a Marquardt Lambda value of zero should be 
used where truncated SVD is employed for solution of the 
inverse problem. In practice, experience has demonstrated 
that use of a wide-ranging Marquardt Lambda (implemented 
by using a negative value for the RLAMFAC variable sug-
gested above) together with a low initial Marquardt Lambda 
(RLAMDA1 value of 0.01) often works well, especially if 
there is a possibility for corruption of finite-difference-calcu-
lated derivatives as a result of model numerical imperfections.

Parameter Groups

Derivatives Calculation
Variables that govern the calculation of derivatives 

of model outputs with respect to adjustable parameters are 
assigned to parameter groups, rather than to individual param-
eters, to obviate storage of too many such control variables, 
most of which would be the same. A full discussion of finite-
difference derivatives calculation is given in PEST documen-
tation. However, the following points are noteworthy:
1.	 A relative parameter increment of 1 percent of a param-

eter’s current value is suitable for most occasions (set 
DERINC to 0.01 and INCTYP to “relative”).

2.	 Where a parameter’s value is affected by an arbitrary 
datum (as often applies for elevation and fixed head 
parameters), an absolute increment may be better.

3.	 If a parameter’s magnitude can approach zero, a relative 
increment should be supplemented by an appropriate 
absolute increment lower bound.

4.	 PEST should be instructed to begin the parameter-esti-
mation process using two-point derivatives and switch to 
the use of three-point derivatives as the rate of objective 
function diminution slows (Set FORCEN to “switch”). In 
some cases it is helpful to allow the three-point derivative 
to have a larger increment than the two-point derivative 
(set DERINCMUL to 2.0). Also see the PHIREDSWH, 
and NOPTSWITCH variables in the “control data” sec-
tion of the PEST Control File). 

5.	 Where finite-difference derivatives calculation is ham-
pered by model numerical malperformance (fig. 1 below), 
consider implementing “split slope analysis” (through 
appropriate choice of the SPLITTHRESH, SPLITREL-
DIFF and SPLITACTION variables), as this may improve 
the efficacy of the parameter-estimation process consider-
ably in difficult numerical environments.

6.	 Use the JACTEST and POSTJACTEST utilities to check 
the integrity of derivatives if it appears that PEST perfor-
mance is being adversely affected.

Regularization Considerations
The easiest way to add Tikhonov regularization to a 

PEST Control File is the preferred-value regularization via 
the ADDREG1 utility supplied with PEST. This simply util-
ity adds the pertinent information to the PEST Control File, 
invokes regularization, and sets the preferred values of each 
adjustable parameter to its initial value. When adding regular-
ization prior-information equations specifying preferred-value 
Tikhonov constraints to a PEST input dataset, ADDREG1 
assigns these equations to different regularization groups 
based on the parameter groups to which parameters belong. 
This allows PEST to assign differential regularization weight 
factors to these groups, though if IREGADJ is set to zero, no 
interregularization group weights adjustment is done. The 
setting which has widest use is IREGADJ = 1, where the 
intergroup weights adjustment takes place on the basis of total 
composite observation group sensitivities. If supplied as 2, 
weight summation is used as a basis for interregularization 
group weights adjustment. If IREGADJ is set to 3, the modeler 
can specify that regularization constraints for some parameters 
be enforced more strongly than for others. IREGADJ values of 
1 (recommended), 2, and 3, can enhance the numerical stabil-
ity of Tikhonov-based inversion. However, most benefit can be 
gained from this strategy if definition of regularization groups 
(and hence of the parameter groups from which regularization 
groups are derived) is such that parameters whose compos-
ite sensitivities are very different are collected into different 
groups. Although this may be difficult to achieve, the follow-
ing suggestions have been found to work well in practice.
1.	 Parameters of different types should be assigned to differ-

ent parameter groups. For example, horizontal and verti-
cal hydraulic conductivity parameters should be grouped 
separately.

2.	 Parameters pertaining to different model layers should be 
assigned to different parameter groups.

3.	 Pilot point-based parameters and zone-based parameters 
of the same type should be assigned to different parameter 
groups.
Note, however, that these guidelines do not apply if 

IREGADJ is set to 4 or 5 (in which case subspace enhance-
ment of Tikhonov constraints is implemented). These set-
tings are special cases where differential weighting is applied 
based on the individual estimability of the parameter (Doherty 
2010b). These guidelines also do not apply if IREGADJ is set 
to 0, or omitted from the “regularization” section of the PEST 
Control File altogether (in which case differential regulariza-
tion weight factor adjustment does not take place).
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Parameter Data

Initial Parameter Values
As has already been discussed, where regularization 

is implemented in solution of the inverse problem of model 
calibration—whether this be subspace, Tikhonov, or a hybrid 
of these—parameters should be assigned the most reason-
able initial values from a geological perspective. If properly 
implemented, the regularized inversion process will deviate 
from these only to the extent required to appropriately fit the 
calibration dataset.

Parameter Transformation
A modeler can choose to log-transform or not log-trans-

form a parameter. Ideally, if a parameter’s value is restricted 
to positive numbers, the parameter should be log-transformed 
during the inversion process because transformation often 
results in a more linear relation between a parameter and 
model output. In highly parameterized inversion, there are 
additional considerations in addition to linearity enhancement. 
Log transformation tends to equalize parameter sensitivities 
because derivatives are taken with respect to relative, rather 
than actual, parameter values. This log transformation imple-
ments a de facto scaling of parameters with respect to their 
innate variability, a situation that is likely to lead to higher 
likelihood of estimated parameter values in the regularized 
inversion setting (see Doherty, Fienen, and Hunt, 2010). 
Hence, provided that parameters cannot take on zero or nega-
tive values and provided that it does not degrade problem 
linearity to too great an extent, consideration should be given 
to log-transforming all parameters involved in the parameter-
estimation process.

Scale and Offset
Although scaling and offsetting of parameter values can 

be applied internally by PEST, non-scaled and non-offset 
parameter values are actually written to model input files. 
Like log-transformation, an appropriate parameter scaling 
strategy can be used to normalize sensitivity with respect to 
innate parameter variability. However, until information on 
sensitivities becomes available through the parameter-estima-
tion process (composite parameter sensitivities are recorded on 
the *.sen file) appropriate SCALE settings may be difficult to 
determine.

Use of a negative SCALE value allows logarithmic 
transformation to be applied to a parameter whose domain is 
entirely negative and, hence, for which logarithmic transfor-
mation would otherwise be impossible. The OFFSET variable 
may be employed to prevent a parameter that is not log trans-
formed from becoming zero (as seen by PEST), even though 
its value, as seen by the model, can become zero. This can pre-
vent a slowing of the parameter-estimation process incurred by 

the imposition of relative change limits on parameter move-
ment as its value moves from zero (and large relative changes 
are therefore required of it). Relative parameter change limits 
(implemented as a means of enhancing stability of the non-
linear parameter-estimation process) are imposed through the 
RELPARMAX control variable.

Observation Groups

Objective-Function Contributions
During each iteration of the parameter-estimation pro-

cess, PEST computes the contribution of each observation 
group to the overall objective function. Although only the 
total objective function is used in the nonlinear regression, 
reporting by observation group helps the modeler ensure that 
information pertinent to different aspects of a modeled system 
is extracted from the calibration dataset. Thus, it is often 
useful to break observations, including sometimes those of 
the same data type, into different observation groups in the 
PEST Control File. For example, each well hydrograph could 
constitute a separate group for transient-model calibration. 
Although the total objective function is still the primary metric 
for automatically evaluating the parameter-estimation pro-
cess, this enhanced reporting allows a modeler to monitor the 
contribution to the objective function made by observations 
pertaining to different regions of the model domain, and/or by 
observations of different types, and/or by the same observation 
data type processed in different ways. 

Weight Matrices
Weights can be assigned on an observation-by-obser-

vation basis in the “observation data” section of the PEST 
Control File. Alternatively, a covariance matrix (which PEST 
inverts to form a weight matrix) can be assigned to an entire 
observation group in the “observation groups” section of 
the PEST Control File. Though strictly required in order to 
achieve minimum-error variance estimation of parameter 
values in the face of spatially and/or temporally correlated 
structural noise (see Cooley, 2004), an observation covariance 
matrix is rarely supplied in practice. Nevertheless, a simple 
covariance matrix may be warranted for some observation 
types to accommodate correlation of measurement noise 
(for example, for inflow into neighboring stream reaches 
separated by a common gaging station whose measurements 
may be in error).

Regularization Groups
Observations and prior-information equations can be 

assigned to regularization groups rather than to observation 
groups. An observation group is deemed to be a regulariza-
tion group if its name begins with the letters “regul.” Weights 
assigned to regularization groups are subject to global 
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adjustment when PEST is run in “regularization mode.” 
They can also be subject to interregularization group weights 
adjustment in accordance with the setting provided for the 
IREGADJ regularization control variable.

Observation Data

Measured values for observations making up the calibra-
tion dataset, as well as weights assigned to observations, are 
supplied in the “observation data” section of the PEST Control 
File. Observations are also assigned to groups within this 
section.

The following should be noted:
1.	 The weight assigned to an observation is overridden if a 

covariance matrix is supplied for the group to which the 
observation belongs.

2.	 A weight of zero (unless overridden by a covariance 
matrix) effectively removes an observation from the 
parameter-estimation process; the simulated value associ-
ated with the zero-weighted observation is nevertheless 
reported in all pertinent PEST output files. The sensitivity 
of the associated model output with respect to all adjust-
able parameters is also computed.

Sensitivities are recorded in the *.jco file written by PEST. 
In some instances a zero-weighted “observation” cited in 
a PEST Control File may actually be a model prediction 
of interest. The fact that its sensitivities are computed and 
recorded in the *.jco file, notwithstanding its zero-weighted 
status in the calibration process, allows easy implementation 
of postcalibration uncertainty analysis for that prediction. 

Model Command Line

The “model” as run by PEST can be a discrete execut-
able, or it can be a batch/script file comprised of many execut-
ables run in succession. In most cases, the latter “composite 
model” approach is used. Certain rules should be followed in 
writing a model batch or script file to ensure optimal PEST 
performance:
1.	 Parameter-sensitive information passed between execut-

able programs through ASCII files should be written with 
maximum numerical precision to those files. This practice 
enhances the accuracy of finite-difference-based deriva-
tives of model outputs with respect to adjustable param-
eters.

2.	 Commands to delete all files that are written by one exe-
cutable program and read by another with the composite 
model batch file should be placed at the top of the batch 
or script file. Thus, if a program fails to run or encounters 
an error condition, the program that follows it will also 
encounter an error condition and, most importantly, the 

program that writes files that PEST actually reads will 
also encounter an error condition because an expected 
input file is missing. This last program thus fails to write 
the overall model output file(s) that PEST expects (which 
PEST deletes itself before running the model). PEST 
will then terminate execution with an appropriate error 
message. If this precaution is not taken, an executable 
program that follows a failed program in the model batch/
script file may read an old version of its input file instead 
of a file that should have been overwritten by the previous 
program. The outcome of such failure will be an incorrect 
report of zero sensitivity of certain model outputs with 
respect to certain model parameters.

Model Input/Output

Where many observations are featured in the parameter-
estimation process, manual production of instruction files is 
tedious and error prone. Programs provided with the Ground-
water Data Utilities suite automate the generation of these files 
in many common parameter-estimation contexts—at the same 
time as they automate the naming of observations— and write 
measured values to the PEST Control File. See appendix 3 for 
further details.

Prior Information

Prior information can be used in both regularization and 
nonregularization settings, though the latter is often not con-
sidered optimal (see, for example, Hill and Tiedeman, 2007, 
p. 261). In the regularization setting, it can encapsulate some 
or all of the Tikhonov constraints required to ensure parameter 
estimability. In this case, the weights assigned to prior-infor-
mation equations are subject to global adjustment as PEST 
evaluates the strength with which regularization constraints 
must be applied in order to achieve (but not exceed) the level 
of model-to-measurement fit specified by the PHIMLIM regu-
larization control variable. Where prior-information equations 
are assigned to different regularization groups, intergroup 
relative weighting adjustment can be achieved through appro-
priate setting of the IREGADJ regularization control variable 
(discussed previously).

Where highly parameterized inversion is done, prior-
information equations that encapsulate Tikhonov constraints 
may number in the hundreds or even thousands. Where PEST 
input files are written by a graphical-user interface, prior-
information equations will have been written by that interface. 
Alternatively, utility software supplied with PEST, and with 
the Groundwater Data Utilities suite, can add prior-informa-
tion equations encapsulating one or a number of different 
regularization schema, to a PEST Control File.
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Regularization

If PEST is run in “regularization” mode (as specified 
in the first line of the Control File), the PEST Control File 
requires a “regularization” section, located at the end of the 
Control File. This section contains variables that control the 
use of Tikhonov Regularization in the calibration process. 
A few of these variables are now discussed.

Target Measurement Objective Function
The PHIMLIM variable should be set in accordance with 

the expected level of model-to-measurement misfit given the 
current model conceptualization (see, for example, Doherty, 
2003; and Fienen, Muffles, and Hunt, 2009); at the limit 
this represents the fit expected given the measurement noise 
associated with the observations. A companion variable is also 
required—PHIMACCEPT—which should be set between 
1 percent and 5 percent higher than PHIMLIM.

Unfortunately, the expected fit to a calibration dataset 
is rarely known until the calibration process is complete. 
Furthermore, most of this misfit is actually due to structural 
noise—that is, model-generated errors arising from an inabil-
ity of the model to replicate every nuance of the behavior of 
the system that it simulates (Moore and Doherty, 2005). In 
view of this, the following strategy can often be used to estab-
lish a suitable setting for PHIMLIM:
1.	 Make an initial PEST run with PHIMLIM set very 

low in order to determine the level of fit that PEST is 
capable of achieving. During this run, consider setting 
the FRACPHIM variable to 0.1 or 0.2. This supplies a 
temporary value for PHIMLIM, equal to this fraction of 
the current measurement objective function, for use at all 
stages of the parameter-estimation process.

2.	 If implementing SVD-Assisted parameter estimation, 
instruct PEST to write a sequence of base parameter 
value (*.bpa) files; these record the best parameter values 
achieved during successive iterations of the parameter-
estimation process.

3.	 Inspect the final calibrated parameter field. If signs 
of overfitting are apparent (such as unacceptable and 
unrealistic spatial variability of parameter values), set 
PHIMLIM to a value that is somewhat higher than the 
minimum measurement objective function attained 
through the parameter-estimation process; then repeat the 
calibration process with this setting. 

4.	 If implementing SVD-Assisted parameter estimation, 
inspect the best-fit parameter fields (calculated on the 
basis of successive *.bpa files) for signs of the onset 
of parameter field deterioration due to overfitting. 
The measurement objective function associated with this 
field gives a suitable lower bound for PHIMLIM.

5.	 If observation weights correspond to expected measurement 
error of each observation, set the PHIMLIM value equal to 
the number of nonzero weighted observations; this value 
may result in an acceptable balance between best fit and 
regularization constraints (Fienen, Muffles, and Hunt, 2009).

Regularization Objective Function
The closer the total measurement objective function is to 

PHIMLIM, the stronger the regularization preferred conditions 
are expressed in the parameter-estimation process. Moreover, the 
closer the regularization objective function is to zero, the greater 
is the extent to which parameters, or relations between parame-
ters, adhere to their default conditions. In PEST, Tikhonov regu-
larization is implemented as a constrained optimization process 
(Doherty, 2003) in which the regularization objective function is 
minimized subject to the constraint that the target measurement 
objective function rise no higher than PHIMLIM (if a desired 
PHIMLIM can actually be achieved). 

In practice, to reduce the model-run requirements of the 
regularized-inversion process, PEST ceases execution as soon 
as the measurement objective function falls below PHIMLIM. 
However, if the REGCONTINUE control variable is set to “con-
tinue,” PEST will continue the constrained optimization process 
until the regularization objective function is minimized (and the 
measurement objective function is exactly equal to PHIMLIM). 
This approach can mitigate the introduction of spurious hetero-
geneity to an estimated parameter field, but it may add consider-
ably to overall PEST run time.

