
NASA Contractor Report 177986

NASA-CR-177986
19860006742

FINDS: A Fault Inferring Nonlinear Detection System --

Programmer's Manual

Version 3.0

Roy E. Lancraft

BBN Laboratories Inc.
10 Moulton Street
Cambridge, Massachusets 02238

Contract NAS 1-16579

December 1985

NI\S/\
National Aeronautics and
Space Administration

Langley Research Center
Hampton, Virginia 23665

111
NF01012

1
2
2.1
2.2
3
j.l
'L2
3.3
3.3.1
3.3.2
j.3.3
'3.3.4
3.3.'5
.:L3.6
3.3.7
3.3.8
3.::'.9
3.3.10
L3.11
4
4.1
4.2
4.2.1
4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.H
4.:2.9
4.2.10
4.2.11
4.2.12
4.2.13
4.2.14
4.2.15
4.2.16

TABLE OF CONTENTS

(I)NTENTS

INTRODUCTION .•.•....•..••
SOFTWARE OVERVIEW ANO INSTALLATION DETAILS

Software Overview •
In~tallation Notes .••..

M)DULE DESCRIPTIONS •
Some Notational Conventions
Brief Summary Of Contents By Source File
Detailed Descriptions Of FINDS Routines

· 1
4

· 4
5

• i:\

Documentation For File: FMAIN.FOR ..•.

• Ij
11
11:1
18
28
85
85
86

Documentation For File: FSFDI.FOR
Documentation For File: FGAC.FOR ••.
Documentat i on For Fil e: FWINO. FOR
Documentatlon For File: FSENS.FOR
Documentation For Fll~: FIO.FOR
Documentation For File: FUTSUB.FOP
Documentation For Fi Ie: F\/MSUB.FOR
Documentation For File: PLOTD.FOP
Documentatl0n For File: PPINTD.FOR .
Documentation For File: DOC.PAT

• • • • tl6

INTERNAL DATA STPUCTURES
Data Structure Conventions . .
Detai led Deser; ptions Of FINDS Common B lods .
Description Of CMPSTF
Description Of DeiOEI
Description Of DETINF

92
· 106

119
iLl)
121

• 123
J23
134
134

• 134
135

• 136 Description Of DETSIG
Description Of DETMBI
Description Ot DElVBI
Description Of EKBFO
Description Uf FCOM1
Description Of FCCt-12
Description Of FILNAM

••••• 136
• 137
• 138

. . . • 138
• • • • • 139

Description Of FILTIC •.•..•••.
Description Of FILTRl
Description Of FLTCTL .•••.
Description Of FTITL1
Description Of GBLEND
Description Of HEALCM • . • .

1

• • • • 139
• . 140
• • 140

. • • 141
• • 142

• • • 143
• 143

.#

;1/f6-/~Z/Z

4.2.17
4.2.18
4.2.19
4.2.20
4.2.21
4.2.22
4.2.23
4.2.24
4.2.25
4.d.26
4.2.27
4.2.28
4.2.29
4.2.30
4.2"31
'5

APPENDI>t A

APPENDIX B

144 Description Of HFCOM
Description Of INITVL . • • . • • . 145
Description Of INOU . . • . . . • • • .
Description Of MAINl
Description Of MAIN2 •• ..

· • 145
• . 146

• • • 147
• • • . • 147 Description Of M"/LTDT

Description Of SENSCM
Description Of SIM:CM
Description Of ~PRM
Description Of STITL
Description Of SYSUl

.. • 147
• • .. • 148

Description Of SYSXl
Description Of SY$XBO . . • . • .
D~scription Ijf SYSYW1 •. ••.
Description Of YOBSRV

REFERENCES . . • .

• • • • • 148
· 149

• • . 149
·] 50

• . 151
• 151

152
154

StMv1ARY OF SPECIFIC HARDWARE AND SOFTWARE REQUIREf'.'ENTS

GENERATING THE FINDS PROGRAMMERS MA~JAL

;;

FIG.

FIG.

FIG.

1.

.,
.!. •

3.

FIG. 4.

FIG. 5.

FIG. 6.

FIG. 7.

FIG.

FIG.

FIG.

FIG.

13.

9.

10.

11.

FIG. 12.

FIG. U.

U ST ot FIGURES

D~finition of Flow Diagram Symbols .•••.•••..•.•.... 10

Functional Flow Diagram for Program FINDS •••••••.•• 20

Flow Diagram tor Program FINDS .•••....•.•••.•.••••. 21

Flow Diagram tor Subroutine NAV 29

Flow Diagram for Subroutine EKFN1 39

Flow Diagram for Subroutine BIASF ...••••.•••••••••• 42

Flow Diagram for Subroutine BLEND •••.•••.•••••••••• 45

Flow Diagram for Subroutine DETECT

Flow Diagram for Subroutine RECONF

Flow Diagram for Subroutine HEALR

Example of POlnter Array Indexing

53

66

79

133

Example of Collapsed Array Indexing•......•.... 133

Mechanics of Automatic mamla I I~~neratlon ..•••...... B-3

iii

TABLE 1.

TABLE 2.

fABLE 3.

TABLE 4.

TABLE 5.

TABLE 6.

TABLE I.

LI ST of TABLES

No-Fail Filter Absolute State Indexing
Convent ions ••••••••.•.••.•.•.•••••.••.•••••••..•.•. 126

No-Fail Filter Absolute Measurement
Indexing Conventions •••••.•.•••••.••.•••.••.•••.••. 127

No-Fail Filter Absolute Input Indexing
Convent; ons ••.•..•.••.•....••.•.•..••••••••.•..•... 128

No-Fail Filter Process Noise Indexing Conventions .. 129

Absolute Sensor Indexing (onventions •..•.•••....••• 130

Replicated Sensor Indexing Conventions ..•.•..••.•.. 131

Rep I icated Measurement Index.; n9 Conventions 132

iv

LIST of ABBREVIATIONS

Ale Aircraft

ATOPS L\d\fanl~~d Tr'ansport Operating Systems

Azm MLS azimuth

B-frame body frame

BFF Bias-Free Filter

DrvE Distance Measuring Equipment

E-frame earth fixed rotating frame (Earth-frame',

EKF Extended Kalman Filter

El MLS elevation

FDI Failure Detection and Isolation

FDIR Failure Detection Isolation and Reconfiguration

FINDS Fault Interring Nonlinear Detection System (computer programl

FTN Fault rolerant Navigator

FTS Fault Tolerant System

G&C Guidance and Control

G-frame geographic frame located at the runway

v

I-frame earth centered nonrotating frame (Inertial-frame)

lAS Indicated Airspeed

[C's Initial Conditions

IMU Inertial Measurement Unit

L-frame vehicle carried (N.E.D) frame (Local Level frame)

LRT Likelihood Ratio Test

ML Maximum Likelihood

MLS Micro~ave Landing System

MTBF Mean rime Bet lI'4ee n Failures

NFF No-Fail Fi lter

P ,Q,R body rate 9yros

RA Radar Altimeter

Rng MLS range

RSDIMJ Dual Fail-Operational Redundant Strapdown Inertial Measurement
Unit

TSRV Transport Systems Research Vehicle

vi

FINDS Proqrammer's Manual
- INTRODUCTION

1 INTRODUCTION

This report provides detailed soft~are documentation of the digital
computer program FINDS (Fault Inferrlng Nonlinear Detection System)
version 3.0. FINDS is a highly modular and extensible computer
program deslgned to monitor and detect sensor fai111res~ whi Ie at the
same time providing reliable state estlmates. In this version of the
program the FINDS methodology is used to detect, isolate and
compensate for failures in Simulated avionics sensors used by the
Advanced Transport Operating Systems (ATOPS) rransport Systems
Research Vehicle (rSRV) in a Microwave Landinq System (MLS'I
enviornment. It is 1 ntended that thi s report serve as a programmers
guide to aid in the maintenance, modification~ and revision of the
soft~are.

Througho'.lt thi 5 manua I we have assumed that the reader has read and is
familiar ~ith the contents of the follo~ing reports:

1. FINDS: A Fault Inferring Nonlinear Detection System - User's
Guide, NASA CR-172199, September 1983.

2. A Fault Tolerant System for an Integrated Avionics Sensor
Configuration, NASA CR-3834, 1984.

3. An Aircraft Sensor Fault rolerant System, NASA CR-165876~
April 1982.

The primary goal of thi'5 manual is to provide in depth documentation
of the current version of the FINDS soft~are. To accomplish this
goal, detailed descriptions are provided for the program's modules
Ifunctlons, and subroutines) and their internal data structures
jcommon block'5l developed by BBN. In addition, the contents and
purpose of each disk file ~111 be examined along with the steps
required to rebuild the library and executable tiles used by FINDS.
Detai led information about the program's external data structure'5
finput and output T'ilesi, as ~ll as information ~bout the program's
overall structure and intended usage ~from ~ users point of vie~1 can
be found in [11, and theretore ~ill not be covered in this report. It
should be clearly noted that NOT ALL functlOn'5 and lnternal data
strl.lctur,.,.'5 used by FINDS ~i 11 be descri bed in thi'5 report instead
only those ~hlCh pertain to the simuldtion independent portion ot the
pro~ram ~ill be considered. rhis approach ~as taken because the
sim~lation environment in ~hich FINDS operates ~as originally

1

FINDS Programmer's Manual
INTRODUCTION

developed and supplied by NASA-LRC, and therefore it was felt the
emphasis of this document should only be on the newly developed
software.

A secondary goal of this work is to provide a convienent mechanism for
documentation information contained herein to be maintained and
improved upon. Some of the problems associated with writing a
programmers or users guide for a developmental computer program, such
as FINDS, 1s that it a) is never quite comprehensive enough, and bl is
obsolete soon after it is printed. This is true in part because
developmental programs are never quite stable (i.e. they are
constantly being modified as new provisions are added, or as "bugs"
are found), and in part because incremental (i.e., as modules are
written) documentation is seen by many to be both time consuming and
fragmented - therefore it is not always done. This c·learly confounds
the development process itself, S1nce only a few people know the
"inner workings" of the program. In an effort to help alleviate some
of these inherent problems~ we have written this programmer's manual
in such a way that it can be re-created semi-automatically from
specially commented source code and text files. The goal was to make
it easy to incorporate changes which occurred since the last time a
manual was created. To accomplish this, special command files and
programs were created to generate files which could be processed by
the Digital Standard Runoff text formatting program. In addition, all
the figures and tables used in the manual were generated on an Apple
Lisa personal computer (using LisaDraw software) - 50 they too can be
easily modified and re-generated to account for changes to the code.