Interregularization Weights Adjustment
Experience has demonstrated the importance of the IREG-

ADJ variable in enhancing the numerical stability of highly 
parameterized inversion in which regularization is wholly or 
partly implemented through the use of Tikhonov constraints. 
Use of this variable results in (1) stronger enforcement of 
Tikhonov constraints on those parameters (and/or parameter 
combinations) for which information content of the calibration 
dataset is low and (2) weaker enforcement on those parameters 
(or parameter combinations) for which it is higher. This strategy 
ensures that if PEST needs to reduce the overall regularization-
weight factor so that it can introduce heterogeneity where 
appropriate, then PEST’s ability to enforce Tikhonov constraints 
elsewhere within the model domain where data may be scarce is 
not compromised.

An IREGADJ setting of 1 (recommended), 2, or 3 allows 
regularization-weight adjustment to take place on a group-by-
group basis. A setting of 4 or 5, which implements subspace 
enhancement of Tikhonov constraints, allows weights adjust-
ment to take place on a constraint-by-constraint basis. At the 
time of writing, the suggested setting for subspace enhancement 
is 4; complementary control variables NOPTREGADJ and 
REGWEIGHTRAT should then be set to 1 and 50 respectively. 
FRACPHIM should be set to 0.0 when implementing subspace-
enhanced Tikhonov regularization. 
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SVD-Assist

Because of the high computational efficiencies gained 
through estimation of superparameters in lieu of native model 
parameters (Tonkin and Doherty, 2005), SVD-Assist is com-
monly employed for inversion in the highly parameterized 
context. Its implementation requires that sensitivities of 
model outputs with respect to all base model parameters first 
be computed; this computation takes place on the basis of a 
traditional PEST dataset (which normally includes Tikhonov 
regularization) in which the NOPTMAX control variable is set 
to −1 or −2. The PEST utility SVDAPREP is then run in order 
to create a PEST input dataset in which superparameters, rather 
than base parameters, are estimated. A number of issues can 
arise during implementation of SVD-Assisted parameter estima-
tion; these issues plus suggestions for using SVDAPREP, are 
discussed below.

Number of Superparameters
The SUPCALC utility provided with PEST assists the 

modeler in choosing an appropriate number of superparameters 
to estimate in any particular calibration context. However, expe-
rience has demonstrated that the number of superparameters 
suggested by SUPCALC is often too large because its computa-
tions fail to account for the contribution made to measurement 
uncertainty by structural noise of unknown covariance structure. 

In practice, irrespective of the basis on which it is chosen, 
a modeler’s choice of the number of superparameters to employ 
in the SVD-Assisted inversion process must be reviewed as 
that process proceeds. If that process shows signs of numerical 
instability (for example, an objective function that fluctuates 
rather than gradually falls in a monotonic fashion, a Marquardt 
Lambda that grows rather than diminishes, high condition 
numbers—greater than about 3,000—recorded in the *.cnd file, 
and/or introduction of excessive heterogeneity to estimated 
parameter fields), then the number of estimated superparam-
eters may need to be reduced. On the other hand, if condition 
numbers are low, and if a modeler feels that a better fit between 
model outputs and field data are reasonable, the number of esti-
mated superparameters should be increased.

The following considerations also are salient:
1.	 The number of superparameters that can be estimated may 

depend on the computing resources available to a modeler, 
including the number of processors available over which 
model runs can be parallelized.

2.	 If computing resources do not present a barrier to use of a 
large number of superparameters, it is better to err on the 
side of too many rather than too few superparameters in 
order to compensate for model nonlinearity. Concomitant 
use of Tikhonov regularization, and use of truncated SVD 
as a superparameter solution mechanism in addition to the 
SVD-Assisted inversion process, can prevent numerical 
instability that would otherwise follow from the use of too 
many superparameters.

Tikhonov Regularization
Use of Tikhonov regularization as part of the SVD-

Assisted parameter-estimation process is not integral to the 
success of that process, provided that few enough super-
parameters are estimated for the inverse problem of model 
calibration to be well posed, or provided that truncated SVD is 
employed as a solution device for estimation of superparam-
eters. However, use of Tikhonov regularization in the SVD-
Assisted parameter-estimation process does bring with it the 
following advantages:
1.	 It helps to guarantee reasonableness of estimated 

parameter values.

2.	 Use of a properly chosen PHIMLIM target measurement 
objective function can prevent overfitting of model out-
puts to field measurements.

3.	 Simultaneous use of two types of regularization (that is, 
SVD-Assist and Tikhonov Regularization) affords extra 
protection against numerical instability. It also allows a 
modeler to use more superparameters than are uniquely 
estimable on the basis of a given calibration dataset. This, 
in turn, allows some superparameters to move in and out 
of the calibration-solution subspace as the parameter-esti-
mation process progresses, thereby preventing degrada-
tion of that process through excessive model nonlinearity.

Precalibration Sensitivities 
As stated previously, before undertaking SVD-Assisted 

parameter estimation, a modeler must create a PEST input 
dataset on the basis of base model parameters. The following 
considerations are pertinent to creation of that PEST input 
dataset:
1.	 As for all regularized inversion, the initial values assigned 

to base parameters should be those of minimum preca-
libration error variance. In some cases these could be 
obtained through estimation of lumped/tied parameters on 
a global, layer-by-layer, or other basis.

2.	 Though not essential, it is advisable to add Tikhonov 
regularization to the base PEST Control File before, 
rather than after, calculation of pre-SVDA base parameter 
sensitivities. Doing so allows PEST to eliminate most 
of the computational burden associated with the first 
iteration of the forthcoming superparameter estimation 
exercise, because it is able to formulate superparameter 
sensitivities from base-parameter sensitivities by using 
information contained in this base-parameter sensitivity 
matrix, thereby obviating finite-difference computation of 
superparameter sensitivities.
Computation of sensitivities with respect to base param-

eters before starting SVD-Assisted parameter estimation can 
be the most time-consuming part of the entire highly param-
eterized inversion process. Consequently, if a modeler wishes 
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to alter some facet of a base parameter PEST Control File, the 
computational cost of Jacobian matrix recalculation for that 
file may be so heavy as to be a powerful disincentive to mak-
ing such a change. The JCO2JCO utility alleviates this burden 
by computing a Jacobian matrix file (that is, a *.jco file) for a 
new PEST Control File from that associated with an existing 
PEST Control File, provided that the new PEST Control File 
is altered from the first one in only the following ways:
1.	 No parameters are added to the existing PEST Control 

File; however, parameters in the existing PEST Control 
File can be fixed, tied, or removed from it.

2.	 No observations are added to the existing PEST Control 
File; however, observations in the exiting pest Control 
File can be removed or assigned new weights (or observa-
tion covariance matrices).

3.	 Prior information can be added or removed from the exist-
ing PEST Control File.
Other utilities provided with PEST can supplement the 

use of JCO2JCO, thereby allowing the above restrictions to be 
overcome. See the PEST documentation for details.

SVDAPREP Responses
The utility SVDAPREP is the easiest way to automati-

cally convert to a SVD-Assist-based parameter-estimation 
process. When run at the DOS prompt to create a PEST input 
dataset for SVD-Assisted parameter estimation, SVDAPREP 
issues a series of questions to which the user must respond. If 
run through a graphical user interface, these responses must 
be provided through the associated dialogue box. SVDAPREP 
offers defaults for most responses, these being acceptable on 
most occasions. Hence, only two responses to SVDAPREP 
queries are discussed here.

As described in detail in Doherty (2010a), SVDAPREP 
offers four options for computing superparameters from base 
parameters. These are

1.	 SVD based on Q1/2X;
2.	 SVD based on XTQX;
3.	 LSQR without orthogonalization;
4.	 LSQR with orthogonalization.

The first of these options should be chosen unless the number 
of parameters is very large (exceeds 2,500), in which case 
the third or fourth (recommended) option should be selected, 
because LSQR decomposition of the weighted Jacobian matrix 
is quicker than SVD decomposition of this matrix but is not 
as accurate. LSQR variables should be set to the following: 
LSQR_ATOL, LSQR_BTOL, LSQR_CONLIM and LSQR_
ITNLIM to 1e−10, 1e−10, 5e3 and 5e4 respectively. Selection 
of the first and second SVD options should lead to essentially 
identical superparameters. Where parameters outnumber 
observations, choice of the second option may lead to slightly 
faster computation of superparameters than choice of the first 
option. However, the difference in computation time is not 
great.

	 A later SVDAPREP option allows the modeler to 
automatically save interim results related to estimated param-
eters (*.bpa files) and the associated model-to-measured 
residuals (*.rei file). As described earlier, the optimal tradeoff 
between best fit and parameter reasonableness is difficult to 
know at the start of a parameter-estimation run. Being able 
to examine the interim parameter sets and associated fit as 
parameter estimation progresses is a valuable diagnostic tool 
to evaluate this tradeoff. Saving of both these interim results is 
invoked when the option “br” is returned to the SVDAPREP 
query: “Write multiple BPA, JCO, REI, none [b/j/r/n] files 
(<Enter> if “n”)?”

Enhancing SVD-Assist by Also Including SVD
When creating a PEST Control File for SVD-Assisted 

parameter estimation, SVDAPREP transfers as much informa-
tion from the base PEST Control File to the new superparame-
ter PEST Control File as is relevant to the latter file, including 
all parameter-estimation and regularization control variables. 
Moreover, if PEST is instructed to use truncated SVD as a 
solution mechanism for native model parameters in the base 
PEST Control File, it is instructed to use the same solution 
mechanism for superparameters in the new PEST Control File. 
Combining these two approaches has utility for calibrating 
highly parameterized groundwater models because it allows 
the modeler to carry a higher number of superparameters (thus 
enhancing calibration flexibility) than might be safely chosen 
in an SVD-Assist-only run because SVD constrains the num-
ber of SVD-Assist superparameters to only those that maintain 
numerical stability. As stated previously, this can be useful 
where a model is moderately to highly nonlinear. Estimated 
eigencomponents of the base parameter Jacobian matrix can 
then move in and out of the calibration solution space as the 
parameter-estimation process progresses.

The SVD section of the PEST Control File should be set 
so that the maximum number of singular values (MAXSING) 
is equal to the number of superparameters, so that the eigen-
value ratio (set through the EIGTHRESH variable) is used 
to calculate the number of superparameters that are actually 
estimated. As described previously, an EIGTHRESH setting 
between 10-5 and 10-7 is appropriate for most general SVD 
problems; this setting is also appropriate for adding SVD to 
an SVD-Assist PEST Control File. Use of a negative RLAM-
FAC value, which invokes a wide-ranging Marquardt Lambda 
search, can also enhance the ability of the SVD/SVD-Assisted 
parameter-estimation process to lower the measurement objec-
tive function, especially in contexts where model numerical 
imperfections may introduce noise to finite-difference-based 
derivatives.
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Parallel Processing

Because adding parameters is directly related to the 
parameter estimation computational effort, model-run paral-
lelization can add enormous efficiency to the calibration of 
highly parameterized models. When used in conjunction with 
SVD-Assist, hundreds—or even thousands—of parameters 
can be included in the model-calibration process, even when 
the model run times are moderate to long. With the increasing 
prevalence of multiprocessor desktop computers, clustered 
computing environments, and cloud computing (Luchette 
and others, 2009; Hunt and others, 2010), parallelization of 
model runs during the calibration process is likely to become 
the norm rather than the exception. Where parallelization 
opportunities are available to modelers through use of multiple 
personal computers, PEST-based parallelization of model runs 
is a relatively simple procedure. PEST can parallelize both the 
undertaking of model runs required to fill the Jacobian matrix, 
and the testing of parameter upgrades computed on the basis 
of different Marquardt Lambdas.

Model runs are made by a series of subordinate machines 
or processors under the control of a PEST master machine that 
manages the parameter-estimation process. PEST accesses 
the parallel-computing environment through three mecha-
nisms. The oldest is the parallel PEST (PPEST) approach 
that uses small message files to handle communications 
between processors. Only one additional run management 
file (*.rmf) is needed to run PPEST; it contains paralleliza-
tion information such as the working/run directory location 
associated with each processor. All other aspects of the PEST 
input are identical to that employed in a serial PEST run on 
a single machine. Recently, both a message-passing interface 
(MPI) and TCP/IP approach have been developed for PEST 
(BeoPEST: Schreuder, 2009; Hunt and others, 2010). With 
these approaches, a run management file is not required but 
is optional; when a run management file is not specified, 
parallel information is specified in the command used to start 
BeoPEST. See Schreuder (2009) and Doherty (2010c) for 
detailed instructions on using these advanced parallel-process-
ing capabilities.

Marquardt Lambda
PEST will attempt to parallelize the testing of parameter 

upgrades based on different Marquardt Lambdas if the PAR-
LAM variable in the Parallel PEST run management file is set 
to 1. It will initiate as many model runs as there are processors 
available, up to a maximum of 20, provided that those runs 
will be completed in roughly the same time. This can result in 
some wastage of model runs because the Marquardt Lambda 
testing procedure is inherently serial; nevertheless, wasted 
runs are of little significance if processors are otherwise stand-
ing idle. If PARLAM is set to a negative number, PEST limits 
the number of model runs constituting any Marquardt Lambda 
testing procedure to the absolute value of the number supplied. 

A value of −5 is suggested for PARLAM, but a higher setting 
can be used if many processors are available.

Unless PEST is undertaking SVD-Assisted parameter 
estimation, if one or more parameters encounter their upper or 
lower bounds during any iteration of the parameter-estimation 
process, the Marquardt Lambda parallelization process is 
temporarily abandoned: the lambda testing procedure needed 
for a parameter upgrade must then be run as a serial process 
because PEST sequentially fixes parameters at their bounds. 
This approach to reducing the dimensionality of the param-
eter-estimation problem results in enhanced performance 
when parameters are tightly bounded. However, this artifact 
limits the efficiency of the parameter-estimation process in a 
parallel-computing environment because processors are forced 
to stand idle until the serial lambda-testing procedure is com-
plete, which can negate the advantage of parallel processing 
when model run times are long.

A PARLAM setting of −9999 overcomes this problem. 
In this case, PEST abandons its serialization of lambda-based 
parameter upgrade testing, even if one or more parameters 
have encountered their bounds. Instead, it computes param-
eter upgrades on the basis of NUMLAM Marquardt Lambdas 
(NUMLAM is specified in the “control data” section of the 
PEST Control File) and parallelizes the search by concurrently 
testing the specified number of upgrades. Here it is assumed 
that NUMLAM is equal to, or less than, the number of proces-
sors to which Parallel PEST has access; Parallel PEST will 
reduce it to this number if this is not the case. Furthermore, 
it only does one round of lambda testing on these processors, 
accepting whatever set of parameters results in the lowest 
objective function at the end of that round. It then moves on to 
the next optimization iteration, where all available processors 
are reengaged for finite-difference- derivatives computation to 
fill the Jacobian Matrix. Where many processors are available 
to compute these derivatives, the need for a few extra optimi-
zation iterations to compensate for a diminished efficiency of 
the Marquardt Lambda testing procedure is usually worth the 
cost.

Model-Run Repetition
If the RUNREPEAT variable is set to 1 or is absent from 

the run management file, Parallel PEST will not accept that 
a model run has failed in its execution until it has attempted 
three repeats of that model run. This ensures that temporary 
network communications problems do not halt the entire 
parameter-estimation process. Although this setting can 
help guard against network-induced errors, it can also prove 
problematical during the testing phase of a new Parallel PEST 
inversion run, where model failure is more likely to be the 
source of the problem than network failure. During this testing 
phase, a modeler would benefit from knowing that a model 
error has arisen as soon as it occurs, rather than waiting until 
three unsuccessful attempts to rerun the model are completed. 
It is therefore recommended that RUNREPEAT be set to zero 
during the initial testing phase of Parallel PEST setup.
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Just Before Running PEST: Checking

Before running PEST—either for serial parameter esti-
mation on a single processor or in parallel on many proces-
sors—the PESTCHEK utility should be used to check the 
entire PEST input dataset. Only after PESTCHEK returns an 
error-free response should PEST be run. The TEMPCHEK 
and INSCHEK utilities also can be employed to restrict 
checking to individual template and instruction files, respec-
tively. PESTCHEK, however, checks the PEST Control File, 
together with all template and instruction files cited therein, 
for correctness, completeness, and consistency.

Running PEST
PEST can be run through the GUI for the model or from 

the command line of the terminal (UNIX/Linux/Macintosh) or 
DOS box (Windows) by typing PEST followed by the name of 
the PEST Control File. For brevity, the following discussion 
will assume that PEST is being run on a Windows platform in 
a DOS box, though the concepts and capabilities are available 
on the other platforms as well. When run from the DOS box, 
all pertinent files and utilities must be located in a directory 
cited in the PATH environment variable or reside in the PEST 
working directory for PEST to function properly. In the case 
of parallel processing, having all files in the PEST working 
directory creates a portable directory that ensures each proces-
sor used in the run will have all necessary files regardless of 
the PATH specified on the local processor. Regardless of how 
initiated, when running PEST it may become clear that user 
intervention is required before the normal termination of the 
PEST run. If this occurs, the following options are available. 

Stopping PEST

Terminating PEST execution by using the Ctl-C com-
mand is a brutal way of accomplishing this task. It can result 
in problematical model behavior on the next occasion that 
the model is run, because the operating system may believe 
that certain of its input or output files are still open. Termina-
tion by using Ctl-C also results in little or no output useful for 
diagnosing the cause of underlying problems.

A better way to stop PEST is to open another com-
mand box in the PEST working directory and type PSTOP 
or PSTOPST at the command prompt. PEST will then 
cease execution on completion of the current model run. If 
parallel PEST is being used rather than serial PEST, PEST 
will cease execution immediately on reception of the PSTOP 
or PSTOPST command. However, all model instances that 
are currently running will run to completion. If the PSTOP 
command is employed, the various processors will remain 
active on completion of the current model run and will thus 
be able to detect a Parallel PEST restart without additional 

user intervention. In contrast, if the PSTOPST command is 
employed, all processors will terminate on completion of their 
current model run and will need to be restarted by the user 
before re-launching parallel PEST. 

Irrespective of whether the serial or parallel version of 
PEST is running, if the PSTOPST command rather than the 
PSTOP command is used to terminate PEST execution, PEST 
will calculate parameter and observation statistics and write 
them to pertinent output files before ceasing execution. In most 
circumstances it will also make one final model run on the 
basis of best parameters achieved up until that point. This last 
run will not occur when SVD-Assisted parameter estimation is 
being done, as discussed below.

Restarting PEST

Various switches can be used for restarting a previously 
stopped PEST run; these switches are invoked at the end of the 
command line used to start PEST. The “/r” switch restarts PEST 
at the beginning of the iteration in which its execution was 
previously halted. The “/j” switch restarts PEST at that point 
where computation of the Jacobian matrix was last completed; 
this is the appropriate switch to employ if undertaking manual 
intervention for temporarily holding troublesome parameters. 

The “/d” and “/s” switches accomplish the same role; 
however, the latter must be used with Parallel PEST, whereas 
the former must be used with serial PEST. If PEST execution 
had previously been terminated while it was filling the Jaco-
bian matrix, use of either of these switches will cause PEST to 
restart at exactly the same model run at which its execution was 
previously interrupted, thus preserving elements of the Jacobian 
matrix already calculated. 

If started with the “/i” switch, PEST prompts for the name 
of a Jacobian matrix file (*.jco file). It will use derivatives from 
this file, rather than those that it calculates itself, during its first 
optimization iteration.  

Pausing PEST

PEST execution can be paused by typing PPAUSE in 
another command-line window which is open to the PEST 
working directory. Parallel PEST will pause execution imme-
diately; all processors will pause once they have finished their 
current model run. In contrast, serial PEST will pause execution 
on completion of its current model run. In both cases, a modeler 
can then import model input or output files into appropri-
ate visualization or plotting programs for display of interim 
calibration results. Conflicts in access to model input/output 
files by the model on the one hand, and by visualization/dis-
play software on the other hand, are thereby avoided. A paused 
PEST run can be restarted by typing PUNPAUSE in the same 
command line box as that from which the PPAUSE command 
was issued.
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Monitoring PEST Performance
This section discusses how a modeler can monitor the 

performance of the parameter-estimation process as PEST 
runs and how problematical behavior can be recognized and 
remedied. The first subsection of this section pertains to clas-
sical parameter estimation, in which it is assumed that PEST 
has been provided with a well-posed (sparsely parameterized) 
inverse problem. It is also assumed that no regularization has 
been employed in the parameter-estimation process. In this 
context monitoring of PEST performance focuses on ensur-
ing that the inverse problem is indeed well posed. Although 
such attention to well-posedness is less critical when regular-
ized inversion is properly implemented, it is nevertheless an 
important concern in the regularized inversion context because 
the onset of ill-posedness indicates a breakdown in the user-
supplied regularization mechanism. Other problems that can 
afflict PEST in the classical parameter-estimation setting, such 
as problems associated with bad derivatives, are also problem-
atic for regularized inversion of highly parameterized models. 
Hence, much of the discussion in the first of the following sub-
sections is relevant to highly parameterized inversion as well.

Classical Calibration of Sparsely Parameterized 
Models

Well-Posedness
The following are signs that the parameter estimation 

problem may not be well posed:
1.	 The Marquardt Lambda rises rather than falls as the 

parameter-estimation process progresses.

2.	 Condition numbers recorded in the “condition number 
file” (that is, the *.cnd file) are greater than about 3,000.

3.	 The reported “maximum factor change” or “maximum 
relative change” undergone by any parameter during a 
particular optimization iteration (particularly later itera-
tions) is equal to the global parameter factor or relative 
change limit FACPARMAX or RELPARMAX. Maximum 
factor and relative parameter changes are written both 
to the screen and to the run record file at the end of each 
optimization iteration.

4.	 If the IEIG variable in the “control data” section of the 
PEST Control File is set to 1, PEST records eigenvalues 
and eigenvectors of the current parameter covariance 
matrix to its “matrix file” (that is, *.mtt file) at the end of 
every optimization iteration. If PEST reports that it cannot 
invert the “normal matrix” to compute the current param-
eter covariance matrix, or if the ratio of highest to lowest 
eigenvalue of this matrix is greater than about 107, the 
inverse problem is ill conditioned. At best, values for at 

least some parameters will be highly uncertain. At worst, 
PEST’s progress in lowering the objective function will 
have been compromised.

5.	 If the ratio of highest to lowest composite parameter sen-
sitivity recorded in the “composite parameter sensitivity 
file” (that is, *.sen file) is greater than about 100, this too 
indicates that the current parameter estimation problem 
may be so ill-conditioned as to hamper PEST’s ability to 
lower the objective function.

Identifying Troublesome Parameters
Troublesome parameters are usually those that have 

little or no sensitivity to observations contained in the cali-
bration dataset and/or those that are highly correlated with 
other parameters. Sensitivities are listed in the sensitivity 
(*.sen) file; correlation information is listed in both the run 
record (*.rec) file and in the matrix (*.mtt) file, updated dur-
ing every iteration of the parameter-estimation process. If 
eigenvalues and eigenvectors cannot be computed because of 
ill-posedness, then parameters identified as having smallest 
composite sensitivity are good candidates for being deemed 
“troublesome.” So too are parameters that have been identified 
as having undergone the greatest relative or factor change dur-
ing a recent optimization iteration, with the exception of the 
beginning of the parameter-estimation process when highly 
estimable parameters are expected to change appreciably.

Accommodating Troublesome Parameters
Ideally, troublesome parameters should be fixed, or tied 

to other parameters, and the parameter-estimation process 
restarted, because better estimates for these parameters can 
probably be supplied by the modeler than by the parameter-
estimation process. Alternatively, the parameter estimation 
process can be stopped and restarted from the point at which 
computation of the Jacobian matrix was most recently com-
pleted by using the “/j” switch. Upon restarting, PEST can be 
instructed to temporarily hold troublesome parameters at their 
current values by using a user-prepared “parameter hold file” 
(see Doherty, 2010a, for more details).

To some extent, problems caused by troublesome param-
eters can also be addressed by using PEST’s “automatic user 
intervention” functionality, which is implemented by using an 
“aui” flag in the “control data” section of the PEST Control 
File. This gives PEST the ability to make substantial progress 
in lowering the objective function, even where it has been 
presented with an ill-posed inverse problem by sequentially 
(and temporarily) removing troublesome parameters from 
the parameter-estimation process. Although this brute-force 
approach can often achieve more successful parameter-
estimation results, it requires many more model runs than a 
non-aui PEST run. Moreover, a theoretically better means of 
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accommodating ill-posedness is to employ one of the devices 
for mathematical regularization described previously, for these 
are more likely to lead to a solution to an ill-posed inverse 
problem that approaches minimum error variance than that 
obtained through automatic user intervention. Nevertheless, 
automatic user intervention can prove useful in allowing 
PEST to traverse objective-function surfaces that are pitted 
with local minima (owing to poor model design or numerical 
malperformance; see Kavetski and others, 2006). 

Identifying Bad Derivatives
Ideally, as the parameter-estimation process progresses, 

the objective function should fall (often sharply at first if 
no precalibration parameter adjustment was done) and then 
gradually flatten out in a monotonic fashion. This should 
occur until the objective function falls no further, causing 
PEST to terminate the parameter-estimation process because 
improvements in the objective function are too small to justify 
continuing. A sudden interruption in this descent after one 
or two iterations is an indication that model malperformance 
is hampering PEST’s ability to lower the objective function. 
Instead of lowering, the objective function may climb or 
bounce between higher and lower values during subsequent 
optimization iterations. The objective function may also show 
dramatic variability as different Marquardt Lambda values are 
tested during each iteration. Although an ill-posed problem 
can also show these signs, such phenomena are expected from 
errors in the finite-difference computed derivatives used to 
calculate the Jacobian matrix (fig. 1). Bad-derivative artifacts 
can be identified through ascertaining whether the ratio of 
highest to lowest eigenvalue of the current parameter covari-
ance matrix (recorded in the *.mtt file) is not unduly high (for 
example, less than 107), with the same applying to condition 
numbers recorded in the *.cnd file (for example less than 
3000). If these ratios are not unduly high, ill-posedness is not 
likely, and poor PEST performance most likely stems from 
errors in finite-difference-computed derivatives. The deriva-
tives of user-specified parameters can be formally tested by 
using the JACTEST utility described below. 

Accommodating Bad Derivatives
Experience has demonstrated that the Gauss-Marquardt-

Levenberg method of parameter estimation is somewhat 
robust in the face of poor model numerical performance. 
Nevertheless, there will always be an upper limit to which 
bad derivatives can be accommodated, because a Jacobian 
(sensitivity) matrix is a fundamental component of the Gauss-
Marquardt-Levenberg algorithm on which PEST is based. 
Where numerical malperformance is such that finite-difference 
derivatives have little or no utility, then a global optimizer 
such as CMAES_P or SCEUA_P (see below) must be used in 
place of a sensitivity-based method. However, use of global 
methodologies comes at a high cost in terms of model runs, 

with the model-run burden increasing enormously as the num-
ber of estimated parameters increases. Furthermore, global 
methodologies cannot be used efficiently in conjunction with 
either subspace or Tikhonov regularization schemes as cur-
rently implemented in PEST.

If model numerical malperformance is bad enough to 
erode the quality of finite-difference-based derivatives but not 
so bad as to completely undermine their integrity, then the 
effect of inferior derivatives on the parameter-estimation pro-
cess can be mitigated to some degree through the use of either 
or both of two strategies offered by PEST. These strategies are 
“split slope analysis” and a variant of the automatic user-inter-
vention strategy discussed previously. Both are costly in terms 
of their model-run requirements but are much less costly than 
the use of global optimizers. 

If requested by the user, split slope analysis is imple-
mented by PEST whenever two model runs, rather than a sin-
gle model run, are devoted to the calculation of derivatives of 
model outputs with respect to adjustable parameters by using 
finite differences. For the first of these runs the parameter is 
incremented by a small amount; it is then decremented by the 
same amount for the second model run. For each model output 
that corresponds to an observation, two slopes are available 
for comparison. If these are markedly different, then at least 
one of these slopes is likely to have been corrupted as a result 
of a bad derivatives calculation associated with model output 
granularity. Normally, the derivatives are best computed by 
using the three points (original parameter value and decre-
mented and incremented values); for example, by fitting of a 
quadratic to these points and obtaining analytical derivatives 
of the quadratic at current parameter values. However, when 
split slope analysis indicates potentially bad derivatives the 
smaller slope is taken as an approximation to local derivatives. 
Alternatively, a slope of zero can be assigned instead indicat-
ing that no change is warranted because none can be trusted; 
it is the user’s choice.

PEST’s split slope analysis is implemented according 
to settings supplied in the “parameter groups” section of the 
PEST Control File. Three variables (SPLITTHRESH, SPLI-
TRELDIFF, and SPLITACTION) are optional; however, if one 
of them is supplied for a particular parameter group, then all of 
them must be supplied for that group. The first two variables 
are absolute and relative thresholds for invoking the split-slope 
capability; the last variable specifies the action taken when a 
slope ratio exceeds a user-supplied threshold. Three actions 
are available: (1) take the smaller of the two slopes, (2) set 
the slope equal to zero for the current iteration, and (3) set the 
slope equal to that calculated in the previous iteration. Doherty 
(2010b) describes these optional variables in more detail.

The special case of automatic user intervention (aui) dis-
cussed previously can also be invoked by the user to mitigate 
the adverse effects of bad derivative calculation. Setting the 
DOAUI variable in the PEST Control File to “auid” alters the 
operation of the automatic user intervention so that sensitive, 
rather than insensitive, parameters are selectively removed 
from the parameter-estimation process. The use of the auid 
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option involves the assumption that any apparent extraordinary 
sensitivity is evidence of miscalculation of finite-difference 
derivatives. For the current iteration, PEST will then sequen-
tially eliminate parameters with unduly high sensitivities from 
the parameter-estimation process. This temporary removal 
allows the user to test whether an effective lowering in the 
objective function can be achieved by removing parameters 
suspected of having bad derivatives. 

Phi Gradient Zero
If PEST ceases execution with the message “phi gradi-

ent zero,” it means that the updated objective function exactly 
equals the previous objective function. This is an unlikely 
occurrence, thus indicating that the model is incorrectly set up 
or that there are issues with the setup of PEST’s communication 
with the model. Most commonly, PEST has been told to create 
a model input file (in the “model input/output” section of the 
PEST Control File) that is not actually called by the model. As a 
result, although PEST may write to one model input file before 
each model run, the model actually reads another (non-updated) 
input file. Given the file does not change from model run to 
model run, zero sensitivity of all parameters associated with 
that particular input file results; if this is the only model input 
file created by PEST, it will report “phi gradient zero.” If there 
is more than one model input file listed in the “model input/out-
put” section of the PEST Control File and not all are incorrectly 
named, then a “phi gradient zero” condition will not be reported 
(because at least some of the parameters will be changed from 
run to run). However, this condition can still be recognized by 
the occurrence of zero composite sensitivities for some param-
eters in the composite parameter sensitivity (*.sen) file. Zero-
valued composite observation sensitivities as recorded in the 
composite observation sensitivity file (that is, the *.seo file) also 
can provide evidence that a model input file has been misnamed 
in the PEST Control File. 

The presence of prior information in a PEST Control 
File (as is often employed for implementation of Tikhonov 
regularization) can prevent evidence of parameter insensitivity 
from being expressed in the *.sen file in the manner discussed 
previously, because prior information creates sensitivity for 
any parameter that it features (this is its role, after all). In many 
circumstances, problems of this kind can still be recognized. 
If all adjustable parameters are featured in at least one prior-
information equation (as is typical where Tikhonov regulariza-
tion is employed), then the occurrence of wrongly named model 
input files can often be recognized through relative uniformity 
of composite parameter sensitivities in place of the higher 
degree of natural variability that is more common where many 
parameters are featured in the parameter-estimation process. 

In some instances, a “phi gradient zero” outcome can arise 
where the model run by PEST consists of a series of executable 
programs encapsulated in a batch file, and one of these pro-
grams either fails to run or does not trap a bad result forthcom-
ing from a previous program. In this case, the model input file 
is not changed because of an error in an intermediate program, 

and an older version of the file residing in the run directory 
is used instead. As discussed previously, this situation can be 
avoided by deleting intermediate files through which model 
components cited in a batch process pass information to each 
other before subsequent components are run. This is achieved 
by placing deletion commands for all intermediate files at the 
beginning of the batch file.