The organization of this report ;5 as follows: Chapter 2 consists ot
a comorehens;ve overview of the FINDS software, along with
installation instructions. Chapter 3 provides detailed descriptions
of the FINDS program modules, as well as an overview of some
notational conventions used in the report. The internal data
structures and a summary of the indexing schemes employed can be found
in Chapter 4. Appendix A gives a list of specific hardware and
software requirements (including a list of all supplied software).
Appendix B contains the "rules" for formatting 'Source files and a
description of how this manual can be automatically re-generated. As
a further aid, a cross-reference list of all file names, common block
names, module names, and other key words documented in this report can
be found at the end of the report.

2

FINDS Programmer's Manual
INTRODUCTION

The following suggested reading of the manual is encouraged:

General information and installation:

1~2,Appendix A

Complete reading:

1,2,3.1,4.1, remainder of Chapter 3, and 4, Appendix A, and Appendix
B.

3

FINDS Programmer's Manual
SOFTWARE OVERVIEW AND INSTALLATION DETAfLS

2 SOFTWARE OVERVIEW AND INSTALLArION DETAILS

This chapter describes how the software is organized from the vantage
point of the VAX 11/780 operating system. A user's perspective on the
functional organization and other aspects of the FINDS software and
its' utility programs are provided in (11. The chapter is organized
in the following fashion: Section 2.1 gives an overview of the
delivered software by reviewing the contents and intended purpose of
each file supplied. (Note: For quick reference, Appendix A also
prov1des a brief summary of these files.) Section 2.2 describes the
steps nessesary to install (or rebuild) each of the programs.
Automatic re-generation of the programmers guide is covered separately
in Appendix B.

2.1 Software Overview

rhis section describes the contents and intended scope of each of the
disk files WhlCh comprise FINDS and its associated utility programs.
A complete list of all the delivered software, as well as the specific
hardware requirements, are described in Appendix A. Detailed
descriptions of the individual modules contained in each file can be
found in the next chapter.

ft is convenient to assume that the operational software is stored in
a main directory which will be called the FINDS directory. The
organization of this directory is straightforward. rhere are four
executable programs in the directory - each requiring FOR, OlB, C(~,
and/or OPT files for their creatlon. The four executable files are
detailed below:

DOC.EXE

FINDS .EXE

PLOTD.EXE

PRINTD.EXE

A program to extract specially formatted and embedded
documentation from Fortran (or Ratfor) source
files (see Appendix B for a description of its use).
FINDS version 3.0 simulation program documented in
this manual and in (11.
Program to plot the time history output, generated by
FINDS, on a Tektronix 4010/4014 or compatible terminal
(see (11).
Program to print the time history output, generated by
FINDS, in tabular form on either the users terminal or
a disk tile (see (1]).

4

FINDS Proqrammer's Manual
SOFTWARE OVERVIEW AND INSTALLATION DETAILS

The FINDS directory contains a single library file:

FINDSLIB.OLB- Uti litylibrary built using the FINDS sources (FORTRAN
files).

Several command and linker option files can be found in the FINDS
directory. Command files (extension = COM) are used to automate the
building and maintainence of FINDS. As ... ill be seen in the next
section~ a by-product of using command files is that it simplifies
transporting the soft ... are to other VAX or users sub-directories.
Li~ker options fnes are used at -link time to specify ho ... to bui ld an
ex,ecutable image. The command and linker ootions files are summarized
below:

FINDSC.COM Properly compiles all the FORTRAN source tiles .-.hich
are used by FINDS.

FINDSL.COrvl Proper'ly links together the object and library files
to produce FINDS.EXE.

FINDSLlB.COM - Compiles the source files and builds the library file
FINDSLIB.OLB

GETDOC.Cl~ Automatically gets the latest documentation
from all FINDS routines (see Appendi,x B for
more information).

FINDSPG.C(1v1 - Automatically bui Ids a new FINDS programmers
guide (see Appendix B).

PLOTO.OPT Linker options tile for PLOTD
PRINTD.OPT - Linker options file for PRINTD
FOREI6N.C(1v1 - Establishes useful logical and symbolic names

2.2 Installation Notes

fhe following steps are required to in1tially install the FINDS
soft ... are:

1. (oPY a 11 tiles trom magnet1c tape onto a suitab Ie VAX di sk
dirjOoctory US1ng the VAX/VMS Backup utility. Let's assume
this directory 1S named "finds" tor the subsequent
discussions.

5

FINDS Programmer's Manual
SOFTW4RE OVERVIEW AN) INSTALLATION DETAILS

2. Edit the file "foreign.com" and correct the directory names
referenced 50 that they point to directory (finds].

3. Type
$ @foreign.com

to install the logical names and symbols. rhese will be will
be used subsequently. (This step can be made part of the
user's login.com file if these symbols are used frequently.)

4. Compile all FORTRAN sources:
$ @findsc
$ compile plotd
$ compile printd

5. Create the FINOSlibrary file findslib.olb:
$ @findslib

6. Create the executable files:
$ @finds
$ link plotd/opt
$ link printd/opt

7. Generate all the required input data files required for
running FINDS using the text editor. (See (1] for detailed
directions on how to create these files.'

8. Run FINDS by typing:
$ finds

9. Run the graphical analysis tool PLOTO by typing:
$ plotd

10. Run the tabular examination tool PRINTO by typing:
$ printd

Once the software has been installed, incremental changes can be made
as follows:

1. Jllbdi fy a Fortran source file. Be sure to update the embedded
documentation.

6

FINDS Programmer's Manual
SOFTWARE OVERVIEW AND INSTALLATION DETAILS

2. Con~lle It. (e.g. $ compile filename)

3. Update the library file (this step is required for files
futsub.tor, fvmsub.ror, and fiosub.for.)

$ update filename

4. Re-build FINDS
$ @finds

For instructions on how to generate and maintain the programmers guide
see Appendix B.

7

FINDS Pr09rammer's Manual
MODULE DESCRIPTIONS

3 M)DULE DESCRIPTIONS

The t'ollowing sub'3ections contain detailed descriptions of FINDS
routines, organized according to source files (refer to Chapter 2 for
a list of supplied fi les). The first '3ubsection reviews some of the
notational shorthand used in the descriptions. rhe second subsection
contalns a brief description of the contents of each file, containing
a statement of the name of the source file, a description of the
nature of its contents, and then a list and short synopsis of each
subroutine it contains. The remaining subsections contain more
detailed descriptions of each subroutine many of which have
companion flowcharts. Each such description contains a statement of
the subroutine function, a sample call, and a description of the
required arguments in the form:

name type in,out, or inout units description

These are followed by a list of all other routines called, all
routines which reference it, and all common blocks used by the
routine. Full descriptions of most of the common blocks can be found
in Chapter 4.

3.1 Some Notational Conventions

In order to condense the textual descriptions
adopted various '3horthand notations. This
conventions.

and flowcharts we've
section ltemizes these

In c;pecifying the argument descnptions we've assumed the following:

Variable type can be:
integer
real
double
logical
char
char"'n
byte

Um ts can be:

lnteger"'4
real*4
rea 1*8
10gical*4
character*(x)
character"'n
10gica'I*1

a standard engineering unit or
• unitless - no units (i.e. a cardinal or pointer

8

mixed

temp
string

index)

FINDS Programmer's Manual
MODULE DESCRIPTIONS

various units (usually used for
vectors, matrices, and scratch areas)
temporary, i.e. units vary
ASCII characters

Arrays (matrices and vectors) are usually specified by upper case
names. Both upper and lOHer case are often used to aid in
interpreting the mnemonic used. The folloHing shorthand notation is
used Hhen discussing arrays or equations involving arrays:

A(i, j)
V(;)

A[i 1c
A[i1r
A[i : j 1c -

A[i:jlr -

A*B
a*b

the i,j'th element of the matrix A
the i'th element of the linear array V
the i'th column of the array A
the i 'th rOH of the array A
the submatrix comprised of the i'th through
j'th columns of the array A
the submatrix comprised of the i'th through
j'th rOHS of the array A
matrix multiplication of A and B
scalar multiplication of a and b (Note:loHer
case usually implies a scalar variable)

The floHcharts contained in this manual are not meant to be comolete
descrlpt.lons of the routines. Instead, they are intended to enhance
the reader's understanding of the softHare's structure and to
highlight the softHare techniques employed. As such, they should be
used in conjunction Hith the Hritten documentation and commented
source code itself. For example, one particular floHchart may ShOH,
by detailed enumeration, hOH the internal data structures are used,
Hhereas in an other case a top-level functional floHchart Hill be
presented to highlight an important theme.

Most of the symbolic notation used in the floHCharts are described in
Figure 1. Notation inside subroutine boxes may contain the folloHing:

the box can contain the subroutine name,
the subroutine name and its arguments, or
the subroutine name and a key argument.

As a gfOoneral rule, alHays refer to the Hritten documentation for the
correct calling sequence to use. Array indexing conventions are
described in Chapter 4.