Regularized Inversion of Highly Parameterized 
Problems

In many respects, the monitoring of PEST’s performance 
when undertaking regularized inversion, whether regulariza-
tion is effected through truncated SVD, Tikhonov regulariza-
tion, SVD-Assist, or any combination of these, is similar to 
the monitoring of its performance when undertaking classical, 
overdetermined parameter estimation. In both cases, a primary 
concern is the detection of signs that the inversion process is 
failing due to a requirement that too many parameters require 
estimation based on a calibration dataset of limited infor-
mation content. However, in the case of regularized inver-
sion (which is specifically designed to accommodate such a 
situation), this is an indication that the chosen regularization 
method is inappropriate for the problem, is not as effective as 
was originally intended, or has failed as the parameter-estima-
tion process has progressed. 

When classical parameter estimation fails, the modeler 
has no choice but to remove/fix/tie parameters that are sus-
pected of being troublesome. Such inflexible measures are 
not required where parameter estimation is based on regular-
ized inversion; in this case, the remedy lies in adjusting the 
regularization strategy so that it is able to better accommodate 
the difficulties encountered in the current parameter estimation 
context.

Signs of Regularization Failure
Signs of regularization failure are similar to the signs that 

appear when classical parameter estimation faces problems 
due to attempted solution of an ill-posed inverse problem. 
They include the following:
1.	 Rising, rather than falling, values of the Marquardt 

Lambda as the parameter-estimation process progresses.

2.	 Condition numbers (recorded in the *.cnd file) that are 
greater than about 3,000;

3.	 Parameter estimates that change considerably or abruptly 
from iteration to iteration.

4.	 Unrealistic and extreme parameter estimates.

5.	 A (measurement) objective function trajectory that oscil-
lates from iteration to iteration, rather than falling or 
flattening.
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In relation to the second of the above points, a condi-
tion number (*.cnd) file is not available when singular value 
decomposition is specified for the solution mechanism. 
In that case, the condition number is preset to the inverse 
square root of the user-supplied EIGTHRESH variable, if 
this variable (rather than the MAXSING variable) is used to 
determine the singular-value truncation point. However, if the 
truncation point is determined by the MAXSING variable, 
condition numbers associated with the current problem can be 
determined in the following manner:
1.	 Open the singular value decomposition (*.svd) file written 

by PEST; this is updated on every occasion that a param-
eter upgrade is tested.

2.	 From the list of singular values provided in that file, com-
pute the ratio of the lowest pre-truncation singular value to 
that of the highest singular value.

3.	 The square root of the inverse of this number is the condi-
tion number associated with the current inverse problem.

Rectifying Problems in Regularized Inversion: 
Tikhonov Regularization

If Tikhonov regularization is being employed, an obvious 
mechanism for rectifying problem ill-posedness is to increase 
the target measurement objective function (PHIMLIM) so that 
regularization constraints are more strongly enforced. This will 
also reduce the probability of introducing spurious heterogene-
ity into the estimated parameter field as a result of attempting 
to achieve too good a fit between model outputs and field data.

In many cases, however, it may appear that the Tikhonov 
regularization process has failed before a model-to-measure-
ment fit that is worthy of the data (and the model) has been 
gained. This arises from difficulties involved in applying Tik-
honov constraints strongly in some parts of the model domain, 
where data density is low, while simultaneously releasing their 
application in other parts of the model domain, where data den-
sity is high and indicative of local heterogeneity. This problem 
can be ameliorated through allowing PEST to vary the strength 
with which regularization constraints are applied, either on a 
regularization group by regularization group basis (through 
setting the IREGADJ control variable to 1, 2 or 3) or through 
subspace enhancement of the Tikhonov regularization process 
(through setting the IREGADJ control variable to 4 or 5).

Rectifying Problems in Regularized Inversion: 
Subspace Regularization 

When undertaking SVD-Assisted parameter estima-
tion, ill-posedness of the inverse problem can be rectified by 
reducing the number of superparameters for which estimation 
is being attempted. This can be achieved by rerunning the 
SVDAPREP utility to build a new superparameter-based PEST 

Control File; superparameters of low rank (high parameter 
number) can also be directly removed from the estimation 
process by the user by changing the status of a subset of the 
existing superparameters to “fixed” in the “parameter data” 
section of the PEST Control File. However, as described 
previously, using SVD on an SVD-Assisted run can also be 
used to regularize the inverse problem by flexibly limiting the 
number of estimated superparameters to those supported by 
the calibration dataset on an iteration-by-iteration basis. When 
SVD is employed (whether or not in the context of SVD-
Assisted parameter estimation), the number of singular values 
is decreased and numerical stability is enhanced by increasing 
the value of the EIGTHRESH control variable.

In a previous section it was suggested that an optimal 
strategy for calibrating highly parameterized groundwater 
models is SVD-Assisted model calibration accompanied by 
the use of Tikhonov regularization, with SVD employed as a 
solution mechanism for superparameters. In this case, a mod-
eler has the ability to employ any one of the three mechanisms 
discussed in previous paragraphs to obtain better behavior 
of the regularized inversion process. Indeed, this solution 
flexibility constitutes a strong case for using all of these 
three methods in concert. However, it was also stated previ-
ously that use of a higher number of superparameters affords 
SVD-Assisted parameter estimation protection from adverse 
effects of model nonlinearity. Hence, when all three of these 
regularization mechanisms are employed, it is recommended 
that the Tikhonov regularization component be adjusted first 
to obtain improvements to a regularized inversion process. 
If this adjustment does not achieve the desired result, the SVD 
EIGTHRESH variable should be raised. In the event that prob-
lems still persist, the number of estimated superparameters can 
be manually reduced.

Final Model Run

Automatic Final Model Run
Unless PEST is conducting SVD-Assisted parameter 

estimation, it calls a final model run based on optimized 
parameters once the parameter-estimation process has reached 
completion. Thus, when PEST terminates execution, model 
input files will contain optimized parameters, and model out-
put files will contain model-generated quantities computed on 
the basis of optimized parameters.

Manual Final Model Run
When PEST is implementing SVD-Assisted parameter 

estimation, it cannot make such a final model run because 
the link between optimized superparameters and correspond-
ing base parameters may have been lost in iterations since 
the optimized objective function was achieved. The user 
must therefore do this final model run manually by using the 
approach below:



30    Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration

1.	 When PEST does SVD-Assisted parameter estimation, 
the best-fit base parameter values are recorded in a “base 
parameter value” file (that is, a *.bpa file). Note that the 
filename of a *.bpa file is derived from the base parameter 
PEST Control File from which the SVD-Assist dataset 
was constructed by using SVDAPREP. The PARREP 
(“PARameter REPlace”) utility can be used to build a new 
base parameter PEST Control File that is identical to the 
existing one except for the replacement of initial param-
eter values with optimal values read from the *.bpa file.

2.	 The user should set NOPTMAX to zero in the newly 
created base parameter PEST Control File.

3.	 The user can then run PEST, based on the new PEST 
Control File.
For non-SVD-Assisted parameter estimation, best-fit 

parameter values are recorded in a parameter value file (that is, 
*.par file); this has the same filename base as that of the PEST 
Control File on which the parameter-estimation process is 
based. The procedure for undertaking a single model run based 
on optimized parameter values is identical to that described 
above, except for use of a *.par file instead of a *.bpa file.

Evaluation of Results
The process of model calibration normally involves 

repeated PEST runs, with the strategy for one particular run 
often being designed to overcome problems encountered on 
the previous PEST run. Highly parameterized inversion, as 
implemented by PEST and its utility support software, offers 
many options for the design of regularization methodology 
that is optimal for a particular context. Options include
1.	 the manner in which a preferred parameter condition is 

formulated;

2.	 the manner in which deviations from that condition 
should arise through the calibration process;

3.	 the strength with which regularization constraints are 
enforced, both globally and locally, within the model 
domain.

All of these options have been discussed in previous sections. 
Given the availability of these options, it is most likely that 
formulation of a suitable inverse problem, optimized for use 
in a particular modeling setting, can be achieved relatively 
rapidly. It must be pointed out, however, that at the time 
of writing, the application of regularized inversion to the 
calibration of groundwater models is still a relatively young 
endeavor. It is likely, therefore, that further research will result 
in additional options over time. This will strengthen the use 
of models in groundwater management by allowing them 
to make more complete use of both site data and geological 
expertise. Several metrics can be used to evaluate the out-
comes of a highly parameterized model-calibration exercise, 
and suggested subsequent steps, are now presented.

Level of Fit

Poorer Than Expected Fit
A question that must always be asked when assessing 

the outcomes of a highly parameterized inversion exercise is 
whether PEST has lowered the objective function to the extent 
possible for the current conceptual model. Although successful 
regularized inversion requires reasonable estimated param-
eters as well as the achievement of a good fit, the degree of fit 
attained should not be an artifact of numerical malperformance 
of PEST, or of the hydrologic model, or of inadequacies of the 
model as a simulator of subsurface processes within a study 
area, or of failure of the modeler to design a parameterization 
scheme that is adequately responsive to information contained 
within the calibration dataset.

If consideration is limited to factors affecting PEST 
performance, any of the following may explain a disappoint-
ing outcome of the parameter-estimation process (in terms of 
model-to-measurement fit):
1.	 Too high a setting for the PHIMLIM regulariza-

tion control variable (if using Tikhonov regularization).

2.	 Use of too few superparameters if using SVD-Assist.

3.	 Too high a value supplied for EIGTHRESH, or too low 
a value supplied for MAXSING (if employing SVD as a 
solution device for the inverse problem).

4.	 Problematical derivatives.

5.	 Numerical instability encountered through loss of 
Tikhonov constraints as too good a fit is sought.

To some extent the first and last of these factors are contra-
dictory. However, as has been discussed previously, use of a 
Tikhonov scheme that fails to allow heterogeneity to emerge 
where data density is high (and is indicative of such heteroge-
neity) at the same time as it exercises heavy constraints where 
data density is low can bestow ill-posedness on an inverse 
problem before a justifiable fit has been attained and, hence, 
before all information of relevance to the model parameteriza-
tion process has been extracted from the calibration dataset.

Means through which a better fit between model outputs 
and field measurements can be sought on subsequent PEST 
runs include the following:
1.	 Lower the PHIMLIM value specified.

2.	 Introduce greater flexibility to Tikhonov regularization 
through use of a suitable IREGADJ setting.

3.	 Use a greater number of superparameters (SVD-Assist).

4.	 Use a lower EIGTHRESH value (SVD).

5.	 Introduce more parameters (for example pilot-point 
parameters) to areas of the model domain where fits need 
to be improved.
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If, after all of these measures have been taken, the level 
of model-to-measurement fit is still unsatisfactory, and if poor 
derivatives as a result of model numerical malperformance can 
be ruled out, shortcomings in the conceptual model are likely. 
These shortcomings can occur as a result of its incapacity to 
simulate important processes because of issues with discretiz-
ing space and/or time; alternatively, it can result from mis-
specification of other aspects of model conceptualization. In 
the latter case, the model design must be revisited. However, 
because parameter flexibility is one of the strengths of highly 
parameterized inversion over classical methods of parameter 
estimation, failure to find a set of parameters that allows a 
model to replicate historical system behavior can be more 
readily attributed to model inadequacies than to parameteriza-
tion inadequacies. Such insight can enhance early detection of 
conceptual problems, thus facilitating their early amelioration.

Too Good a Fit
Use of large numbers of parameters in the calibration 

process, unaccompanied by a suitable regularization strategy, 
can readily lead to “overfitting” of model outputs to field mea-
surements such that the fit is unreasonable for the system mod-
eled. Fortunately, it is relatively easy to adjust a regularization 
scheme to lessen the degree of fit achieved during calibration. 
Mechanisms for achieving this (for example, raising the value 
of PHIMLIM) have already been discussed but are revisited 
here in the context of assessing estimated parameter values. 

Parameter Values

Unreasonable Parameter Values
In addition to evaluating how well the model simulates 

observed data, one of the outcomes of a model-calibration 
process (whether highly parameterized calibration or classical 
calibration) is an assessment of whether the optimal param-
eters are reasonable and representative. To make this assess-
ment, an evaluation of the level of noise associated with the 
calibration dataset is required. Much of this noise is structural 
noise resulting from simplifications to the real world required 
by the model, which in turn result in an inability to simulate 
nuances of behavior to which elements of the calibration 
dataset pertain. Where parameter estimation is done through 
classical means, a “reference variance” can be calculated from 
the minimized objective function σmin as

σ2
r = σmin/(n-m) 

where n is the number of observations making up the calibra-
tion dataset and m is the number of estimated parameters. 
On the presumption that weights are inversely proportional 
to measurement-error standard deviations (or the squares 
of these, depending on the formulation), the constant of 
proportionality between expected and achieved fit is thereby 
estimated.

Unfortunately, a reference variance cannot be com-
puted in the same way in the highly parameterized context, 
for minimization of the measurement objective function will 
probably result in overfitting. Moore and Doherty (2006) 
show that an assessment of the level of noise associated with 
the calibration dataset cannot be made without a concomitant 
assessment of the degree of heterogeneity introduced to the 
estimated parameter field through the calibration process. 
If an estimated parameter field that shows a high degree of 
spatial variability is acceptable, then the resulting high level 
of fit between model outputs and field measurements will 
result in a low objective function; acceptance of the estimated 
parameter field therefore implies assumption of a low level 
of measurement/structural noise associated with the calibra-
tion dataset. Conversely, if even a moderate level of spatial 
parameter variability is considered unacceptable, then model-
to-measurement fit must be sacrificed, this being an admission 
that the reference variance (and hence the amount of noise 
associated with the calibration dataset) is relatively high.

From this discussion it can be seen that evaluation of the 
outcomes of highly parameterized inversion must focus to a 
large extent on the modeler’s evaluation of the parameter field 
that arises from the calibration process. If a parameter field is 
judged to be unreasonable, measures discussed in the follow-
ing subsections can be employed.

Reduction of the Level of Fit 
Parameter fields that adhere too closely to preferred 

conditions as encapsulated in initial parameter values and/or in 
Tikhonov-regularization constraints can be estimated through 
any (or all) of the following means. These will inevitably 
result in an increase in the measurement objective function 
realized through the regularized inversion process.
1.	 Increasing the value of the target measurement objective 

function PHIMLIM.

2.	 Setting the REGCONTINUE regularization control 
variable to “continue.”

3.	 Decreasing the number of estimated superparameters.

4.	 Increasing the EIGTHRESH SVD control variable.

Local Aberrations in Parameter Fields
Highly parameterized inversion may lead to parameter 

fields that are generally satisfactory but that locally exhibit 
parametric aberrations such as “bullseyes” around pilot points 
or extreme parameter values abutting certain model boundar-
ies. In some instances, as Doherty, Fienen, and Hunt (2010) 
point out, these aberrations are a direct outcome of employ-
ing too few parameters in the inversion process; in this case 
they can be rectified through introducing more parameters to 
that process—especially in areas where certain observations 
within the calibration dataset suggest the existence of property 
heterogeneity. 



32    Approaches to Highly Parameterized Inversion: A Guide to Using PEST for Groundwater-Model Calibration

In other contexts, spurious values for estimated parameters 
may suggest to a modeler that property heterogeneity does 
indeed exist within a model domain; however, the modeler 
may not approve of the manner in which this heterogeneity is 
expressed in the calibrated parameter field. For example, a later-
ally continuous conductive fault at 45 degrees to the direction of 
ambient groundwater flow may be represented in a pilot-point-
based estimated parameter field as a string of local “bullseyes” 
of extreme pilot-point values that reflects the local effects on 
the flow system due to this feature. However, inclusion of such 
a fault explicitly in the calibrated parameter field may not have 
been possible (at least in initial PEST runs), because a modeler 
may not have been aware of its existence or location. In a case 
such as this, the use of highly parameterized inversion may have 
served the calibration process by simply alerting the modeler to 
the existence of the conductive feature, though the information 
content of the calibration dataset may have been insufficient to 
do much more than this. Skilful interpretation of the estimated 
parameter field may then suggest to the modeler a modified 
parameterization scheme that expresses inferred heterogeneity 
in a more meaningful geological context. For example, a modi-
fied scheme might employ an anisotropic covariance matrix in 
conjunction with preferred value Tikhonov constraints, thus 
promulgating continuity of emergent heterogeneity in a direc-
tion aligned with the expected fault—an additional constraint 
now considered geologically plausible.