9

1he begiming of a process (Sltlroutine)

An 110 box
performs the indicated

1f1)Ut cn1Ior outpJt operations

6
An or IpaQe carector

An instruction box
performs operatioos

called for in the box

(EXIT)

1he End of a process (Sltlrout1ne)

or,

Decision boxes
exits are labeled crId one route is
taken depeI ~irg on the result of
the conpJtat1on ind1cated in the

box

An offpage comector

&.tJrout1ne bOX
perfOrms operatiMs via the
StiJrout1ne raned in the box

Figure 1. Oef1n1Um of Flow Dtagrcm Synmls

10

3.2 Brief Summary Of Contents By Source File

name: FMAIN.FOR

FINDS Programmer's Manual
MODULE DESCRIPTIONS

cont: fhis file contains the main simulation program which
orchestrates the execution of FINDS.

subr: FINDS: (program unit) fop level simulation program
INITAL: initializes several basic simulation quantities
SET: initializes constants (such as conversion

factors) used in FINDS

name: FSFDI.FOR
cont: rhis fi Ie contains all the "core" routines necessary to

imp·lement the FINDS fault tolerant navigator and FDIR
software. As such, these routines roughly represent
the simulation independent portion of the program.

subr: NAV - fault tolerant navigator - orchestrates the operation
of FINDS FTN and FO[R functions

INrTG - general initialization for FINDS
[NIfF - perform initialization specific to the no-fail filter
STARTF- start-up procedure for the no-fail fi Iter, i.e.

choose initial conditions
SUMIN - forms the input vector to the no-fail filter
SUMOUT- forms the measurement vector for the no-fail filter
GYROCR- compute compensation for the rate gyros due to

the earth's rotation
GTOI - compute inertial quantities from ground based,

estimates
CKUNST- check the no-fail filter estimates for divergence
KALMN - executive routine to implement an extended Kalman

filter using a bias filter decomposition
EKFNl - bias-free portion of the extended Kalman filter
BIASF - bias portion of the extended Kalman filter
BLEND - blend the bias and bias-free states and covariances

together to form the total no-fail filter estimates
BLGAIN- compute the blender gain
SETISN- update a count of the current number of sensors

used by the no-fail filter
CHKRAD- check for switch over to radar altimeter, and

11

FINDS Programmer's Manual
Summary of contents by source file

UPDA -
UPDAB -

UPDB -
UPDQ
UPDH -
UPDPH -
DETECT-

LKF -

LRT -
DEC IDE­
RECONF­
CLPSIO-

NOISR -

RESCMP-

FILCOL-

CLPSBE-

ADSTBP­

RCOV -

MINSET-

reconfigure the no-fail filter at switch over time
update the discrete state transition matrix
update the discrete state transition matrix to include
the coupling due to the biases
update the discrete input matrix
update the discrete process noise covariance matrix
update the non-linear measurement function
update the partial of h[x(k)l w.r.t. x(k)
implements a bank of detectors and likelihood ratio
computers
first order linear Kalman filter - used to estimate a
hypothesized failure'S level
computes a log-likelihood ratio
performs failure decision functions
reconfigures the FTS after failures and/or healings
collapse (expand) the no-fail filter to reflect
failure (healing) of a sensor
reset elements in the no-tail fil ter process and
measurement covariance matrices to reflect the
loss (addition) of a sensor
compute the expanded residuals sequence from the
(collapsed) innovations sequence produced by the
no-fail filter
estimate colored MLS noise states (used to compensate
the innovations sequence to account for its colored
statistics)
collapse (expand) the bias estimator to reflect the
removal (addition) of a bias
adjust (manage) pointer vectors used in the bias
estimator
reset the no-fail filter state estimation error
covariance after FDI of a failure
check to be sure filter will remain stable after
a candidate sensor is removed

HEALR - monitor fai led sensors and test t'or healing
AVECMP- compute the sum of the difference between two like

sensors over the healing window
LRTHLR- compute a LRT for the healing of a sensor at the

end of the healer windows
CONVRF- returns the conversion factor required to convert

from program to user (printout) units tor a particular
no-fail filter state or sensor

AVBIAS- computes the average measurement bias as seen by
the no-fail filter

12

FINDS Programmer's Manual
Summary of contents by source tile

name: FGA.C • FOR
cont: fhis file contains routines used to simulate the aircraft

and the guidance and control logic used in the aircraft.
These routines were originally part of program FILCOMP.

subr: ACEQIN- integrate the alrcraft equations of motion ahead

name:
cont:

subr:

one simultion step
AUTLD - auto-land control laws
AUTTHR- compute throttle commands
BANKTR- RNAV guidance and control outputs i.e. commands

to guide the aircraft before AUTLD takes over
CNTRLS- generate the control siqnals using either true

(i.e. simulated) or estimated quantities
ESTPNP- compute estimates of waypoint quantities and store

them in EWP
RUDDER- dynamics for the rudder servo and yaw rate damper
SERVO - elevator and aileron servo dynamics
STABCN- stabilizer trim control logic
THRUSD- engine thrust dynamics (accurate above 10 degrees

throttle setting)
WAYPNT- compute all data for waypoint segment planning

FWIND.FOR
Contains routines used to simulatp. the wind and gust
environments to which the aircraft wi 11 be subjected.
BREEZE- computes shear winds. calls WINDGT to qenerate gusts

and sums the wind components to form the total winds
GROUNE- computes the effects ot ground proximity - called

ground effects - as incremental terms added to pitch~
1 ift, and drag

WINDGT- generates gust components which are added to u,v,w
and P,O,R terms in the aircraft simulation

13

FINDS Proqrammer's Manual
Summary of contents bv source flle

name:
cont:

subr:

name:
cont:

subr:

FSENS.FOR
rhlS flle contains all the routlnes used to simulate the
n')rma I operat10n and the "tailed" behavior ot sensors and
sensor sub-systems in FINDS. All sensors contained ln
thlS file can be simulated with up to triple redundancy -
except for the RSDIMJ. The reader can find detai led
descriptions on how each sensor is simulated and how to
modif~ the parameters of these modules in section 3.3 of [1].
RADALS- radar altimeter sensor module
AIRSPS- indicated airspeed sensor module
B~GS - fl1ght quality body mounted rate gyro sensors (P,O,RI
BM..AS - flight Quality body mounted l1near acceleromete~'

sensors (Ax,Ay,Az)
ATITGS- platform INS attitude outputs tphi.theta,psil
.;ETrvLS- microwave landinq system sensor r azimuth.elevation.

rangel
RSIMJS- redundant strapdown 1MJ sensor rRSDIMJ). This routine

is an executive routine for the RSDIMJ.
IRATGl- initialization for the RSDIMJ rate gyro module
ILN,LI(1- initialization for the RSDIMJ linear accelerometer

module
CLNAVl- initialization for the RSDIMJ navigator module
UNACl- RSDIMJ linear accelerometer module
LLNAV1- RSDIMJ naviqatlon module
RATEGl- RSOIMU rate gyro module

FIO.FOR
This tile contains routines used to save simulation data
in speclal formats on disk files, along with routines to
help perform this function.
SAV1T - saves FINDS time history data in the (binarY) PLT

file in a sequential. run-time user selectable fashion
PRNTIC- print the run's initial conditions - in special

table form - on any ASCII disk file
FSCHED- determine, for a part1cular sensor. the t1me. type.

and level of failure if simulated
CHkFL - check if a sensor is scheduled to fail in the run.

and return the time and type ot the scheduled failure
FLEVEL- determlne the failure level of a scheduled failure
OUTDAT- print out a one line message followed by a formatted

14

name:
cont:

subr:

FINDS Programmer's Manual
Summary of contents by source file

printout of a scaled vector (scaled by a supplied
conversion factor)

fLOUT - print an "event" in a special coded torm (described in
section 4.2 of [1]) in the time line (.TLN) file

FUTSUB.FOR
This file contains a collection of "utility" routines
which are generally specific to the FINDS program
ABSLIM­
ACCVEL­
ROTATV­
ROT~T­
RUNGK3-
RU~Y-

SETLM -
VECM -
VECS -

VECSUM­
MATV3 -
MATTV3-

MATMJL­
MOVlJv1 -
DGATIO­
SlM"ER­
ASUMER­
MAXMIN-

absolute limit - i.e. two-sided limit about zero
compute G-frame velocity and acceleration terms
rotate inertial pos. and vel. vector to the E-frame
computes various frame transformation matrices
performs Runge-Kutta integration
computes A/C position and velocity vectors
relative to G-frame
sets a scalar into all elements of a vector
multiplies two vectors - element by element
multiplies two vectors - element by element and
increments the first
adds to vectors
multiplys a 3 by 3 matrix times a vector
multiplys the transpose of a [3 x 3] matrix
times a vector
multiplies a matrix times a vector
equates two arrays
prints out a double precision matrix
computes the conditional average sum of an array
comoutes the conditional average sum of an array
locates the maXlmum and minimum elements
in an array

MAXMINS-same as MAXMIN - except single preclsion version
MXMN2 - same as MAXMIN - except elements are conditioned

on a non-zero element in a second array
VECHGl- collapse or expand a vector
MATCG2- collapse or expand a matrix
IMTCG2- adds or deletes rows (columns) of matrices
PNTINV- pointer vector inverse
LIMVAL- vector limiter for symmetric limits about zero
LIMVL2- limiter for ant;-symetric two-sided limits
NOISEG- generates samples from a normal distribution

15

FINDS Programmer's Manual
Summary of contents by source file

name:
cont:

subr:

with zero mean and unity variance
BARN1 - genertes samples from either a gaussian or a

uniform distribution
GAUSS - gaussian random number generator
UNIFR~ uniform random number generator
NAMFIL- forms a file name with a fixed name and various

extensions

F~SUB.FOR
This file contains routines which perform operations on
vectors and matrices. Unless explicitly stated, all
routines operate on double preslsion quantities.
BUBBLE- perform bubble sort on an array of integers
DOT - compute dot (or inner) product between two column

vectors
DOT2 - computes dot product of two row vectors
DOT3 - computes dot product between a row and a column

vector
VADD increments a given vector by a second vector
VADD1 - increments a given row vector by a second row

vector
VSCALE- sets one vector equal to another times a scale

factor
SEONCE- initializes an integer array as [1,2, ••• Nl
INSRTN- maintains a pointer vector (integer) with

unique entries
VECNULS-initializes a column vector to zero (single

precision)
VECNUL- initializes a column vector to zero (Double

precision)
SWAP - Swaps a row, column, or diagonal between two matrices
~T1 - multiplies a vector by a matrix Y=AX
~T2 - computes the vector matrix product sum Y=Z+AX
GMINV computes the inverse or generalized Penrose

inverse of a matrix
MMUL - computes the matrix product Z=XY (with sparseness

test on X)
MMUL2 - computes the matrix product Z=XY (with

sparseness test on Y)
MATl - computes the matrix product Z=XY

16

FINDS Programmer's Manual
Summary of contents by source file

MAfiA - o:mmutelj tilt' Illdtrh: oroljUft Z=~;¥ IZ can el]wjl it
MAT2 - computes the matrix product Z=XY ' (tor Z

MAT3 -
MAT3A -
MAT4 -
MAT5 -

symmetric)
computes the matrix product
computes the matrix product
computes the matrix product
computes the matrix product
sparseness test on Y)

Z=XYX'
l=X'YX
Z=X'Y
l=XY' (with

MAT6 - computes the matrix product Z=XY' (with

MADDl -
MADDI -
EQUATE­
MATNUL­
MSCALE­
fRANSl-

sparseness test on Y, and l symmetric)
adds two matrices
adds a scaled matrix plus a scaled identity matrix
equates one matrix to another
initializes a matrix to zero
scales a matrix by a scalar constant
computes the transpose of a matrix

17

FINDS Programmer's Manual
Summary of contents by source file

3.3 Detailed Descriptions Of FINDS Routines

3.3.1 Documentation For File: FMAIN.FOR-

name: FINDS - (Main Program)
Detection System"

func: Th1s program unit is responsible for coordinating the run-time
operation of the program. fhe overall purpose and use of the
program - from a users point of view - ;s documented in detail
in (11. To show the overall scope and flow of the program a
functional flow diagram 1S shown in Figure 2. fhree stages of
the program are eV1dent in this figure:
* an initialization stage - designed to initialize all

variables and routines and to establish all disk file
interactions

* a basic simulation loop - whose purpose is to continually
compute the current control signal over the next simulation
interval~ integrate the A/C equations of motion. simulate
the Ale and sensor subsystems, and exercise the FINDS FOI
and estimation algorithms until a stopping criteria has
been satisfied.

* a termination stage - once the simulation loop has
satisfied its stopping criterion, the program is gracefully
terminated.

Figure 3 provides a much more detailed and annotated flow
diagram which clearly shows how program FINDS operates.

ref: ACCVEL. ACEOIN, AIRSPS, ALTYP, ATITGS, AUTLD, AUTLDI, AUTTHR,
BANKTR, BMlAS, BMRGS, BREEZE, CNTRLS. CTEXT, GETMLS, GROUNE.
INITAL, ISPEC, MATMUL, NAMFIL, NAV, OPN2, PAGEFD, PRNTIC,
RADALS. ROTATV. ROTMAT, RSIMUS. RUDDER. RUNGK3, RUNWAY, SAVIT,
SERVO. SET. STABCN, THRUSD, TLOUT, w[HDR1

Also from the VMS libraries:
ASIN~ CLOSE, DATAN2, DCOS, DSIN, LIB$FLT_UNDER,
LIB$INIT_TIMER. LIB$STAT_TIMER. OPEN. SECNOS

comm: ALPCOM. ANGLES. ANGS. ARSTAT. ATMO, AZELRN, COEFGE, CONTRL.
CPU, CRTE. DROP, EARTH. EGUIDE. EKF1. FCOMI. FC0M2, FILNAM.
FLTCTL, FTITL1. GEARLD. GSLOPE. GUIDE. HICOM, ICLALO. lEST,
IMlS, INOU, ruvw, LAND, LAOUT, LOGIC4, MeONCO. MLSALL, MlXYZ,

18

FINDS Programmer's Manual
Documentation For File: FMAIN.FOR

NAVINF, NWPLT1, PHILLV. PLOT§~ PORT~ PORN~ P§IR~ O~AND~
RGUIDE, RIOUT, RSTATE, RUNGEK, SETCOM, SIGTAU, SIMCOM,
SNSIDT, SNSRDT, SPCFOR, START, SYNC, TRANS, TURN, TURNOF,
UPDAT, VARLAT, VARLON, VORTAC, WIND. WINDCO, WP, XOVOZO

19

no

Fl~re 2. FLIlCUooaI FIO\tJ Dlagrcm for Progrcm FINJS

20

START

accept a randorl I'IUftber seed,
JRfII), frOli the flY and force

1 t to be and odd I'IUftber

initialize glideslope
paraneters

Figure 3. Flow Diagnm for Prognm FlJ'.DS

21

Ale ini:::rs 1)tL-J.. __ --r ___ .L.J

initialize !
winds i············#· CCRpUtation ~ L-J.. __ ~ ___ .L.J

trift ~

initialization I··········lt.
for SUlbilizer ~ L-J.. __ ~ ___ ..L.I

t

Detemine initial
pos , velocity

in inertial , Nrth
franes

Establish in! tial

Rotate accelerations
to L-fr8111 met
conpute Ale pos

in C-fr8111

initialize alto
land control
logic

I .L-J.. __ ---,,..-__1...J

initialize bank ~
turn and course ~ '
waypoint 1000c 1. l..L. ___-__ -W

~--~~--~
~···············tu:

top of najor 1

siftulation f' ". ",
loop ., ;to.

INITIALIZA TICN
.~ +

:~lm~!ilillll!l!Im!illll~!Im!1I8I!883m

Conpute CU
signalS using
fault toler .. t

navigator quantities

~ ~

~

. ;.
""' .. J auto-Ievel
. /' ~ control

/'~. i laws
I

stabilizer
trin control

logic

.......... ~
.. ':): *

throttle
control

law

Figure 3. Flow otagrcm for Progrcm FJto.I)S (cont1rued)

22

thrust. ~

dyMnics ; W---r--_

rudder servo 6 I
Y. rate darIper t····*

dyMId.cs ~

elevator (; :;
aileron 1 e.

servo dyMId.cs; .

no

yes

~ i. ground effect
L...L. __ -.-___ i conput.ation

(;::~: ~

in the out file

record varia,les
in the Pl T file

Figure 3. Flow Dlagnm for Prognm FINJS (contlrlJed)

23

~ E. 1··········~r-r----L---r"'1
....... :1
_.uN cO'III0llents '\

integrllte Ale
equations
of Mtion

increnent tine

.

I···········~· ~

f············~·

Establish various
true quanti ties

by equating to

the Ale state

rot4lte velocities I ... ", :".
and accelerations C L....I-__ ---r-__l..J

to loc:al I", ..
level tr_ 1 "' .. ':1{.,.

L-L... ___ ---'-'

update the l
nn.ay post tion t···········~l , L....I-__ ~ __l..J

Establish true
~ qumtities

Conpute true
body specific force

Figure 3. Flow D1agrcm for ProgICm FINJS (cootlrued)

24

body now'Ited ¥ .
~ ~.

rate gyroes ~

~=tecI ~ ~
accelerOMters ~

platfom
mu

radar altifteter I·········<l>'
~

~=t········r.~
r. '""'"-----,----"'-, , .. " .. , ! siftUl.ate the RSOmU?

siftulateAlC
sensor systeM

continue at
top of

sinulat.ion loop

.*" .. r

~
-e~ ~ RSOmU

U-____ ~-------'-' ~ ~.

"FIJI)$-
i fault tolermt + ... ,: navigator ~

J._~=====:r-_-J..J I FOI logic ,

Figure 3. Flow Diagram for Prognm FJN)S (cmtinJed)

25

~---.----'-'
"'···f close PI.. T file

STOP

Ft~ 3. FlOW Dlagrcm fOr p~ FINJS (concll.Kbl)

26

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

ca 11 :
args:
refs:
refby:
comm:

INITAL

FINDS Proqrammer's Manual
Documentation For-File: AMAIN.FOR

fo initialize several program variables - mostly related
to the guidance and control algorithms. Originally, (in
program FILCOMP) INITAL Nas intended to initialize case
independent quantities - hONever, since FINDS doesn't alloN
multiple cases in the same physical run, no such distinction
is made in FINDS.
Ca 11 INITAL
None
None
FINDS
COEFGE. CONTRL. LOGIC4. SYNC, WINO

SET
To initialize various constants (such as conversion factors)
and program flags used by FINDS. Originally, (in program
FILCOMP) SET Nas intended to intialize case dependent
quantities - hONever. since FINDS doesn't alloN multiple
cases in the same physical run, no such distinction is made
in FINDS.
Call SET
None
None
FINDS
ALPCOM. ANGLES, ATMO, CONTRL. EARTH, FCOM1, FCOMe, GEARLD,
HICOM, lEST, MCONCO, NAVINF, NWPLTl, PHILLY, PLOTS, SETCOM.
SYNC. VARLAT, VARLON, WIND, WINDCO

27

FINDS Programmer's Manual
Documentation For File: FMAIN.FOR

3.3.2 Documentation For File: FSFDI.FOR-

name: NAV (fault tolerant navigator)
func: rhis subroutine ;s an executive program which implements a

fault tolerant navigator using the FINDS approach. It is
responsible for initialization_ synchronization, and
execution of all the modules comprising the FTN and FDIR
logic. Figure 4 shows a detailed flow diagram indicating
its operation.

ca 11: Can NAV lIabort)
args: {abort - integer out flag indicating whether to

continue or abort the run. If Iabort=O continue the
run; otherwise abort.

refs: CHKRAD, CKUNST. DECIDE. DETECT, F1LCOL. GT01, HEALR, INITG.
KALMN. LIB$INIT_TIMER, LIB$STAT_TIMER, PRNTIC. RECONF, RESCMP
SUMIN. SUMOUT, TLOUT, WAYPNT

refby: FINDS
comm: CMPSTF, CNTROL, CPU, DCIDEI, OETINF, EARTH, EKBFO, EKFl,

FCOMl, FILTRT, FLTCTL, GBLENO, IMLS, INOU, MAINl, MAIN2,
PHILLY. PLOTS, SIMCOM, SYSUl, SYSXBO, SYSYBO, SYSXWl, SYSXl,

28

execute full FTS

.* ; force single entry
L...L __ ~ __ ~w (

I
~
~

I
:l
(.
~
\;

i
.........) initialize FTS except i

L...L __ --... ___ LJ ~ for IFF IC's ~

~-------~ ~

exi, t routine prior
to nLS tum on

.:i~) synchronize nLS turn-on
.. i and enter this loop only once

~,} ~; initialize
; IFF IC's:

initialization
perforMd
during progr8f'l
ini tialization
st.age only

~ record filter
·~i~······1 turn-on in

ini tialization
perforned
only at
tine of L...L.---r----J....i ~ lUI file

,,;;, :1 print out

~----===::::::::r-----'-I
. ~ filter IC's

i exit routine if
.::~: : IUl starts inside

i nlS coverage

.:.:< .; execute FTS
~: without FUIR fln:tion

Fig.Jre lL Flow Diagram for Stmootine NAV

29

nlS
turn-on

~ J check for r.m
L...&... __ --.-__ -w I alt1neter tum-on

~ ! reconfiguration to acauJt
L-L----r--__ ...J....J I for healed sensors

>-no~.[!» .~ I prob18l'l1 ... exit routine

~······l fom if1IUtS to IFF
L...&... __ -. __ ~~ l

. ~ IFF' ·······1 propagate est.iJNltes L...L.. __ ...,-__ ~

i
, ········l conpute expSMIed residuals

L...L..---r--~ j

·······1
nil colored
noise filters

~ ! nI'I bank of failure detectors
L...L.. __ .,-__ ~' l and LR CORpUtations

~ ~ MIce failure decisions
~---r--~~ "

········1 roo sensor healer looic

...... ...! reconfigure FTS to
L-L-----r------JL....J. i reflect failures

>--------""")D
.....

-:««<<<<<.:~-':<.:(.;«<~-:<<<<<<<<<<<<<<<<<<<<-wx<<«o:<<<<<W. .. -.:

problens1 ... exit routine

Figure 4. Flow Dlagnm fOr SltJroutine NAV (contlnJed)

30

EXIT

~,.,:,,\ full FTS logic (continued)
:.