Multiple Parameter Fields 
Because an “ideal” level of model-to-measurement misfit 

cannot be prescribed in most parameter-estimation contexts, 
and because Tikhonov regularization cannot ensure that inferred 
heterogeneity is perfectly reflective of geological conditions at 
all sites, a modeler will inevitably obtain a variety of param-
eter fields that can all be deemed to “calibrate” a model after 
multiple PEST runs have been completed. If advice provided in 
previous sections is followed, these parameter fields will likely 
be broadly similar. However, they will differ in their representa-
tion of heterogeneity that is, on the one hand, substantial enough 
to be supported by the calibration dataset (and not therefore 
deserving of relegation to the calibration null space) but on the 
other hand is not a completely well-defined feature of the model 
parameter field. This situation cannot be easily avoided because 
it is a problem with the calibration process itself rather than 
with the use of mathematical regularization as a calibration tool. 
Indeed, if regularization were done manually by predefining 
zones of piecewise constancy, a modeler would still be faced 
with choices pertaining to how heterogeneity should best be 
handled. However, the choices would be limited to variations 
in the geometry of a piecewise-constant field specified by the 
modeler, one that is usually less geologically representative than 
those achieved through highly parameterized inversion.

The fact that highly parameterized inversion can often 
offer a modeler a choice between a variety of reasonable param-
eter fields (that can then be ranked according to their geological 
appeal) should be seen as a strength of the method rather than a 

weakness. In selecting a preferred parameter field, however, it 
should be noted that the fields emerging from the calibration 
process can only be interpreted as simplified versions of the 
natural world. The selection of one of these fields over another 
as that which is deemed to “calibrate” the model should be 
based on considerations of what is most geologically likely 
or representative (minimum error variance in the statistical 
sense), and thus leading to predictions of minimum potential 
wrongness. 

Inasmuch as a model prediction depends on details of 
the modeled system, much of the potential wrongness associ-
ated with most model predictions arises from the fact that an 
optimal calibrated parameter field can be only as complex as 
the data can support and, in most cases, is far less complex 
than the natural world (Moore and Doherty 2005, 2006). 
The fact that various different simplified parameter fields are 
all compatible with a single calibration dataset demonstrates 
the inherent nonuniqueness of the inverse problem of model 
calibration. It also indicates that the degree of nonunique-
ness would be greater if the possible parameter fields used to 
make the prediction included additional geologically realistic 
complexity not supported by the current calibration data. Such 
an encompassing estimate of predictive uncertainty can be cal-
culated by using the null space Monte Carlo method (Tonkin 
and Doherty, 2009; Doherty, Hunt, and Tonkin, 2010). In this 
analysis, the uncertainty associated with any prediction that 
depends on realistic parameter detail that cannot be discerned 
from the calibration data will be higher than that calculated by 
selection of any one simplified parameter field. Compared to 
this, differences in prediction uncertainty resulting from the 
selection of different, but unrealistically simplified, parameter 
fields are likely to be small (Tonkin and Doherty, 2009). 

 Calibration as Hypothesis Testing

The process of model calibration can be viewed as appli-
cation of the principles of scientific analysis. Scientific analy-
sis advances our understanding of natural systems through a 
methodology based on hypothesis testing. In the groundwater-
modeling context, a current hypothesis regarding the workings 
of a natural system is encapsulated in the conceptual underpin-
nings of a numerical model. If the calibration process allows 
an acceptable fit to be achieved between outputs of that model 
and field measurements, and if the parameter field that gives 
rise to that fit is reasonable, then the hypothesis cannot be 
rejected. It cannot be supposed, however, that the hypothesis 
represents truth, because other hypotheses may also satisfy 
these conditions.

Viewed in this manner, the appearance of unreason-
able parameter values in a calibrated parameter field, and/
or a failure to obtain a good fit between model outputs and 
field measurements (except perhaps at the cost of unreason-
able parameter values) should be viewed as a step along the 
path of scientific inquiry into the environmental system under 
investigation. Hopefully, regularized inversion quickens the 
journey because it can quickly and robustly attain the best 
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parameter field possible given a conceptual model, even if the 
problem is ill posed. Moreover, regularized inversion allows 
the modeler to retain higher levels of parameter flexibility 
and thus is likely to further scientific inquiry more efficiently 
than classical parameter estimation techniques that presuppose 
necessarily simplistic parameter structures in order to achieve 
a well-posed inverse problem.

Other Issues

Calibration Postprocessing

Utilities available through the PEST suite include 
several postprocessing functions that can add value to the 
outcomes of the parameter-estimation process (for example, 
see Doherty, Hunt, and Tonkin, 2010). In fact, some of these 
tasks can be done before calibration is begun by using only 
precalibration parameter sensitivities calculated, for example, 
from a PEST run with NOPTMAX set to −1 or −2. Useful 
postprocessing tasks include the following:
1.	 Tabulation of postcalibration statistics pertinent to one 

or multiple individual parameters following classical 
parameter estimation (see the EIGPROC utility).

2.	 Tabulation of observation influence statistics (Yager, 
1998; Hunt and others, 2006) following classical 
parameter estimation (see the INFSTAT utility).

3.	 Computation of parameter identifiability and relative 
parameter error reduction following highly parameterized 
inversion by using the methodology of Doherty and Hunt 
(2009) (see the IDENTPAR and GENLINPRED utilities).

4.	 Calculation of base parameter components of each esti-
mated superparameter (see the PCLC2MAT utility).

5.	 Calculation of the resolution matrix through which the 
relation between estimated and real-world parameters is 
delineated (see the RESPROC and RESWRIT utilities).
Linear and nonlinear parameter and predictive uncer-

tainty analysis is also easily implemented as an adjunct to 
highly parameterized inversion. Included in such analyses are 
the ability to compute contributions by different parameter 
types to current predictive error variance (for example, Hunt 
and Doherty, 2006), as well as an ability to assess the efficacy 
of different data-acquisition strategies for reducing current 
predictive uncertainty (for example, Fienen and others, 2010). 
Recognizing the existence of geologic detail that cannot be 
represented in a calibrated model (and hence lies in the cali-
bration null space) is fundamental to the integrity of param-
eter estimation and predictive uncertainty analysis (Moore 
and Doherty, 2005). Hence, it is difficult to do such analyses 
with integrity as an adjunct to classical parameter estimation 
(Doherty and Hunt, 2010).

Evaluating Derivatives Used in the Calibration 
Process

Integrity of Finite-Difference Derivatives
Implementation of model calibration through highly 

parameterized inversion often rests on an ability to obtain 
derivatives of model outputs with respect to adjustable param-
eters. Where a model can compute these derivatives itself, 
PEST can make use of these through its external derivatives 
functionality. In other cases, derivatives must be calculated 
by using finite parameter differences. Where model outputs 
suffer from numerical granularity due to solver convergence 
difficulties, use of adaptive time-stepping schemes, the occur-
rence of dry cells, or other numerical imperfections, errors will 
be incurred in finite-difference derivatives calculation as one 
large number is subtracted from another to compute the (often 
small) difference between the two.

Means through which problems arising from poor model 
derivatives can be detected as the parameter-estimation pro-
cess progresses are discussed in a previous section. However, 
these means provide only an indication that derivatives may be 
problematical; they furnish no proof. Furthermore, they shed 
no light on the magnitude or details of the problem. This infor-
mation is available through use of the JACTEST and POST-
JACTEST utilities. After reading a PEST input dataset, the 
former program supervises the undertaking of multiple model 
runs (with an option to parallelize those runs) in which one 
parameter is sequentially and incrementally varied by the same 
amount as it is varied by PEST in computing finite-difference 
derivatives. Information resulting from this process can then 
be analysed by using POSTJACTEST.

Manipulation of Jacobian Matrix Files
The contents of a binary Jacobian matrix file (that is, a 

*.jco file) written by PEST can be rewritten in ASCII format 
for user inspection through use of the JACWRIT utility. Other 
utilities allow individual rows and columns to be extracted 
from this file for user inspection. See appendix 2 for details. 
The JCO2JCO utility converts a *.jco file pertaining to an 
existing PEST Control File to a new PEST Control File that 
has removed or transformed parameters and/or observations. 
However, no new parameters or observations can be added if 
this utility is to be used. Other utilities allow construction of a 
composite *.jco file from separate Jacobian submatrix files and 
reordering of existing *.jco files to form new ones. Again, see 
appendix 2 for details.

Global Optimizers

If a model’s numerical behavior is so poor that use of 
finite-difference-based derivatives becomes impossible, a 
modeler is left with no option but to employ a so-called global 
optimizer to effect computer-based reduction of the calibration 
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objective function. Two of these global optimizers are provided 
with the PEST suite. The first (CMAES_P) encapsulates the 
covariance matrix adaptation evolution scheme described by 
Hansen and Ostermeier (2001) and Hansen and others (2003); 
the second (SCEUA_P) implements the Shuffled-Complex 
Evolution algorithm described by Duan and others (1993). 
Either of these programs can be used interchangeably with 
PEST because they both read their input data from a PEST 
Control File, and they both interact with a model through the 
model’s own input/output files through the agency of template 
and instruction files, as does PEST. Both can undertake model 
runs in parallel. Experience to date suggests that the former of 
these programs is more efficient than the latter, especially if 
more than about 10 parameters are being estimted.

Summary of Guidelines
This guide suggests approaches for applying PEST and its 

utility software to the problem of groundwater-model calibra-
tion. PEST is still under development. Moreover, no guideline 
is expected to universally hold, and all guidelines are candi-
dates for future improvement. These issues notwithstanding, 
a general approach was presented that has utility for many 
groundwater-model-calibration problems. 

Approach for Parameterization: Regularized inversion 
is founded on the use of many parameters that are then con-
strained by historical measurements of system state together 
with soft knowledge encapsulated in mathematical regulariza-
tion. If a model is simple or designed for quick exploration 
or for processing of a small amount of data, then a classical 
approach to calibration based on traditional parameter estima-
tion may be acceptable. But if the simulated system is complex, 
with much time and resources invested in data collection, 
then a more encompassing regularized inversion approach to 
model calibration can ensure that information extracted from 
those data is maximized. Moreover, an approach based on 
regularized inversion can often be easier to implement than 
the classical approach because the modeler is not required to 
simplify the natural world a priori. As a general guide, use as 
many parameters as time and computing resources allow; but 
for current computing resources expect an upper practical limit 
of about 5,000. 

Approach for Observations: Formulation of a multi-
component objective function is essential for ensuring that all 
observations are seen by the parameter-estimation process. 
Place observations that are informative of different aspects of 
a model’s parameterization into different observation groups. 
Ensure that contributions made by different groups to the over-
all objective function at the start of the calibration process are 
approximately equivalent. If necessary, process the one calibra-
tion dataset in different ways to highlight different components 
of an overall objective function that are informative of different 
parameter types or to better reflect what the modeler holds to 
be important for evaluating model fit. For example, place inter-
layer head differences in one observation group and temporal 
head differences in another observation group.

Approach for Interjecting Soft Knowledge via Tikhonov 
Regularization: Because it is intended to interject the mod-
eler’s soft knowledge of a site into the parameter-estimation 
process, the level and type of Tikhonov regularization is 
expected to be as variable as the knowledge and whims of 
modelers themselves. The easiest way to add pervasive regu-
larization to a PEST Control File is through the ADDREG1 
utility; this automatically sets a preferred-value constraint 
for each parameter equal to the initial value of the parameter 
specified in the PEST Control File. This approach to regular-
ization is more effective if parameters of different types are 
assigned to different parameter groups, because different types 
will then be assigned to different regularization groups. This, 
in turn, allows the modeler to balance regularization weights 
in accordance with information (or absence of information) 
in the calibration dataset as it pertains to different parameters 
through the IREGADJ variable in the “regularization” sec-
tion of the PEST control file. ADDREG1 sets the IREGADJ 
regularization control variable to 1 (recommended), allowing 
PEST to adjust the regularization weight of each group so as 
to better complement the level of information corresponding to 
each parameter type contained within the calibration dataset. 
If Tikhonov constraints are still not being applied optimally, 
setting IREGADJ to 4 is suggested to implement subspace-
enhanced regularization. For early calibration runs, set the 
target measurement objective function (PHIMLIM) low, but 
use a FRACPHIM setting of 0.1 to ensure that Tikhonov 
constraints are still active. On later PEST runs, set PHIMLIM 
to a value that prevents too good a fit from incurring unreal-
istic parameter values. If observation weights are inversely 
proportional to the level of expected measurement noise, a 
PHIMLIM setting equal to the number of non-zero-weighted 
observations may provide a defensible tradeoff between 
attaining an acceptable level of model-to-measurement fit and 
adherence to the preferred parameter condition.

PEST Control Variables: Set RLAMBDA1 to 20 and 
RLAMFAC to −3. These settings allow rapid variation of 
the Marquardt Lambda in searching for optimal parameter 
improvement. 

Solution Mechanism: Use singular value decomposition 
(SVD) and/or SVD-Assist (see below). Set MAXSING to the 
number of adjustable parameters. Set EIGTHRESH to 5e−7. 
Alternatively, if you have more than about 2,500 parameters, 
use LSQR for calculation of parameter upgrades. Set LSQR_
ATOL, LSQR_BTOL, LSQR_CONLIM and LSQR_ITNLIM 
to 1e−10, 1e−10, 5e3 and 5e4, respectively.

Parameter Settings: Most highly parameterized prob-
lems benefit from use of a log transform on the estimated 
parameters. However, parameters that may become zero or 
negative cannot be log transformed. If untransformed param-
eters are excessively sensitive, adjust their SCALE to ensure 
that their sensitivities are of the approximate magnitude as that 
of other parameters (as reported in the *.sen file generated by 
PEST). Because highly parameterized models are character-
ized by insensitive and correlated parameters, the initial values 
specified for all estimated parameters have greater importance 
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than in classical parameter estimation. Ensure that initial 
parameter values are geologically reasonable and plausible for 
the site area.

Variables Governing Derivatives Calculation: In 
the “parameter groups” section of the PEST Control File, 
set DERINC to 0.01 and INCTYP to “relative.” However, 
ensure that an absolute lower bound is used for parameters 
that can become very small. Set FORCEN to “switch” and 
DERINCMUL to 2.0.

Checking and Initially Running PEST: Run the utility 
PESTCHEK on the PEST Control File before attempting to 
run PEST because this will do a comprehensive check of the 
integrity and consistency of many of the components of the 
PEST run. Fix any errors or unwanted warnings. Run PEST 
in a NOPTMAX=0 mode to obtain one forward model run 
that allows a full evaluation of PEST-to-model linkages and 
the model batch file. Use the reported objective function to 
evaluate the contributions of different observation groups to 
the overall objective function, and consider reweighting to 
obtain a more balanced starting objective function. When the 
initial objective function is appropriately balanced, run PEST 
using NOPTMAX=−1 to obtain information on parameter 
sensitivity and correlation, as well as obtaining the Jacobian 
matrix needed for singular value decomposition. Because each 
parameter will require at least one model run, the NOPT-
MAX=−1 run will benefit from parallel processing if the com-
putation capacity is available, either by using parallel PEST 
(PPEST, Doherty, 2010a) or BeoPEST (Schreuder, 2009).