........ -_......-_----Ju
.nol, ~ forn ftNSUrenents
... : ~ to NFF

.. ·····l ~ IFF
>

:s COftPUte est.iMted
:~ "':j inertial quantities
:. and required
~ control signals

i check state
·+··1 estinates for

'-'-_----,,....-__L...J 1 filter divergence

printout the filter
gains every
I~ -ticks-

Fi~ 4. Flow Diagrcm for SlJlroutlne NAV (~luded)

31

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: INITG
func: Performs initialization for the FTS soft~are. In particular.

the no-fail filter, failure detection isolation and
reconfiguration modules are intialized here. In addition,
program flags and data structures are intialized ~ich
determine the structure of the FTS. These flags are
modifed via namelist FILTIN. ~hich is read in this routine.

call: Call INITG (Ipart)
args: Ipart - integer in flag to indicate ~hich part of the

intialization is to be performed. If Ipart=1 all
initialization except for determining the initial
conditions of the NFF is performed. Other~;se the
NFF IC's are chosen

refs: ALTYP~ BUBBLE. CONVRF, EQUATE, GTOI, IMSCLE, INITF, MTH$DLOG
SEOUNCE, STARTF, SUMIN, SUMOUT. UPDA, UPDB

refby: NAV
comm: AGMP. ARMP. ARSTAT. ASMP. CMPSTF, CNEST, CNTROL. COLFIL.

RIOUT ~

name:
func:

DCIDEI, DETINF, DETSIG, DETXBI, DETYBI, EARTH, EKBFO, EKF1,
FCOM1. FILTIC, FILTRT, FLTCTL, FTITL1, GBLENO. GRMP, HEALCM,
HFCOM, IMLS, INITVL, INOU, LAMP. LOGCI4. MAIN1, MAIN2, MCONCO,
MLSALL. MLSMP. MULTDT. NWPLT1. PLOTS, PSIR, RALMP, RGMP,

SENSCM, SETCOM, SIGTAU, SIMCOM, SYNC, SYSU1. SYSX1, SYSXBO.
SYSYBO, SYS~l, VARLON, WINO. XOYOZO, YOBSRV,

INITF
To initialize the EKF's measurement and process noise

covariance
matrices, RF1 and QF1 respectively, and the measurement
normalization scaling vector Yscale. The quantities are set
as follo~s:
a) process noises:

* if using the "standard"
QF1(i) = sig(;)**2

* or if using the RSDlMU
OF1(i) = sig(17)**2
OF1(i) = sig(18)**2
QF1(i) = sig(i)**2

b) measurement noises:

sensor set (i.e.
for 1=1,..8

(i.e. irsdf=O);
for ; =1, ••• 3
for i =4, ••• 6
for i=7,8

RF1(i) = sig(i+8)**2/n for i=1, .•• 8

32

irsdf!=O)

call:
args:
refs:
refby:
comm:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

where n=Ireplf fi+nu1) i.e .• the number of replications of
a particular sensor type currently in use by the EKF.

c) scaling vector:
* if IYSC=O then Yscale(i)=1.0 for i=1, ••• 8
(i.e. scaling is disabled)
* otherwise

Yscale(i) = 1.0/SQRT[RF1(i)1 for 1=1, ••• 8
Call INITF
None
None
INITG
DETXBI. FILTRT. FLTCTL. SIGTAU. SYSU1. SYSYW[. YOBSRV

name: STARTF
func: To initialize the no-fail filter's state estimates and

initial error covariance. This is accomplished as follows:
choose the initial estimation error from a random
distrlbution, s.t.
1) XICerr(i) = SDXic(i)*s for i=1.NX

where 5 is a sample from a normal distribution with
mean=O and variance=1. and SDXic is a vector of expected
standard deviations

2) set XF1(i) = Xt-XICerr(;) for 1=1.NX
where Xt represents the "true" or simulated value of
XFll 1)

3) initialize the bias-free filter covariance. PF1. and
the total no-fail filter (bias & bias-free) filter
covariance, PXF1. to be diagonal matrices with diagonal
elements:

PFl (i , i) = PXFl (i , i) = SDPi c (i) **2
where SDPic is a vector of standard deviations for the
initial filter covariance

Note: SDXic and SDPic are in user units. therefore this
routine also performs conversion to program units

call: Call STARTF
args:
refs:
refby:
comm:

None
NOISEG
INITG
ANGLES. AZELRN. CMPSTF. EKF1. FILTIC. MAIN1, MCONCO, PSIR,
ORAND. SYSX1, UPDAT, VARLON. WIND

33

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: SUMIN
func: To provide a proper set of inputs to the no-fail filter.

call:
args:
refs:
refby:
comm:

name:
func:

The input vector presented to the no-fail filter is formed
by SUMIN as follo~s:
1) each group of like replicated input sensors is broken

do~n into 3 classes; available & used by the filter~
available, but in standby; and failed. SUMIN further
restricts only a single replication to be active. ~ith
all others placed either in standby or detected as failed.

2) rate gyro measurements are compensated for earth and
platform rates

3) the input vector, UFl, is formed such that trapezoidal
integration ~il1 be performed by the no-fail filter
(i.e. U(k) = O.5*[u(k)+u(k-l)])

4) the gravity vector is computed and added to the end of
UFI such that UFI is composed of:

UFI = [Ax,Ay,Az,P,Q,R,Gx,Gy,Gz]'
~here (Gx,Gy,Gz) is the gravity vector expressed in the
G-frame

5) if any input biases are being estimated. their current
estimates are subtracted from the NFF input measurements,
UFI

Call SUMIN
None
GYROCR, SUMMER, VMPRT
INITG. NAV, RECONF
EKBFO, FILTRT, FLTCTL, GRVTYC, LAOUT, MAINl, MCONCO, RGOUT.
RIOUT, SYNC, SYSUl, SYSXBO

SUMOUT
SUMOUT forms a set of average measurements, YFl; to be used
by the no-fail filter. It functions as fol1o~s:
1) each group of like replicated sensors is classified into

t~ sets~ available and to be used by the filter; and
unavailable, failed, or selected out

2) each element of YFI is averaged as:
YFl(*) = (1/nr)*[m(I)+m(2)+ •• m(nr)]

~here nr is the number of available, replicated
measurement sensors. and m is an arbitrary measurement

3) psi measurements are compensated for any run~ay ya~ by:

34

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:

YF1(7) = YF1(7) - PSIRU

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

where PSIRU is the runway yaw to north expressed in
radians

4\ if IYSCL.NE.O then each measurement is normalized bv the
expected variance of that signal. s.t.

YFl(i) = YF1(i)*Yscale(i)
where Xscale is set in subroutine INITF

Call SUMJUT
None
SlJlt1VER
INITG. NAV
AGOUT. ASOUT. DETKBI, FILTRT. FLTCTL. MLOUT. PSIR. RAOUT.
RIOUT. SYSYW1, YOBSRV

GYROCR
GYROCR computes the correction terms required to compensate
the rate gyros for earth and platform rates. GYROCR functions
as follows:
1) to ensure that gyro measurements are compensated only

once per simulation "tick", a local copy of the last
time (TimesL) is saved. If Times (= TimesL then

WCQMP(i) = 0.0 for i=1 •••• 3
2) otherwi se :

WCOMP = Trb' Trl Wl
where Trb' is the transformation from the runway to the
body frame of reference and Trl is the transformation
from the local level to runway frame. Wl is the frame
rates expressed in the local level frame

Note: most of the variables used in this subroutine are
computated in GTOI.

Call GYROCR (wcomp)
wcomp - double out vector of compensation terms to be

subtracted from the rate 9yro measurements (see
description above.)

refs: MATTV3
refbv: SUMIN
comm: ARSTAT. EARTH. PSIR, SIMCOM. TRBER

35

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

call:
args:

GTOI
GTOI forms estimates for inertial position. velocity, and
acceleration. and runHay acceleration. It also computes
the A/C's current longitude and latitude along Hith their
rates of change. In addition, Tic, the last column of T1c,
coriolis and centripetal correction terms for compensating
the platform gravity force, and several control variables
required by the G&C logic are also all computed.
Call GTOI
None
ASUMER, MATV3, MTH$DATAN2. MTH$DCOS. MTH$DSIN, MTH$DSQRT
INITG. NAV
ARSTAT, EARTH, EGUIDE. EKFl, FILTRT. GRVTYC. IMLS, MAINl,
MCONCO, PSIR, RGOUT, SYSU1, TRBER.

CKUNST
CKUNST checks the no-fail filter estimates for divergence
and sets an abort flag (Iabort) if a divergence criteria is
exceeded. The primary benefit of this routine ;s to reduce
computation time (and associated costs) by ending a divergent
run early. The folloHing divergence criteria is used. ~here
divergence is declared if:
1) the altitude estimate is beloH the runHay i.e. XFl(3)(O.O
2) the absolute sum of the position errors are greater than

a position error bound. POSBND. i.e.
sum{lpositCi)-XF1(i)IJ)POSBND for i=1, •• 3

3) the absolute sum of the velocity errors exceeds a velocity
bound, VELBND. i.e.

sum{IVELOCCi)-XFl(3+i)IJ)VELBND for i=1 ••.• 3
4) or the absolute sum of the attitude errors are greater

than an angular bound. ANGBND. i.e.
sum(la(i)-XF1C6+i)IJ)ANGBND for i=1 •••• 3

Hhere a = [Phi. theta. Psi-Psiru]
If the divergence criteria is met. the stopping time for the
run. Tstop. is set to the current simulation time. an abort
flag is set. and messages are sent to the connected terminal
and the time line file.
Call CKUNST (Iabort)
Iabort - integer inout run abort flag, Hhere:

Iabort=-l

36

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

indicates run should be aborted, and otherwise run should
proceed.
ALTYP. TLOUT
NAV
ANGLES. EKFl, FILTIC, PSIR. SETCOM. SIMCOM. UPDAT

KALMN
KALMN serves as the executive routine to implement an extended
Kalman filter. where the plant equations are:

X(k+l) = A x(k) + B[X(k)]u(k) + E[X(k)]w(k)
and the measurement equation is:

y(k) = h[X(k)] + u(k)
The filter is realized as a lower order bias-free filter
followed by a bias filter and a blender to form the bias
corrected state estimates. The reader is referred to [3] and
[4] for a more detailed description of the approach. KALMN is
meant to be called in two passes. once to perform all the
filter propagations, and then again to update the estimates
and covariance with the measurements. The following user
supplied routines are required to define the non-linear terms:

UPDA defines A
UPDAB defines ABFl
UPDB defines B[X(k)]
UPDO defines O[X(k)]
UPDH defines h[x(k)]
UPDPH defines HPI

Call KALMN (Iup)
Iup - integer in update/propagate flag, where Iup=l

enables updating, and Iup=2 enables propagation
BIASF. BLEND. EKFNI
NAV. RECONF
SYSXBO

37

FINDS Programmer's Manual
Documentation For File: FSFDI~FOR

name: EKFNI
func: EKFNI represents the bias-free filter portion of the no-fail

filter. It is implemented as an extended Kalman filter.
Covariance propagation of the stabilized normal equations
is performed. The state estimates. XFI are NOT computed in
this subroutine, rather they are formed in subroutine BLEND.
To accomodate reconfiguration due to the failure or a healing
of a sensor. the state and covariance at time k/k is stored
temporari1v in RBFO. Figure S details this module. The
reader is also referred to·[3] and [4] for a detailed
description of the no-fail filter's implementation.

call: Call EKFI (Iup)
args: Iup - integer in update/propagate flag
refs: EOUATE, GMINV. MADDI. MADDI, MATIA, MAT2, MAT3. MATS, MMUL.

MMUL2. MSCALE. UPDAB. UPDB. UPDPH. UPDO
refby: KALMN
comm: EKFI. FILTRT, FLTCTL. MAIN2. SYSUI. SYSXl. SYSXBO,

SYSYBO. SYSYWI. TSTORE

38

update the 1.

bias-free i·········:'>'>­

. J propagate the

,;w" * bias-free filter
~. IT>

~~r i ~----~----~~
"....... ~ COfIPUte the partial of h with
··'~·:i respect to the state(lCFl).1P1

~----~----~~ ~

don't scale the ~
neaurenent noise f

covariance :, r------~------....,

IlO

R--DIAG{l.OIIREPlF(i+nUl)}
i=1 •••• MY

; COfIPUte the
i effective neasurenent
i llOise seen by !;:=== ____ =====r--------l l the bias-free filter

assune
covariance
propogtion

. ! assune infornation
>-__ IlO _______ .·:1:;...::··_···,···; forn of bias filter

fOllt of
bias fi1 tel ~i

PFl=[I-cAIMK-1P1]-Pfl-[I-cAIMK-HP1],
+CADIK"R"CADIK '

-:-:;$..••.•.....•..

r, store 4 partial
:j conputation in
:;: RBFO to be used

by the bias filter

update the estination
error covariance natrix

Fl~e 5. Flow Dlagrcm for SlJlrrutine EKFNl

39

............ 1 :~= the
. filter

..............) :r~~~)~::~~k~k)
L...-____ -----..l I reconf1pation is perfol1led

! ! update the descrete input
L...J.. ___ --....L...J '. ! wei~ting Mtrix. 8Fl

PFl=ABFlepfl-I8=lO

• EFl ~l '"EFl °

(EXIT)

l

............. ...! update the descrete process
l noise covari.c:e Mt.rlx. EF1
!

i update the descrete state trMSition
•.............. ~ IMItrix - including the coupling effects

; of input bias estilMltion. 18=1
!

$.
l .»i conpute the propagated bias-free

. i estiMtion error covari.c:e
!

Fl~ S. Row Dlagnm for ~ EKFNl (CUlClUdBd)

40

name: BIASF

FINDS Proqrammer's Manual
Documentation For"File: FSFDI.FOR

func: BIASF implements the bias filter portion of the no-fail
filter. The operation of this routine is sho~n in Figure 6.
The reader is referred to [3] and [4] for detailed
descriptions of the no-fail filter implementation. A
soft~are s~itch exists in this routine ~hich can be set at
compile time or at run time via the Fortran debugger. The
s~itch is IGNC: if IGNC=l use an anti-svmetric equation for
PBFO. other~ise use a (more complicated) symetric equation.

call: Call BIASF (Iup)
args: Iup - integer in update/propagate flag
refs: ALTYP. BLGAIN, DGATIO. EQUATE. GMINV, MADDl. MADDI, MATl,

MATlA. MAT3. MAT3A, MAT4, MMJL. VMPRT
refby: KALMN
comm: CMPSTF. EKBFO, EKFl. FILTRT. FLTCTL. GBLEND. INOU. MAINl.

MAIN2, SYSUl. SYSX1. SYSXBO. SYSYBO. SVSVW1. TSTORE. VOBSRV

41

perfoIll bias filter ~
::';. :::-:-.

neasurenent update ii .,

B = [-BFlubIO] Note: BFlub is not a ~
variable- rather it .! W
represents the natrlx ~., -- .

D = [011]
CBF~l-[ABFl "YBO+B]+O

of colUlm of 8f1 ~
corresponding to inputs ~
with estillated biases I

conputat.ions for t
covariance propagation }
fOIll of bias filter :i

COftPUt,e bias filter
gain natrix
Note: RBfO=fFl-PFl'"tFl +It
was saved in smroutine
EJCF1Q

.,

no propagation st..p required - since
there are no bias fll ter dynaId.cs

l. COIIpUte the effective bias filter
<<if; ne8SUTenent natrix CBFO. where the

! partial tern CBFO= [ABFl "YBO+B] was
I saved previously in smroutine BlEIl)

.,w) update the no-fail
'. 1 filter blender gain. VBO

~ CORpUtations appropriate for
.<i~ '.,.'.'~ Infornation fOIll of bias filter

,i
j update bias fllter

use anit-SYftMtric
equations

;, ,:" 1 est:i.Ration error
,,; I-----L~=-__ -, 1 __ --lI~ ___ ---. ~ covariance Rauix

PBFIP [I -GADIBO"CBFO]-PBFO

·d! return
:;

Figure 6. Row Diagnm for SltJmutine BIASF

42

.,
:~
~

1 t .
. /,·1 COftI)Utations for infOl'Mtion fom of the bias filter

.<l :,

~ update the bias filter DF(JIIAnOf Mtrix.
P8FO=P9FO + C8Fo-tBfo-t8fO .. , ~ P8FO; Where P8FO=[tFl"PF1"tFl+R]--1

I was stored previously by _routine EICFIO.

T1tP2 = P8FD--l j invert P8FO to obtain the error covari~
>ft·················1 Mote: this St8I) is optional RI should be

; done only if the error covarin:e is required

no

! -~. U.
i~""-

i bias f1l tel

I~MUb

Fl~ 6. FlOW D1agnm fOr SlttOOtlne BIASF (cmcll.lJed)

43

FINDS Proqrammer's Manual
Documentation For File: FSFDI.FOR

name: BLEND
func: BLEND computes the bias and bias-free state estimates and

~blends" them together to form the total state and bias
estimates. It also forms the total state and bias estimation
error covariance and Kalman gain matrix. Figure 7 details the
operation of BLEND.

call: Call BLEND (Iup)
args: Iup - integer in update/propagate flag
refs: EOUATE, MADDl, MATl, MAT4, MMUL, TRANS2, UPDH, VECNUL, VMATl,

~T2
refby: KALMN
comm: CMPSTF, DETINF, EKBFO. EKFl, FILTRT. FLTCTL. GBLEND, MAIN2.

SYSUl, SYSXl, SYSXBO, SYSYBO. SYSYWI. TSTORE

perforn i
neaurenent ~ ~t_.. f: --, ~

no biases
estinated

use nolMl. :!
residual ~ +.
COIIpUtations ~

,ffl"'} at least. one bias est.iMted no .,. ~
~

i
~

? COfIPU1:e total
~ (bias • bias-free)
t no-f~ filter gain
, natr1x

I
I
I

I use -whitened- residuals
&,,/'1 obtained fron FILCB. uroutine

no

I
RES8O=Yfl-HXICPl

! forn the filter residuals
! Mote: HXlCPl=h,J\at+O'"XllFO
! was saved in smroutine
I REsatP
!

rom RESBO as the average
residual sun using the expanded
and filtered residuals. RESBOC

I

I
XFl=XFl +GAIIIOC"RESBO , :: uPdate the no-fail .<'!t !

. , i f1l tel state estinat.es

i update the no-fail
.. ;~~~ ~

, ~ filter bias estinates

Figure 7. AOtN Diagnm for SIJJmJtine BI....EN)

45

perforn state tiM prope;ation

~_no ___ ~_·...,········i SOM biases ue being estiMted

:J!.a:: I· .. ··········· .. · ! yes

COfIPUte the total,
auonented, no-fail
filter (state' bias)
estiMtion error
COVar1.1n:8 Mtrix at
tine klk

XFl = AFl-Xf1 +SFl "tFl

l

.~. ""'j lIIr1 input biases?

no
I

1 ovUa1
.....-__ ...L... __ --. I COfII)Utat1on in C8FO

t to be used in I uroutine BlASf
L...-__-__ --J I

PXf1 = (PF1 +CBF0"PFl "C8FO'
~ PBFo-c8fO·

C8F0"P8f~
PBFO)

..i*! COfII)Ute the propagated
'. ; state estiMte

,;t ·f evaluate the observations
. ~ function (Le. h-hat,)

Figure 7. Row Diagram for 5W)rout1ne BLENJ (conclUded)

46

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: BLGAIN
func: BLGAIN computes the blender gain. VB. in a recursive fashion.

VB is computed recursively as:
VB(i+l) = (I-GAINk*HPI1*ABFl*VB(i)

+ (-BFlub + GAINk(HPl*BFlub-D)]
where the second term is computed as the augmented matrix:

[(GAINP*HPI-I)*BFlub , -Gaink*Dl
BFlub refers to a matrix built out of the columns of BFI.
where each column. corresponding to biases which are

estimated.

call:
args:
refs:
refby:
comm:

is included (augmented together) to form BFIub.
Call BLGAIN (VB)
VB - double inout updated blender gain matrix
MADDl, MADDI, MATI, MMUL2. MSCALE
BIASF
EKFI. MAIN!, MAIN2. SYSUI. SYSXl. SYSXBO. SVSVWl. TSTORE.
VOBSRV

name: SETISN
func: SETISN maintains the value of a vector called ICNTSN. The

ordering of elements in ICNTSN are constant and correspond
to the absolute replicated sensor ordering found in Table 6.
The value of each element is the location in UFI for the
first six elements. and the location in the expanded inno­
vations. RFI. for the rest of ICNTSN.
ICNTSN provides a "mapping" between an absolute indexing
scheme and a particular (collapsed - due to failures) indexing
scheme used by the NFF

call: Call SETISN
args:
refs:
refby:
comm:

None
IMSCLE
RECONF
OETINF. DETXBI. FILTRT. SYSUI

47

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name:
func:

call:
arqs:
refs:
refby:
comm:

CHKRAD
CHKRAD checks radar altimeter turn-on criteria. If the
follo~ing criteria are satisified the radar altimeter
measurements are added to the no-fail filter measurements.
and the MlS elevation measurements are removed (selected out).