SVD-Assist: Use SVD alone if sufficient computational 
resources are available for direct estimation of all adjustable 
parameters; use SVD-Assist if the high number of parameters 
is too computationally demanding. If using SVD-Assist, use as 
many superparameters as you have computing resources for, 
and add a singular value decomposition section to the PEST 
Control file to invoke SVD as the solution mechanism for 
SVD-Assist superparameters (see settings in “Solution Mecha-
nism” section of this summary). This strategy ensures that 
if one is estimating more superparameters than is justifiable 
on the basis of the observation dataset used to calibrate the 
model, the singular value decomposition solution mechanism 
will maintain numerical stability and will restrict estimation 
to the number of superparameters that are actually estimable. 
At the same time, specifying more superparameters than might 
be supportable grants the flexibility to move superparameters 
in and out of the solution space from iteration to iteration as 
supported by the field data, thus better addressing possible 
model nonlinearity. Use the SVDAPREP utility to create the 
SVD-Assist PEST Control File. Before running the utility (and 
before calculating the Jacobian matrix using the NOPTMAX 
= −1 or −2 option), employ Tikhonov regularization of base 
parameters and add a “singular value decomposition” sec-
tion to the base parameter PEST Control File. Respond to all 
pertinent SVDAPREP prompts with defaults. Two possible 
exceptions are as follows: select “SVD on Q^(1/2)X” (option 
1, default) for the solution type, unless using more than 2,500 
base parameters; if using more than 2,500 base parameters, 

choose option 4 (“LSQR with orthogonalisation”). In addi-
tion, the tradeoff of fit between observed and simulated values 
and parameter reasonableness is often most easily assessed if 
intermediate best parameter (*.bpa) and residual (*.rei) files 
are written during the SVD-Assist run. Choose these options 
in place of the default (“none”) by typing “br” at the appropri-
ate prompt. 

Postcalibration Analyses: Regularized inversion supplies 
a quantitative and comprehensive framework to perform useful 
ancillary post-calibration analyses. These can provide insights 
into the parameter-estimation process, the conceptual model 
tested through the calibration process, and the strengths and 
weaknesses of the calibration dataset. Utilities which perform 
highly parameterized post-calibration analyses are included in 
the PEST suite of programs. The INFSTAT utility can be used 
to assess what observations are influencing which parameters. 
IDENTPAR extends traditional sensitivity analysis by directly 
incorporating parameter correlation into an assessment of 
parameter identifiability. JACTEST allows inspection of the 
parameter-to-observation derivatives that drive the parameter-
estimation process. Finally, several postcalibration utilities can 
be used to formally investigate model parameter predictive 
uncertainty, as well as the worth of future data collection and 
network design for reducing this uncertainty. Approaches for 
applying these methods to highly parameterized problems are 
discussed in detail in Doherty, Hunt, and Tonkin (2010). 
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pcf
* control data
RSTFLE PESTMODE
NPAR NOBS NPARGP NPRIOR NOBSGP [MAXCOMPDIM]
NTPLFLE NINSFLE PRECIS DPOINT [NUMCOM] [JACFILE] [MESSFILE]
RLAMBDA1 RLAMFAC PHIRATSUF PHIREDLAM NUMLAM [JACUPDATE]
RELPARMAX FACPARMAX FACORIG [IBOUNDSTICK UPVECBEND]
PHIREDSWH [NOPTSWITCH] [SPLITSWH] [DOAUI] [DOSENREUSE]
NOPTMAX PHIREDSTP NPHISTP NPHINORED RELPARSTP NRELPAR [PHISTOPTHRESH] [LASTRUN] [PHIABANDON]
ICOV ICOR IEIG [IRES] [JCOSAVEITN] [REISAVEITN]
* automatic user intervention
MAXAUI AUISTARTOPT NOAUIPHIRAT AUIRESTITN
AUISENSRAT AUIHOLDMAXCHG AUINUMFREE
AUIPHIRATSUF AUIPHIRATACCEPT NAUINOACCEPT
* singular value decomposition
SVDMODE
MAXSING EIGTHRESH
EIGWRITE
* lsqr
LSQRMODE
LSQR_ATOL LSQR_BTOL LSQR_CONLIM LSQR_ITNLIM
LSQRWRITE
* svd assist
BASEPESTFILE
BASEJACFILE
SVDA_MULBPA SVDA_SCALADJ SVDA_EXTSUPER SVDA_SUPDERCALC
* sensitivity reuse
SENRELTHRESH  SENMAXREUSE
SENALLCALCINT  SENPREDWEIGHT  SENPIEXCLUDE
* parameter groups
PARGPNME INCTYP DERINC DERINCLB FORCEN DERINCMUL DERMTHD [SPLITTHRESH SPLITRELDIFF SPLITACTION]
(one such line for each of NPARGP parameter groups)
* parameter data
PARNME PARTRANS PARCHGLIM PARVAL1 PARLBND PARUBND PARGP SCALE OFFSET DERCOM
(one such line for each of NPAR parameters)
PARNME PARTIED
(one such line for each tied parameter)
* observation groups
OBGNME [GTARG] [COVFLE]
(one such line for each of NOBSGP observation group)
* observation data
OBSNME OBSVAL WEIGHT OBGNME
(one such line for each of NOBS observations)
* derivatives command line
DERCOMLINE
EXTDERFLE

Appendix 1.  Basic PEST Input

Structure of the PEST Control File

This appendix supplies a short description of all PEST variables. First, a list of all of these variables is provided, with each 
located in its proper place within the PEST Control File (variables enclosed in brackets are optional). This listing is followed by 
a series of tables that describe the role of each variable.
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* model command line
COMLINE
(one such line for each of NUMCOM command lines)
* model input/output
TEMPFLE INFLE
(one such line for each of NTPLFLE template files)
INSFLE OUTFLE
(one such line for each of NINSLFE instruction files)
* prior information
PILBL PIFAC * PARNME + PIFAC * log(PARNME) ... = PIVAL WEIGHT OBGNME
(one such line for each of NPRIOR articles of prior information)
* predictive analysis
NPREDMAXMIN [PREDNOISE]
PD0 PD1 PD2
ABSPREDLAM RELPREDLAM INITSCHFAC MULSCHFAC NSEARCH
ABSPREDSWH RELPREDSWH
NPREDNORED ABSPREDSTP RELPREDSTP NPREDSTP 
* regularisation
PHIMLIM  PHIMACCEPT [FRACPHIM] [MEMSAVE] 
WFINIT  WFMIN  WFMAX  [LINREG] [REGCONTINUE]
WFFAC  WFTOL IREGADJ [NOPTREGADJ REGWEIGHTRAT [REGSINGTHRESH]]

Figure 1–1.  Structure of the PEST Control File.

The following tables include a column labelled “usage,” which contains an index whose value is between 1 and 3. An index 
value of 3 indicates that the variable is likely to vary in value from PEST Control File to PEST Control File, this reflecting either 
the different nature of different parameter estimation problems, or the fact that, as a control variable, it is one that often re-
quires “tuning” to a particular calibration problem. On the other hand, a usage index value of 1 indicates that the variable rarely 
requires alteration from the value suggested in PEST documentation. A usage value of 2 indicates potential variability that is 
between these two extremes

Variables in the “control data” section of the PEST Control File.—Continued

Variable Type Values Usage Description

RSTFLE text “restart” or “norestart” 1 Instructs PEST whether to write restart data.
PESTMODE text “estimation,” “prediction,”  

“regularization”
3 PEST’s mode of operation.

NPAR integer greater than 0 3 Number of parameters.
NOBS integer greater than 0 3 Number of observations.
NPARGP integer greater than 0 3 Number of parameter groups.
NPRIOR integer 0 or greater 3 Number of prior-information equations.
NOBSGP integer greater than 0 3 Number of observation groups.
MAXCOMPDIM integer optional; 0 or greater 1 Number of elements in compressed Jacobian matrix.
NTPLFLE integer greater than 0 3 Number of template files.
NINSFLE integer greater than 0 3 Number of instruction files.
PRECIS text “single” or “double” 1 Format for writing parameter values to model input 

files.
DPOINT text “point” or “nopoint” 1 Omit decimal point in parameter values if possible.
NUMCOM integer optional; greater than 0 1 Number of command lines used to run model.
JACFILE integer optional; 0 or 1 1 Indicates whether model provides external derivatives 

file.
MESSFILE integer optional; 0 or 1 1 Indicates whether PEST should write PEST-to-model 

message file.
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Variables in the “control data” section of the PEST Control File.—Continued

Variable Type Values Usage Description

RLAMBDA1 real 0 or greater 2 Initial Marquardt Lambda.
RLAMFAC real positive or negative, but not 0 2 Dictates Marquardt Lambda adjustment process.
PHIRATSUF real between 0 and 1 1 Fractional objective function sufficient for end of  

current iteration.
PHIREDLAM real between 0 and 1 1 Termination criterion for Marquardt Lambda search.
NUMLAM integer 1 or greater 2 Maximum number of Marquardt Lambdas to test.
JACUPDATE integer optional; 0 or greater 2 Activation of Broyden’s Jacobian update procedure.
RELPARMAX real greater than 0 2 Parameter relative change limit.
FACPARMAX real greater than 1 2 Parameter factor change limit.
IBOUNDSTICK integer optional; 0 or greater 1 Instructs PEST not to compute derivatives for parameter 

at its bounds.
UPVECBEND integer optional; 0 or 1 1 Instructs PEST to bend parameter upgrade vector if 

parameter hits its bounds.
PHIREDSWH real between 0 and 1 1 Sets objective function change for introduction of  

central derivatives.
NOPTSWITCH integer optional; 1 or greater 1 Iteration before which PEST will not switch to central 

derivatives computation.
SPLITSWH real optional; 0 or greater 1 The factor by which the objective function rises to invoke 

split slope derivatives analysis until end of run.
DOAUI text “aui,” “auid,” or “noaui” 2 Instructs PEST to implement automatic user  

intervention.
DOSENREUSE text “senreuse” or “nosenreuse” 1 Instructs PEST to reuse parameter sensitivities
NOPTMAX integer −2, −1, 0, or any number greater 

than 0
3 Number of optimization iterations.

PHIREDSTP real greater than 0 2 Relative objective function reduction triggering  
termination.

NPHISTP integer greater than 0 2 Number of successive iterations over which  
PHIREDSTP applies.

NPHINORED integer greater than 0 2 Number of iterations since last drop in objective  
function to trigger termination.

RELPARSTP real greater than 0 2 Maximum relative parameter change triggering  
termination.

NRELPAR integer greater than 0 2 Number of successive iterations over which  
RELPARSTP applies.

PHISTOPTHRESH real optional; 0 or greater 1 Objective function threshold triggering termination.
LASTRUN integer optional; 0 or 1 1 Instructs PEST to undertake (or not) final model run 

with best parameters.
PHIABANDON real or text optional 1 Objective function value at which to abandon  

optimization process or filename containing  
abandonment schedule.

ICOV integer 0 or 1 1 Record covariance matrix in matrix file.
ICOR integer 0 or 1 1 Record correlation-coefficient matrix in matrix file
IEIG integer 0 or 1 1 Record eigenvectors in matrix file.
IRES integer 0 or 1 1 Record resolution data.
JCOSAVEITN text “jcosaveitn” or “nojcosaveitn” 1 Write current Jacobian matrix to iteration-specific *.jco 

file at the end of every optimization iteration.
REISAVEITN text “reisaveitn” or “noreisaveitn” 1 Store best-fit residuals to iteration-specific residuals file 

at end of every optimization iteration.
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Variables in the optional “automatic user intervention” section of the PEST Control File.

Variable Type Values Usage Description

MAXAUI integer 0 or greater 1 Maximum number of AUI iterations per optimization 
iteration.

AUISTARTOPT integer 1 or greater 1 Optimization iteration at which to begin AUI.

NOAUIPHIRAT real between 0 and 1 1 Relative objective function reduction threshold triggering 
AUI.

AUIRESTITN integer 0 or greater, but not 1 1 AUI rest interval expressed in optimization iterations.

AUISENSRAT real greater than 1 1 Composite parameter sensitivity ratio triggering AUI.

AUIHOLDMAXCHG integer 0 or 1 1 Instructs PEST to target parameters that change most 
when deciding which parameters to hold.

AUINUMFREE integer greater than 0 1 Cease AUI when only AUINUMFREE parameters are 
unheld.

AUIPHIRATSUF real between 0 and 1 1 Relative objective function improvement for termination 
of AUI.

AUIPHIRATACCEPT real between 0 and 1 1 Relative objective function reduction threshold for  
acceptance of AUI-calculated parameters.

NAUINOACCEPT integer greater than 0 1 Number of iterations since acceptance of parameter 
change for termination of AUI.

Variables in the optional “singular value decomposition” section of the PEST Control File.

Variable Type Values Usage Description

SVDMODE integer 0 or 1 3 Activates truncated singular value decomposition for 
solution of inverse problem.

MAXSING integer greater than 0 3 Number of singular values at which truncation occurs.

EIGTHRESH real 0 or greater, but less 
than 1

2 Eigenvalue ratio threshold for truncation.

EIGWRITE integer 0 or 1 1 Determines content of SVD output file.

Variables in the optional “LSQR” section of the PEST Control File.

Variable Type Values Usage Description

LSQRMODE integer 0 or 1 1 Activates LSQR solution of inverse problem.

LSQR_ATOL real 0 or greater 1 LSQR algorithm atol variable.

LSQR_BTOL real 0 or greater 1 LSQR algorithm btol variable.

LSQR_CONLIM real 0 or greater 1 LSQR algorithm conlim variable.

LSQR_ITNLIM integer greater than 0 1 LSQR algorithm itnlim variable.

LSQR_WRITE integer 0 or 1 1 Instructs PEST to write LSQR file.
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Variables in the optional “SVD-Assist” section of the PEST Control File.

Variable Type Values Usage Description

BASEPESTFILE text a filename 3 Name of base PEST Control File.

BASEJACFILE text a filename 3 Name of base PEST Jacobian matrix file.

SVDA_MULBPA integer 0 or 1 2 Instructs PEST to record multiple BPA files.

SVDA_SCALADJ integer -4 to 4 1 Sets type of parameter scaling undertaken in  
superparameter definition.

SVDA_EXTSUPER integer 0, 1, 2, -2, 3 1 Sets means by which superparameters are calculated.

SVDA_SUPDERCALC integer 0 or 1 1 Instructs PEST to compute superparameter sensitivities 
from base parameter sensitivities.

Variables in the optional “sensitivity reuse” section of the PEST Control File.

Variable Type Values Usage Description

SENRELTHRESH real 0 to 1 1 Relative parameter sensitivity below which sensitivity 
reuse is activated for a parameter.

SENMAXREUSE integer integer other than 0 1 Maximum number of reused sensitivities per iteration.

SENALLCALCINT integer greater than 1 1 Iteration interval at which all sensitivities recalculated.

SENPREDWEIGHT real any number 1 Weight to assign to prediction in computation of com-
posite parameter sensitivities to determine sensitivity 
reuse.

SENPIEXCLUDE test “yes” or “no” 1 Include or exclude prior information when computing 
composite parameter sensitivities to determine sensitiv-
ity re-use.

Variables required for each parameter group in the “parameter groups” section of the PEST Control File.

Variable Type Values Usage Description

PARGPNME text 12 characters or less 3 Parameter group name

INCTYP text “relative,” 
“absolute,”
 “rel_to_max”

2 Method by which parameter increments are calculated.

DERINC real greater than 0 2 Absolute or relative parameter increment.

DERINCLB real 0 or greater 3 Absolute lower bound of relative parameter increment.

FORCEN text “switch,” 
“always_2,” 
“always_3”

1 Determines whether central derivatives calculation is 
done.

DERINCMUL real greater than 0 1 Derivative increment multiplier when undertaking central 
derivatives calculation.

DERMTHD text “parabolic,” 
“outside_pts,” 
“best_fit”

1 Method of central derivatives calculation.

SPLITTHRESH real greater than 0 (or 0 to 
deactivate)

1 Slope threshold for split slope analysis.

SPLITRELDIFF real greater than 0 1 Relative slope difference threshold for action.

SPLITACTION text text 1 “smaller,” “0” or “previous.”
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Variables required for each parameter in the “parameter data” section of the PEST Control File.

Variable Type Values Usage Description

PARNME text 12 characters or less 3 Parameter name.

PARTRANS text “log,” “none,” “fixed,” 
“tied”

3 Parameter transformation.

PARCHGLIM text “relative” or “factor” 3 Type of parameter change limit.

PARVAL1 real any real number 3 Initial parameter value.

PARLBND real less than or equal to 
PARVAL1

3 Parameter lower bound.

PARUBND real greater than or equal to 
PARVAL1

3 Parameter upper bound.

PARGP text 12 characters or less 3 Parameter group name.

SCALE real any number other than 0 2 Multiplication factor for parameter.

OFFSET real any number 2 Number to add to parameter.

DERCOM integer 0 or greater 1 Model command line used in computing parameter  
increments.

PARTIED text 12 characters or less 3 The name of the parameter to which another parameter is 
tied.

Variables required for each observation group in the “observation groups” section of the PEST Control File.

Variable Type Values Usage Description

OBGNME text 12 characters or less 3 Observation group name.

GTARG real positive 1 Group-specific target measurement objective function.

COVFILE text a filename 2 Optional covariance matrix file associated with group.

Variables required for each observation in the “observation data” section of the PEST Control File.

Variable Type Values Usage Description

OBSNME text 20 characters or less 3 Observation name.

OBSVAL real any number 3 Measured value of observation.

WEIGHT real 0 or greater 3 Observation weight.

OBGNME text 12 characters or less 3 Observation group to which observation assigned.

Variables in the optional “derivatives command line” section of the PEST Control File.

Variable Type Values Usage Description

DERCOMLINE text system command 1 Command to run model for derivatives calculation.

EXTDERFLE text a filename 1 Name of external derivatives file.

Variables in the “model command line” section of the PEST Control File.

Variable Type Values Usage Description

COMLINE text system command 3 Command to run model.
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Variables in the “model input/output” section of the PEST Control File.

Variable Type Values Usage Description

TEMPFLE text a filename 3 Template file.

INFLE text a filename 3 Model input file.

INSFLE text a filename 3 Instruction file.

OUTFLE text a filename 3 Model output file.

Variables in the “prior information” section of the PEST Control File..

Variable Type Values Usage Description

PILBL text 20 characters or less 3 Name of prior-information equation.

PIFAC text real number other 
than 0

3 Parameter value factor.

PARNME text 12 characters or less 3 Parameter name.

PIVAL real any number 3 “Observed value” of prior information.

WEIGHT real 0 or greater 3 Prior-information weight.

OBGNME text 12 characters or less 3 Observation group name.

Variables in the optional “predictive analysis” section of the PEST Control File.

Variable Type Values Usage Description

NPREDMAXMIN integer −1 or 1 3 Maximize or minimize prediction.

PREDNOISE integer 0 or 1 2 Instructs PEST to include predictive noise in prediction.

PD0 real greater than 0 3 Target objective function.

PD1 real greater than PD0 3 Acceptable objective function.

PD2 real greater than PD1 3 Objective function at which Marquardt Lambda testing  
procedure is altered as prediction is maximized/minimized.

ABSPREDLAM real 0 or greater 2 Absolute prediction change to terminate Marquardt Lambda 
testing.

RELPREDLAM real 0 or greater 2 Relative prediction change to terminate Marquardt Lambda 
testing.

INITSCHFAC real greater than 0 2 Initial line search factor.

MULSCHFAC real greater than 1 2 Factor by which line search factors are increased along line.

NSEARCH integer greater than 0 2 Maximum number of model runs in line search.

ABSPREDSWH real 0 or greater 1 Absolute prediction change at which to use central derivatives 
calculation.

RELPREDSWH real 0 or greater 1 Relative prediction change at which to use central derivatives 
calculation.

NPREDNORED integer 1 or greater 1 Iterations since prediction raised/lowered at which termination 
is triggered.

ABSPREDSTP real 0 or greater 1 Absolute prediction change at which to trigger termination.

RELPREDSTP real 0 or greater 1 Relative prediction change at which to trigger termination.

NPREDSTP integer 2 or greater 1 Number of iterations over which ABSPREDSTP and  
RELPREDSTP apply.
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Variables in the optional “regularization” section of the PEST Control File.

Variable Type Values Usage Description

PHIMLIM real greater than 0 3 Target measurement objective function.

PHIMACCEPT real greater than PHIMLIM 3 Acceptable measurement objective function.

FRACPHIM real optional; 0 or greater, 
but less than 1

2 Set target measurement objective function at this fraction of 
current measurement objective function.

MEMSAVE text “memsave” or  
“nomemsave”

1 Activate conservation of memory at cost of execution speed and 
quantity of model output.

WFINIT real greater than 0 1 Initial regularization weight factor.

WFMIN real greater than 0 1 Minimum regularization weight factor.

WFMAX real greater than WFMIN 1 Maximum regularization weight factor.

LINREG text “linreg” or  
“nonlinreg”

1 Informs PEST that all regularization constraints are linear.

REGCONTINUE text “continue” or  
“nocontinue”

2 Instructs PEST to continue minimizing regularization objective 
function even if measurement objective function less than 
PHIMLIM.

WFFAC real greater than 1 1 Regularization weight factor adjustment factor.

WFTOL real greater than 0 1 Convergence criterion for regularization weight factor.

IREGADJ integer 0, 1, 2, 3, 4 or 5 2 Instructs PEST to perform interregularization group weight 
factor adjustment, or to compute new relative weights for 
regularization observations and prior-information equations.

NOPTREGADJ integer 1 or greater 2 The optimization iteration interval for re-calculation of  
regularization weights if IREGADJ is 4 or 5.

REGWEIGHTRAT real absolute value of 1 or 
greater

2 The ratio of highest to lowest regularization weight; spread is 
logarithmic with null space projection if set negative.

REGSINGTHRESH real less than 1 and greater 
than 0

1 Singular value of XTQX (as factor of highest singular value) 
at which use of higher regularization weights begins if 
IREGADJ is set to 5.

Files used by PEST

The following tables list files that are read and written by PEST. Many of these possess the same filename base as the PEST 
Control File, this being designated as case in the tables below.

Files read by PEST.

File name File type Purpose

case.pst PEST Control File Provides problem dimensions, names of files for communication with 
a model, and values for all PEST control variables.

Arbitrary, commonly *.tpl Template file Provides means through which PEST writes current parameter values 
to a model input file.

Arbitrary, commonly *.ins Instruction file Provides means through which PEST reads outputs of interest from 
model output files.

case.rmf Run management file Provides Parallel PEST with information needed to communicate with 
slaves.

case.hld Parameter hold file Supplies details of manual intervention when holding individual pa-
rameters, or groups of parameters, at current values.
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Files written by PEST.

File name File type Purpose

case.rec Run record file Contains details of progress of parameter-estimation process.
case.cnd Condition number file Contains continuous record of inverse-problem condition numbers.
case.mtt Matrix file Contains interim covariance, correlation coefficient, and eigenvector 

matrices.
case.sen Parameter sensitivity file Contains continuous record of composite parameter sensitivities.
case.seo Observation sensitivity file Records composite observation sensitivities.
case.res Residuals file Contains residuals and associated information recorded in tabular 

format.
 case.rei Interim residuals file Contains residuals and associated information recorded in tabular 

format. This file is rewritten during every optimization iteration.
pest.mmf Message file Optionally recorded by PEST before every model run, contains the 

reason for carrying out the run and the parameter values that it 
employs.

case.svd SVD file Written only if PEST employs truncated SVD for solution of inverse 
problem; contains eigenvalues and, optionally, eigenvectors of 
XTQX matrix.

case.lsq LSQR file Records information written by LSQR solver.
case.jco Jacobian matrix file Binary file containing Jacobian matrix pertaining to best parameters 

achieved so far.
case.par Parameter value file Records best parameter values achieved so far in  

parameter-estimation process.
basecase.bpa Best parameter file Contains best base parameters achieved so far; the filename base is 

the same as that of the base PEST Control File.
case.rsd Resolution data file Binary file written by PEST whenever it does any kind of  

regularized inversion. It contains data from which the resolution 
and “G” matrices can be computed by the RESPROC utility.

case.rst, case.jac, case.jst Restart files Contain information (written in binary form) that PEST uses in 
restarting a previously incomplete PEST run.

case.rmr Run management record file Lists history of communications between Parallel PEST and its 
slaves.

pest.rdy, 
param.rdy, 
observ.rdy
pslave.fin
p###.###

Semaphore files Used by Parallel PEST to communicate with its slaves.
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Appendix 2.  PEST Utilities
This appendix presents a series of tables listing utility software provided with PEST, together with the function that each 

program serves. Programs are grouped into different tables according to similarity of function. Complete descriptions of the fol-
lowing utilities can be found at http://www.pesthomepage.org/.

Checking Utilities.

Program Purpose

TEMPCHEK Checks the integrity of a PEST template file.

INSCHEK Checks the integrity of a PEST instruction file.

PESTCHEK Checks an entire PEST input dataset for correctness and consistency.

Classical parameter estimation preprocessing and postprocessing.  
(Note: Some of these can also be employed for regularized inversion preprocessing and postprocessing.)

Program Purpose

PARREP Builds a new PEST Control File whose initial values are optimized values from a previous PEST run.

PARAMFIX Alters prior information pertaining to one or a number of parameters as these parameters are tied or 
fixed.

EIGPROC Collects uncertainty, sensitivity, and eigencomponent information pertinent to a nominated parameter 
from PEST output files.

PCOV2MAT Extracts a parameter covariance matrix from a PEST Control File, rewriting it in matrix file format.

INFSTAT Computes a suite of observation influence statistics, including DFBETAS and Cook’s D.

PESTGEN Builds a basic PEST Control File based on a parameter value file and an INSCHEK output file.

Regularized inversion preprocessing and postprocessing.

Program Purpose

ADDREG1 Adds preferred-value regularization to a PEST Control File based on initial parameter values.

SUPCALC Estimates number of superparameters to employ in SVD-Assisted parameter estimation.

SVDAPREP Writes a PEST input dataset for SVD-Assisted parameter estimation.

PARCALC Run as part of a model employed for SVD-Assisted parameter estimation; computes base parameter 
values from superparameter values.

PICALC Run as part of a model employed for SVD-Assisted parameter estimation; computes prior information 
expressed in terms of base parameter values.

IDENTPAR Computes parameter identifiability.

PCLC2MAT Computes base parameter composition of SVD-Assist superparameters.

GENLINPRED Automates running of PREDUNC and PREDVAR utilities. Undertakes linear predictive error and 
uncertainty analysis; also computes parameter identifiability and relative error variance and  
uncertainty reduction.

RESPROC Processes information written in binary form to *.rsd file during any PEST run in which regularization 
of any kind is employed.

RESWRIT Processes information written by RESPROC; stores resolution and “G” matrices in PEST matrix file 
format.

REGERR Computes the covariance matrix of regularization-induced structural noise.
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Weights and covariance matrix manipulation.

Program Purpose

COV2COR Calculates a correlation coefficient matrix from a covariance matrix.

COVCOND Calculates a conditioned covariance matrix from an unconditioned covariance matrix.

PWTADJ1 Alters weights in a PEST Control File so that the contribution to the initial objective function by all 
observation groups is equal based on residuals calculated at initial values.

PWTADJ2 Attempts to create observation-group-specific weights, which are the inverse of  
measurement-error standard deviations.

WTFACTOR Multiplies the weights pertaining to all observations belonging to a selected observation group by a 
specified factor.

Linear uncertainty analysis.

Program Purpose

PREDUNC1 Computes the uncertainty of a user-specified prediction.

PREDUNC4 Computes contributions to predictive uncertainty by different parameters or parameter groups.

PREDUNC5 Computes observation worth through its effect in lowering predictive uncertainty.

Linear error analysis.

Program Purpose

PARAMERR Computes the covariance matrix of parameter error after a calibration exercise involving any form or 
regularization.

PREDERR Computes the error variance of a prediction whose sensitivities are available after a calibration exercise 
involving any form or regularization.

PREDERR1 Similar to PREDERR, but slightly different in its input-file requirements.

PREDERR2 Similar to PREDERR, but slightly different in its input-file requirements.

PREDERR3 Similar to PREDERR, but slightly different in its input-file requirements.

PREDVAR1 Computes the error variance of a model prediction based on a notional calibration exercise done by  
using truncated SVD; also finds the minimum of the predictive error variance curve.

PREDVAR1A As for PREDVAR1, but undertakes SVD on Q1/2X rather than XTQX.

PREDVAR4 Computes contribution made to the error variance of a prediction by different parameters  
and/or groups of parameters.

PREDVAR5 Computes observation worth through its effect on lowering predictive error variance.
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Nonlinear error analysis

Program Purpose

VECLOG Computes the log of all elements of a vector (normally used as part of nonlinear highly parameterized 
predictive maximization/minimization).

PEST2VEC Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis done by way 
of constrained maximization /minimization.

VEC2PEST Facilitates preparation for nonlinear highly parameterized predictive uncertainty analysis done by way 
of constrained maximization /minimization.

OBSREP Replaces observations in a PEST Control File with best-fit model-generated equivalents.  
(This is normally run just prior to REGPRED.)

REGPRED Builds a PEST Control File in which postcalibration nonlinear predictive uncertainty analysis is  
effected by constrained prediction maximization/minimization.

RANDPAR Computes random parameter values, placing these values into a series of parameter-value files.

PNULPAR Undertakes null-space projection of random parameter fields to remove solution-space component; 
replaces it with solution space component from calibrated model.

RDMULRES Reads multiple output files produced as an outcome of Monte Carlo analysis and collates results.

MULPARTAB Builds a table of multiple sets of parameter values produced through null-space Monte Carlo analysis.

COMFILNME Facilitates post-null-space MonteCarlo file management.

Sensitivity-data manipulation.

Program Purpose

JACTEST Undertakes serial or parallel model runs to test the integrity of finite-difference-calculated derivatives.

POSTJACTEST JACTEST postprocessor; provides index of derivatives corruptness for different model outputs.

JACWRIT Rewrites the contents of a *.jco file in ASCII format.

JCO2JCO Writes a Jacobian matrix corresponding to a new PEST Control File on the basis of information  
contained in an existing *.jco/*.pst file pair.

JCO2MAT Rewrites the contents of a *.jco file in PEST matrix file format.

JCOADDZ Adds sensitivities to an existing *.jco file.

JCOCOMB Builds a new *.jco file from an existing one, in which observations from the first are combined in 
user-supplied ratios in the second.

JCODIFF Subtracts the contents of one *.jco file from that of another.

JCOORDER Reorders rows and/or columns in a *.jco file.

JCOPCAT Concatenates two *.jco files; thus sensitivities with respect to some parameters can be computed on one 
machine and those with respect to other parameters can be computed on another.

JCOTRANS Translates from old *.jco storage format to new (compressed) storage format employed by PEST.

JROW2MAT Extracts a row of a Jacobian matrix file and writes it in PEST matrix file format.

JROW2VEC Extracts a row of a Jacobian matrix file, transposes it, and writes it in PEST matrix file format.

DERCOMB1 Combines two external derivatives files (supplied by models that can calculate their own derivatives) 
into one, before being read by PEST.

MULJCOSEN Reads multiple *.jco files as written on a single PEST run (if PEST is instructed to write such multiple 
files); calculates composite sensitivity of nominated parameter or observation from iteration to  
iteration.

WTSENOUT Computes a weighted Jacobian matrix and a weighted observation vector.
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Matrix manipulation.

Program Purpose

MAT2SRF Writes a matrix in SURFER grid format.

MATADD Performs matrix addition.

MATCOLEX Extracts a column of a matrix.

MATDIAG Extracts the diagonal of a matrix.

MATDIFF Performs matrix differencing.

MATINVP Computes the inverse of a positive definite matrix.

MATJOINC Joins matrices which possess the same number of columns.

MATJOIND Joins two matrices in a diagonal sense (useful in forming a composite covariance matrix).

MATJOINR Joins matrices which possess the same number of rows.

MATORDER Reorders the rows or columns of a matrix.

MATPROD Performs matrix multiplication.

MATQUAD Evaluates the quadratic form yTMy.

MATROW Extracts a single row of a matrix.

MATSMUL Multiplies a matrix by a scalar.

MATSPEC Lists matrix specifications.

MATSVD Undertakes singular value decomposition of an arbitrary matrix.

MATSYM Forms a symmetric matrix as (M + MT)/2.

MATTRANS Computes the transpose of a matrix.

MATXTXI Computes (XTX)-1 where X has more rows than columns.

MATXTXIX Computes (XTX)-1X where X has more rows than columns.

General.

Program Purpose

PAR2PAR Undertakes arbitrary mathematical manipulation of model parameters; normally run as part of a model 
calibrated by PEST.

SCALEPAR Builds a PEST input dataset based on parameters scaled by their innate variability.