RADAR = false (i.e. radar s~itchover has not occured)
and IXF1(3)1 < Hradar (A/C ;s belo~ a fixed altitude)
and Irepls(6)!=O (vertical accelerometers available)

Radar altimeter measurements are added by "healing" them. and
performing the reconfiquration required. In addition. if the
filter covariance is too small for x and x-dot. it is boosted
to force the radar altimeter measurements to be used by the
no-fail fi 1 ter.
Call CHKRAD
None
RECONF, TLOUT. VECNUL
None
CMPSTF. DCIDEI. DETXBI. EKBFO. EKF1. FILTRT. FLTCTL. HEALCM,
HFCOM. INOU, LOGIC4, PLOTS, SENSCM. SIMCOM. SYSXBO. SYSYW1

name: UPOA
func: UPDA updates the discrete state transition matrix (AFl).

Currently AF1 is a constant so UPDA is called only once. AFl
;5 defined in equation (2.2.13) on page 29 of [2]
(~here A=AFl).

call: Call UPDA (nr,nc.x,A)
args: nr - integer in currently not used

matrix
refs:
refby:
comm:

nc - integer in currently not used
x - double in currently not used
A - double out updated ~iscrete state transition

MTH$DEXP
INITG
MAINl. SIGTAU. SYNC

48

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: UPDAB
func: UPDAB updates the discrete state transition matrix (ABFI) to

include the coupling due to the estimation of input
measurement biases. It also computes and saves a matrix of
partials needed for the bank of detectors BDFI.
Computationally UPDAB computes:
1) ABFI = AFI + partial of BFI*(UFI) w.r.t. XFI
2) BDFI = partial of BFI**BFlu. w.r.t. phi. theta. psi where

XBFIu is a vector of failure estimates for input sensors.
The reader is referred to pages A-I in [3] for a description
of the partial derivative terms required for this module.

call: Call UPDAB (ns.nu,u,AB)
args: ns - integer in currently not used

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:

nu - integer in currently not used
u - double in input measurement vectors (UFI)
AB - double out updated discrete state transition

matrix
which includes the coupling due to input measurement

None
EKFNI

biases.

DETXBI. EULER. MAIN1. SYNC. TRBER

UPDB
UPOB updates the discrete input weiqhting matrix. BF1.
also evaluates and saves:
1) sines and cosines of the estimated euler angles
2) the transformation from the B to the R frame
3) the transformation from the R to the E frame
BFI is defined in equation (2.2.13) on page 29 of [2]
where (B=BF1)
Call UPDB (nx.nu,x,B)
nx - integer in
nu - integer in

currently not used
currently not used

and

x - double in vector of current state estimates

B
(e.g. XF1)
double out
matrix

updated discrete input weighting

MTH$OCOS. MTH$OSIN. MTH$DTAN
EKFN1. INITG

49

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

comm: EULER, FLTCTL, MAINl, SYNC 4 TRBER

name: UPDO
func: UPDO updates the discrete process noise covariance matrix.

OFI. UP DO assumes that UPDB has been called recently,
therefore Trb and Ter are current. OFI is defined in
equation (2.2.14) on page 30 of [2] (where Q=QFl). In
addition. provisions have been made in UPDO to allow for
the following modifications to OFl:
1) modeling errors. not accounted for by the plant and

measurement equations~ can be accounted for partially
by increasing the process noise variance. Therefore, a
vector of terms, called DIAGQ is added to the diagonal of
OFI. Currently DIAGO is set to zero and can only be
changed at compile time or via the debugger at run time.

2) to represent errors due to scale factor and misalignment
of the rate gyros. the following terms are added to the
measurement noise variance for rate gyros:

/ \ / \ / \
10 1 11 I STMPII I STMPll

Vrg = V + spm* 11 0 11 ISTMP21 + scaleF* ISTMP21
11 1 0, I STMP31 I STMP31
\ / \ I \ I

where each of these terms are defined in comments in the
actual code.

call: Call UPDO (nx,ndistb,V,Q)
args: nx - integer in total number of states

refs:
refby:
comm:

ndistb- 1nteger in currently not used
V - double in vector of measurement noise variance

used by the filter
o - double out updated discrete process noise

covariance
LIMVAL. MTH$DEXP
EKFNI
ARSTAT. MAIN!. M:ONCO, RGMP. SIGTAU, SYNC. TRBER

50

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

UPDH

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

UPDH updates the non-linear observations function H. H is
defined in equations 12.2.15)-12.2.24) on pages 30 and 31 in
(2] (~here h(x(k)] = H).
Call UPDH (ny,nx,X,H)
ny - integer in
nx - integer in
X - double in
H - double out
MTH$DASIN, ~H$DSORT
BLEND, RCOF

currently not used
currently not used
vector of current state estimates

updated vector of observations

FILTRT. MAIN1, MLSALL, XOYOZO. YOBSRV

UPDPH
UPDPH updates the partial of H ~.r.t. XF1. called HPI.
HP1 is defined on pages A-3 - A-5 in (3].
Call UPDPH (nx.X)
nx - integer in
X - double in
MSCALE. MTH$DSORT
CLPSIO, EKFN1

total number of states
vector of current state estimates

CMPSTF. MAIN1. MLSALL. SYSU1. SYSXBO. SVSYW1. XOVOZO, VOBSRV

DETECT
DETECT implements a bank of detectors and likelihood ratio
computers. Each detector estimates the level of a bias
jump failure - hypothesized to start at the beginning of
an estimation ~indo~ - by observing the expanded and filtered
residuals sequence generated bv RESCMP and FILCOL. The
hypothesized failure is assumed to affect no-fail filter
input measurements or output measurements only. Therefore.
a single failure cannot directly enter into BOTH an input
and an output measurement.

The bank of likelihood ratio computers operate over a decision
residual ~indo~ and are designed to compute the log likelihood

51

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

of a singleton sensor failure, or a dual simultaneous failure
in MlS sensors.

Subroutine DETECT functions as an executive of this bank of
detector/LR computers. It is responsible for computing all
common terms required to intialize the parallel bank at the
time of estimation and decision ~indo~ resets, managing the
estimation and decision ~indo~ mechanisims, and implementing
the parallel computations in a sequential fashion. The reader
is referred to (1]-(3] for detailed descriptions of the method
of operation, and particularly to figure 1 on page 12 in [2]
~hich gives a functional description. Since
subroutine DETECT is a key subroutine in the FINDS program.
Figure 8. a detailed flo~ diagram. ;s supplied to describe
its operation.

call: Call DETECT
args: None
refs: EOUATE, GMINV. LIB$INIT_TlMER. LIB$STAT_TIMER. LKF. LRT.

MADDI. MATI, MAT6, MATNUL, MMUL, MMUL2, MSCALE. VECNUL, VMPRT
refby: NAV
comm: CMPSTF. CNEST. COLFIL. CPU. DCIDEI. DETINF. DETXBI. DETYBI.

EKBFO, FILTRT, FLTCTL~ HEALCM, INITVL. MAINl. MAIN2. MULTOT.
SENSCM. SYSUl, SYSXl. SYSXBO. SYSYWI. TSTORE. YOBSRV

52

...•.. ~ v. _ "

:~~~

initialize
qu5ltities
COfIIIOO to all
detector 1lR' s

no

yes

initialize
qu5ltities
used in
COfIP8flS4ting
for the colored .,
nature of the 1,
nLS neasurenents f:

~

~j
;~

.$.".~ initialization (Note: Ifrst is
; set to 1 in a det4 stateMnt)

j scale factor for increasing
.~~ { innovations covariance

! presented to detectors

... ,.J ar! we sinulating colored
4········,···,··., l no1HS for the nLS sensor?

FIlaz=(l-Gllaz)"PtIIaz
FIlel=(l-Cllel)-PHIel
FIlrn=(l-CNrn)-PHIm

! Note: GIl'" terM
! are initialized in

········1 stmroutine naTe and
I PHI- terM are set
I in stmroutine FIlca.

Alcorl=CIIICC" [(l-PHIaz-2)
+2.o-cMaz-PHIaz-2]/(1-F1Laze-2)
Alcor2=CNICC"(1-PHIaze-2)/(1-FIlaz--2)

Elcorl=CMICC"[(1-PHIel-2)
+2.o-GNel-PHIel"2]/(1-FIlel"2)
Elcor2=CMICC"(1-PHIel"2)/(1-FIlel--2)

RNcorl=CNICG-[(1-PHIrn-2)
+2.o-cNrn-PHIrn"2]/(1-FILm--2)
RNcor2=CNICC"(1-PHIm·-2)/(1-FIlm-·2)

1 expand the observations partials natr1x
1 to account for replicated sensors

TnP2 = COI2'eplCFl-cat2

USE colored!
nlS noi~e :1' ,.,
assunpUons? j ;''l-.

F11J.'I8 8. Flow Olagnm for &.tJroutIne CETECT

53

Stnpl • Stnp2 • Stnp3 • 1.0

no

ii = 3 l····~,... no

Stftpl = RNcorl
Stftp2 = RNcor2

Stftpl = acorl
Stftp2 = acor2

Stl'lp3 = RfI(ii)-IREPlF (lII1+ii)

Figure 8. Flow Dlegrzm for ~ CElECT (CD1tlru:d)

54

l:
font i:
imovations ~
covariance ~
using 11M ~ I
nlS noise !:
asmIptions i

*

* TftPl = inverse
<l::: ••• ·.[! of imovaUons

::: covariance

Fl~ 8. Flow Dlagrcm for Stalrrutlne OElECT (cootlrued)

55

no

save POrtion of
the detection ./ ..
neasurenent IMltrix

no

", I ere «InY of these biases input
! ftNSUrMlf'lt biases?

yes

I
..... i ~ = pointer to! fom

1 inpUt type ! -tPl-eFllf)

! Where BFllb
represents a

.~...... natr1x fomecl
out of the I colunns of 8Fl

! which correspond
I to iI1Juts vi th I estiftated biaes

I
I

.... J are there «InY input
,i$.• ,! neasurenent biases

yes

TnP2[NXl.NXB]r = I-TnP2[NXl.NXB]r
.. :~: 1 at this: point ntP2 is:

,---...1-_ .. _ ... _----. ·l the augnented natrlx:
~

Fl~ 8. Aow Dlagnm fOr ~ IETECT (cmtIrued)

56

start of
najor loop
(1ncrMenting
by sensor type)

no

yes

yes

.,*"1 increnent decision window
.. ~ SGIIPle COU'Iter

1 local flag used for
... ~ differantiating input

; fron M8SUl8Mf\t sensors

.::i.\ ! index = absolute sensor type
L..-_--.,..--_--' ::

i are any sensors of this type
<.:<; :~ currently being used by the
" ~ tFF? •. if not dont't N'I the

f detector ILR logic

INITIALIZA TICl'J

sequentially process
each detector

... :~~ ~

are we using the RSDDtU and is this
sensor an input sensor? .. if so
don't N'I detector ILR logic since

4- 00
•
0000 .1

"

the RSDDtU has resident fOI ~ili ties

are we using the RSDDtU's euler angle
est.1nates in the tFF and is this sensor
an mu rtHSUrenent type? •• if so
don't run the detectorllR logic

) is this sensor an input sensor?