GENLIN Generalized linear model.

PESTLIN Reads a general PEST input dataset and accompanying *.jco file; creates a GENLIN model and 
accompanying PEST input dataset for calibration of that model.

SENSAN Undertakes basic sensitivity analysis through repeated model runs.

SENSCHEK Checks the integrity of a SENSAN input dataset.

PAUSE Pauses PEST execution.

PUNPAUSE Unpauses PEST execution.

PSTOP Stops PEST execution.

PSTOPST Instructs PEST to cease execution with a full statistical printout.

PSLAVE PEST slave program.

Global Optimization.

Program Purpose

MAT2SRF Writes a matrix in SURFER grid format.

MATADD Performs matrix addition.
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Implementation of pilot-point parameterization.

Program Purpose

FAC2FEFL Uses PPKFAC_FEFL-generated kriging factors to modify a FEFLOW model input data file on the basis of spatial 
interpolation from a set of pilot points.

FAC2FEM Uses PPK2FAC-generated kriging factors to produce a MicroFEM input file on the basis of spatial interpolation from 
a set of pilot points.

FAC2MF2K Modifies an existing set of MODFLOW-2000 input files, replacing parameter cited in that file with pilot-point-based 
parameters (often a first step in pilot-point-based model calibration).

FAC2REAL Uses PPKFAC-generated kriging factors to produce a MODFLOW-compatible real array on the basis of spatial inter-
polation from a set of pilot points.

FAC2RSM Uses PPKFACR-generated kriging factors to produce an RSM model input data file on the basis of spatial interpola-
tion from a set of pilot points.

PPK2FAC Calculates kriging factors for use in spatial interpolation from a set of pilot points to model grid cell centers.

PPK2FACF Calculates kriging factors for use in spatial interpolation from a set of pilot points to the nodes of a MicroFEM finite 
element mesh.

PPK2FAC1 Identical to PPK2FAC except the regularization data file it writes is suitable for the use of PPKREG1.

PPK2FACR Calculates kriging factors for use in spatial interpolation from a set of pilot points to the nodes of an RSM mesh. 
Regularization data file protocol is identical to that of PPK2FAC1.

PPK2FAC_FEFL Calculates kriging factors for use in spatial interpolation from a set of pilot points to the elements of a FEFLOW 
mesh. Regularization data file protocol is identical to that of PPK2FAC1.

PARM3D Assists in pilot-point parameterization of a 3-D model domain where hydrogeological units intersect grid layers.

Appendix 3.  Groundwater Data Utilities
This appendix presents a series of tables listing utility software provided with the PEST Groundwater Data Utilities suite. 

Programs are grouped into different tables according to similarity of function. Complete descriptions of these utilities can be 
found at http://www.pesthomepage.org/.

MODFLOW/MT3D array manipulation.

Program Purpose

ARR2BORE Undertakes spatial interpolation from a single array to a set of points.

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible integer array.

INT2REAL Builds a MODFLOW/MT3D-compatible real array based on the contents of a MODFLOW/MT3D-compatible inte-
ger array.

LOGARRAY Evaluates the log (to base 10) of all elements of a real array.

PT2ARRAY Builds a MODFLOW-compatible real array; the value assigned to each array element is calculated from information 
pertaining to points lying within the respective element.

REAL2INT Builds a MODFLOW/MT3D-compatible integer array based on the contents of a MODFLOW/MT3D-compatible real array.

REAL2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible real array.

REAL2SRF Translates a MODFLOW/MT3D-compatible real array into a SURFER grid file.

REAL2TAB Translates a MODFLOW/MT3D-compatible real array into three-column real array table format.

SRF2REAL Re-writes a SURFER grid file as a MODFLOW-compatible real array.

TAB2INT Generates a MODFLOW/MT3D-compatible integer array from an integer array stored within a GIS.

TAB2REAL Generates a MODFLOW/MT3D-compatible real array from a real array stored within a GIS.

TABCONV Translates between integer or real array table files using row/column identifier format and those using cell number 
identifier format.

TWOARRAY Combines two real arrays by addition, subtraction, multiplication, division and partial replacement.
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MODFLOW/MT3D/SEAWAT/FEFLOW postprocessing.

Program Purpose

ARR2BORE Undertakes spatial interpolation from a single array to a set of points.

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible integer array.

INT2REAL Builds a MODFLOW/MT3D-compatible real array based on the contents of a MODFLOW/MT3D-compatible inte-
ger array.

LOGARRAY Evaluates the log (to base 10) of all elements of a real array.

PT2ARRAY Builds a MODFLOW-compatible real array; the value assigned to each array element is calculated from information 
pertaining to points lying within the respective element.

REAL2INT Builds a MODFLOW/MT3D-compatible integer array based on the contents of a MODFLOW/MT3D-compatible real array.

REAL2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible real array.

REAL2SRF Translates a MODFLOW/MT3D-compatible real array into a SURFER grid file.

REAL2TAB Translates a MODFLOW/MT3D-compatible real array into three-column real array table format.

SRF2REAL Re-writes a SURFER grid file as a MODFLOW-compatible real array.

TAB2INT Generates a MODFLOW/MT3D-compatible integer array from an integer array stored within a GIS.

TAB2REAL Generates a MODFLOW/MT3D-compatible real array from a real array stored within a GIS.

TABCONV Translates between integer or real array table files using row/column identifier format and those using cell number 
identifier format.

TWOARRAY Combines two real arrays by addition, subtraction, multiplication, division and partial replacement.

MODFLOW/MT3D/SEAWAT preprocessing.

Program Purpose

MOD2ARRAY Reads a MODFLOW or MT3D input file, extracting real or integer arrays from that file and storing them in separate files.

ELEV2CONC Computes the elevation of the freshwater-saltwater interface on the basis of a sequence of concentration arrays.

ELEV2CONC1 Similar to ELEV2CONC, but computes “zero flow head” arrays as well.

REPARRAY “Pastes” a MODFLOW- or MT3D-compatible real array into an existing MODFLOW or MT3D input file.

Processing and manipulation of field and model time series.

Program Purpose

PMP2INFO Builds a bore information file from a bore pumping file, the former containing cumulative pumped volumes between 
two user-specified dates for a user-supplied list of bores.

PMPCHEK Checks the integrity of the data contained in a bore pumping file.

SMP2HYD Rewrites the contents of a bore sample file for a user-specified list of bores in a form suitable for plotting borehole 
data against time.

SMP2INFO Time-interpolates the information contained in a bore sample file to a user-specified date for a list of user-specified 
bores, thus writing a bore information file ready for access by commercial contouring software.

SMP2SMP Interpolates data contained within one bore sample file to the dates and times represented in another bore sample file.

SMPCAL Calibrates one time-series dataset on the basis of another.

SMPCHEK Checks the integrity of a bore sample file.

SMPDIFF Writes a new bore sample file in which differences are taken between successive values in an existing bore sample 
file, or between values in an existing file and a reference value.

SMPTREND Writes a new bore sample file in which differences are taken between samples within an existing bore sample file 
and either the first sample for each bore in that file or a reference sample. However, sampling is restricted to a 
yearly sample window.
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Construction of a PEST input dataset.

Program Function

ADJOBS Adjusts observation weights for different observation groups in a PEST Control File according to user-defined 
formulas.

ARRAYOBS Facilitates the introduction of model outputs consisting of MODFLOW/MT3D-compatible real arrays into a PEST 
parameter-estimation process.

PESTPREP Automates construction of a PEST Control File and PEST instruction file for a model comprised of MODFLOW 
and/or MT3D followed by MOD2OBS, or MODFLOW followed by BUD2SMP followed by SMP2SMP.

PESTPREP1 Similar to PESTPREP but provides extra flexibility in observation naming.

PESTPREP2 Similar to PESTPREP1 but allows extra observation data to be added to an existing PEST input dataset.

Adding regularization to a PEST input dataset.

Program Purpose

GENREG Inserts prior information pertaining to many different types of regularization into an existing PEST Control File.

PPCOV Builds a covariance matrix pertaining to pilot point parameters based on one or a number of geostatistical structures.

PPKREG Adds a “prior information” and “regularization” section to a PEST Control File where parameterization is based on 
pilot points.

PPKREG1 Similar to PPKREG but more powerful in that it facilitates the use of both “difference regularization” (same as 
PPKREG) and “preferred-value regularization.”

ZONE2VAR1 Computes a parameter variogram where parameterization is based on a large number of zones of piecewise con-
stancy, and is defined through a ZONMDEF output file. Assists in undertaking “variogram regularization” as 
described by Johnson and others (2007).

ZONE2VAR2 Computes a parameter variogram much more quickly than ZONE2VAR1 because it employs the results of the pa-
rameter search process done by the latter program as read from a binary file written by it.

VERTREG Adds “vertical regularization” prior-information equations to a PEST Control File where parameterization is based 
on pilot points.

Working with the MODFLOW adjoint process.

Program Function

ASENPROC Reads a “distributed parameter sensitivity file” written by the adjoint state version of MODFLOW; formulates sensi-
tivities for PEST parameters and writes them to a PEST “external derivatives file.”

MKMHOBS Reads a bore sample file. Writes a MODFLOW 2005 heads observation file, as well as an instruction file to read a 
MODFLOW heads output data file and a “PEST building block file” containing pertinent fragments of a PEST 
Control File.

PPMDEF Builds a parameter definition file for the use of ASENPROC, linking distributed parameters as employed by the 
adjoint process of MODFLOW to pilot-point parameters.

ZONMDEF Assists in the preparation of input files for the use of PEST in conjunction with the MODFLOW-2005 adjoint pro-
cess where parameters are based on a large number of zones of piecewise constancy.
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Uncertainty Analysis.

Program Function

FIELDGEN Generates a stochastic field in each zone of a model domain using the sequential Gaussian simulation method.

PPSAMP Used in calibration-constrained Monte Carlo analysis. Samples stochastic fields at pilot point locations, interpolates 
between the pilot points, and generates difference fields.

Geographical data manipulation.

Program Function

GRID2ARC Writes ARCINFO generated files of the active part of the finite-difference grid as defined by a user-supplied integer 
array.

GRID2BLN Writes a SURFER blanking file of the active part of the finite-difference grid as defined by a user-supplied integer 
array.

GRID2DXF Writes a DXF file of the active part of the finite-difference grid as defined by a user-supplied integer array.

GRID2PT Tabulates the coordinates of the cell centers of the finite-difference grid within an active window defined by a  
user-supplied integer array.

INT2MIF Generates MAPINFO MIF and MID files based on a MODFLOW/MT3D-compatible integer array.

PTINGRID Locates the finite-difference cells in which arbitrary, user-supplied points lie; optionally provides the value of an 
integer or real array element pertaining to the cell containing each such point.

QDIG2DXF Translates the output of the shareware digitizing program, QDIGIT, into DXF format.

QDIG2XYZ Translates the “contours” output of QDIGIT to an “xyz” data file.

RDAT2TAB Reads an RSM element data file or index file. Adds mesh centroid coordinates to respective data elements and 
rewrites data in tabular format.

ROTBLN Rotates a SURFER blanking file about the top left corner of a finite-difference grid so that the component elements 
of the file can be overlain over the grid when the latter has been rotated such that its row direction is oriented 
directly east.

ROTDAT Rotates a data file about the top left corner of a finite-difference grid so that the component elements of the file can 
be overlain over the grid when the latter has been rotated such that its row direction is oriented directly east.

ROTDXF Rotates a DXF file about the top left corner of a finite-difference grid so that the component elements of the file can 
be overlain over the grid when the latter has been rotated such that its row direction is oriented directly east.

RSM2SRF Reads an RSM (also GMS) 2D mesh file. Writes files through which SURFER can plot mesh design, outer mesh 
boundary, as well as nodes and element centroids.

ZONE2BLN Writes a SURFER “blanking” file of finite-difference grid zonation as defined by a user-supplied,  
MODFLOW-compatible integer array.

ZONE2DXF Writes a DXF file of finite-difference grid zonation as defined by a user-supplied, MODFLOW-compatible integer 
array.

Reference Cited

Johnson, T.C., Routh, P.S., Clemo, T., Barrash, W., and  
Clement, W.P., 2007, Incorporating geostatistical constraints 
in nonlinear inversion problems: Water Resources Research, 
v. 43, no. 10, W10422, doi:10.1029/2006WR005185.
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Appendix 4.  Singular Value 
Decomposition Theory

This appendix presents a short discussion of singular 
value decomposition of the Jacobian matrix and of associ-
ated suggestions for use of observation data in the calibration 
process.

Let X represent the Jacobian matrix of sensitivities of 
model outputs used in the calibration process to parameters es-
timated through that process. Through singular value decom-
position, X can be represented as

	                                      X = USVT                                                      (A4.1)	 
 
where the columns of U are orthogonal unit vectors that span 
the range space of X, the columns of V are orthogonal unit 
vectors that span the domain of X (that is, parameter space), 
and S is a diagonal matrix of singular values. Let S be now 
partitioned into two submatrices, one of which (S2) contains 
zero and near-zero-valued singular values while the other (S1) 
contains significantly non-zero singular values. Let U and V 
be similarly partitioned, so that:

 						         (A4.2)

Let h represent a calibration dataset, p a set of model 
parameters, and ε a vector of model/measurement noise. Then,

	 h = Xp + ε	  (A4.3)

If noise is ignored for the sake of simplicity, and equation 
(A4.2) is introduced to (A4.3), this becomes

	 S-1UT
1h = VT

1p	 (A4.4)

In this equation, UT
1h is a vector, each element of which is 

the projection of observations constituting the calibration data-
set onto one of the orthogonal unit vectors spanning the range 
space of the model (that is, of X). VT

1p on the right-hand side 
of equation (A4.4) also is a vector. Each element of this vector 
is the projection of real-world parameters p onto an orthogonal 
axis of parameter space comprising one of the columns of V1. 
Each of these columns defines a “pattern” or “basis function” 
in parameter space, this pattern involving more and more de-
tail as the singular value with which it is associated decreases 
in value. However, truncation of singular values beyond S1 
ensures that there is an upper limit to this detail, this leading to 
an estimated parameter field that is simpler than the complex 
hydraulic-property field p that exists in reality.

Because S-1
1 is a diagonal matrix, the elements UT

1 h are re-
lated to those of VT

1p on a one-to-one basis. That is, each esti-
mable parameter projection that constitutes an element of VT

1p 
is informed entirely by a single corresponding observation 

projection defined by the respective element of UT
1h. To state 

this in another way, each linear combination of observations 
specified by UT

1h is uniquely and solely informative of a single 
combination of real-world hydraulic properties described by 
VT

1p. Certainly this information is contaminated by measure-
ment noise, and thus these estimates of parameter combina-
tions  furnished by the calibration process will be in error.

Equation A4.4 demonstrates that the one observation 
dataset can be processed in different ways to provide infor-
mation on separate aspects of (broad-scale) model param-
eterization. In simple calibration contexts, this is an obvious 
notion. For example, it is well known that calibration to 
head data alone results in non-unique conjunctive estimates 
of recharge and conductivity parameters; see, for example, 
page 35 in Hunt (1987) and Haitjema (2006). The addition of 
one flux measurement to a calibration dataset can break this 
non-uniqueness; see, for example, Poeter and Hill (1997). By 
placing head measurements into one observation group and 
the single flow measurement into another observation group, 
and by providing weights to measurements comprising these 
respective groups according to a schedule which ensures that 
neither group making up the objective function (irrespective of 
the number of elements comprising each group or of the size 
of the numbers used to represent each measurement type), esti-
mates for conductivity and recharge parameters forthcoming 
from the calibration process will be as good as can be obtained 
under the circumstances.

Examples of where the same dataset, processed in dif-
ferent ways, can lead to formulation of a multicomponent 
objective function in which each component is informative of 
different aspects of model parameterization include the fol-
lowing:
10.	 The use of temporal and vertical head differences as 

sources of information on groundwater storage and verti-
cal conductance parameters, respectively.

11.	 In the surface-water-modeling context, the use of accumu-
lated monthly flow volumes and digitally filter extracted 
base flows as sources of information on gross basin 
evapotranspiration and shallow lumped interflow/base-
flow conductance respectively (see Doherty and Johnston, 
2003; and Doherty, 2007, for further details).
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