. ':~::::, set flag to indiC4t.8 this
sensor is a neasurenent sensor

F~ 8. Flow Olagmn for SltJIwtine [ElECT (cmtinJed)

57

fom input
failure
conpensated
discrete
state
trmsition
natrix

no

I is this the first SGrIPle
¥ / 1 of a new decision Idndow?

yes

no

kCTewh(i.ndex) = kCTewh(i.ndex)+l

kCTeuh(index)) N'lXeuh(index)?

yes

XBFI(jj) = 0
PBFI(jj) • PBFIC(index)
for jj = all replications

~ increnent estiMtion
i window decision

, / 1 window comter for
¥ I this sensor type

! tifte to 1n1 tiate
"" ~ a new est1Mt1on

i window?

~.
i reset
i est.inet.ion
~vindows
i for all

.....---YAl.-[-jJ-'.]t....c-=-o---'I ,."Ii"";""

YEJ.[jj]c = 0
VRIC[jj]c = 0

for jj = all replications

COft2[7,9]c = ABFl[7,9]C
-BDFI[ll,ll+2]C

VRlPl = IFl-cGft2'"YBI[index]c

C8FI[index]c = CBFI[index]c-VTnPl

index2 = index
index3 = 1

index .. = Icntsn(index)

.,1: ; see page 4J in [1] ,

': pointers to specific
... " sensor replication,
l n absolute
; nusurenent index

Figure 8. Row D1agnm for Stmoutlne [ElECT (cont1rued)

58

ftinor loop ~:
no

~ :s

entry point *=
(increnented ~.' .. , ... , .. ,
by replication) I :l»

. ..,~ is this replication I
.4" " used by the NFF? ~

VTnPI(i)=C8FI(lNOYPI(INORYP(i».index)

no

no

II = INORYP(IndexV)
VTnP1(index4) = VTnP1(!ndexY)+Yscale(II)

filter elenents of VTnPl which
IIUltiply nLS neasurenents

to accomt for their colored
noise statistics if IUre=1

:s
."'~ is this an nLS sensor?

.«i,l'·· ;(.

yes pointer to col. in IXmS

JJ = (index3-1)-'+index--6

IXmS[JJ]c = vntPl
DEST(JJ) = XBFI(index2)

I
~

I
~

I ~: conpute the
~ .ffective
~ observation
~ Mtrix for I the detector.
~ see page 42 in [1]

~
!

I
* ~
I
:1
~
~
~ x
~
:>
:~

save the observation natrix
and failure estinate
(used later to detect
nultiple nLS failures)

Figure 8. Row DIagnm for SLtInxJtlne [ElECT (cmtinJed)

59

LKF{XBFI{index2).PBFI{index2).YTnPl.TnPl.RESBOC.
RESBI [lndex2]c. Nyf)

..,~ run the detector
for this sensor

LRT (IcCT ewh. PRI(JU{:lndex2). REseI [:lndex2]e. • . " J perforl'l log-likelihood ratio

inactive replications
enuy point.
~~.";;';';";;"""' .. .". .. ",.,..,,.,.,>,,.= ... I""'l,,'

¥'

TrlP1. Alana{ index2).ttyf) . .. " ~:: conputat:I.on for this sensor

x

. ~~;: increnent replication
. i index

'-----r---.....J
, done with this
. sensor type (no

fIOre replications)?
yes

index .. = Icntsn(index2)

~ is this sensor active?

no

close .. 1nor loop.... ~

proces next replicated >.<:<.
sensor of the sane type ;\

: have all sensors: been Drocessed _
~l·""~ by the bank of detectorsIlR's:?

close Mjor loop... ..;
process next sensor .
type

.< •.•.

Figure 8. Flow Diagnm for Sl..tJrrutine C£lECT (cmtinJed)

60

)'/
LRT (keT dIIh. PRI(JU(lFTl) • RfSBOC. DlPl

I perf
~······1 for

Oll'l log-1ikel1hood COfIPUt,ations
the no-fail hypothesis

A1811da(lFn) .1Iyf' ,
~ keThlr = kCThlr+1 I

... ! tine to reset
.'~i;,"'··· i heder wirldovs?

yes
kCThlr > Id'IXhlr? • I kCThlr = I

no ,,.. I

proces healer
window comters

lG'Il = [DEST(1)+DEST(4]n =j
.. =i fom aver

~2 = [DEST(2)+OEST(5]n ega failure .X>l •••.••..•.••

lG'IJ = [DEST(J)+OEST(6)]/2
.. ' ~ estiMte for nLS sensors

• RES8J[I]C = RfSSOC-(OOBS[I]c+OOBS[4]c)-lG'Il
if Ireplf(7)=2

• RfS8J[2]c = RfSBOC-(DIBS[2]c+OOBS[5]-lG'Il
IF Ireplf(8)=2

• RES8J[J]c = RESBOC-(DIBS[J]c+DOBS[6]-lG'Il
IF Ireplf(9)=2

• lRT(kCTdwh.PRIORJ(l).RES8J[l]c.TnPl.
AlandJ(I).Myf)

• lRT(kCTdwh.PRIORJ(2).RfS8J[2]c.TnPl.
AlandJ(2).Nyf) ,

LRT(kCTdWh.PRIORJ(J).RES8J[3]c.TnPl.
AlandJ(3 Lilyf')

•
~

fol1'l nultiple nLS
=: failure conpen$4ted residuals

cotIpUte log-likelihood ratio's
or nul tiple nlS failures f

Fl~e 8. Flow Dlagrcm for SltIrrutine [ElECT (cmtirued)

61

if nultiple sensors are
not available. disable
detection of nultiple failures

Figure 8. Flow OlagIml for SlJlrootlne £:l:1ECT (COOCIUded)

62

name: LKF

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

func: LKF provides the estimator structure for the failure
detectors. LKF implements a linear Kalman filter using the
information form 4 and assumes a scalar state equation. The
module functions as fo110~s:
The plant equation is:

Xm;(k+l) = Xmi(k) i.e. no dynamics
the measurement equation is of the form:

Y(k+l1 = C;*Xmi(kl + n(k+1) Y(k+1) is a vector
of nv elements
~here n(k+1) - N(O.RT)

the filter equations are:
RTinv = RT**-l (measurement noise covariance)
Gi = [1.0/Pmi(k)]*Ci'*RTinv (filter gain)
Pmi(k+1) = Pmi(k) + Ci'*RTinv*Ci (filter information)

~here. remember. Pmi is defined as the inverse of the
estimation error covariance (i.e. the information matrix)

Ri(k+1) = Y(k+1) - Ci*Xmi(k) (detector residuals)
Xmi(k+l) = Xmi(k) + Gi*RHk+ll ("best" estimate)

For a more detailed explanation of the detectors
implementation see section 2.4 in [3]. and section 2.1.2
in [2J.

call: Call LKF (Xmi.Pmi.Ci.RTinv.Y,Ri.nvl
args: Xm; - double inout scalar estimate of the state (i'th

failure level estimate)
Pmi - double inout scalar filter information matrix

(information in i 'th failure estimate Xmi)
Ci - double in effective observations matrix

(computed in DETECT)
RTinv double in inverse of the measurement noise

covariance matrix (NFF innovations covariance)
Y - double in observations vector (expanded

innovations from the no-fail filter)
Ri - double out innovations sequence from the LKF

(failure compensated innovations sequence)
nv - integer in number of elements in the observations

vector. Y
refs: None
ref by: DETECT
comm: MAIN1

63

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: LRT
func: LRT computes the log likelihood ratios over a decision window.

The computations are as follows:
1) if k=1 A=-PHi. This initializes the log likelihood ratio.

A. to -In(PHj) at the start of a new decision window.
(Subroutine INITG initially stores PHi as the 10q of the
a-priori probability of a sensors failure).

2) SUMI = RES'*RTinv*RES
3) A = O. 5*SI.JMI + A
The reader should refer to section 2.7 in [3] or section 2.1.4
in [2] for a more detailed description of this method.

call: Call LRT (k.PHj,RES.RTinv.A,ny)
args: k - integer in decision window simulation step

counter

refs:
refby:
comm:

PHi double in logarithm of the a-priori probability
that the j'th sensor will fail

RES double in failure corrected innovations sequence
from the j'th failure detector

RTinv - double in inverse of the innovations covariance

A -

nv -
MAT3A
DETECT
MAINI

matrix
double
for the
integer

inout computed value of loq likelihood ratio
j'th failure hypotheses
in number of observations

name: DEC IDE
func: DECIDE computes the decision cost which mlnlmlzes Bayes Risk.

and chooses the most likely hypothesis conditioned on this
cost vector. DECIDE considers singleton sensor failures as
well as dual simultaneous failures in MLS sensors. DECIDE
operates as follows:
1) find the smallest 10q likelihood ratio for singleton

failures (stored in Al
2) find the smallest log likelihood ratio for multiple

failures (stored in ALAMO;)
3) pick the smallest of 1) or 2) and determine the

corresponding sensor type(s) and replication(s) of this
sensor

64

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:

refby:
comm:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

4) if the chosen hypothesis is the no-tail condition
simply return:

5) otherwise. print out various messages informing the user
of the decision. and update the failure Queue (i.e. NNfail.
IfailT. and IfailR)

Call DECIDE (m.cost,A,Beta)
m - integer in total number of singleton failures +1

(representing the no-fail hypothesis)
cost - double in currently not used
A - double in vector of log likelihood ratios for

Beta
CONVRF.
NAV

singelton failures
double in currently not used
MXMN2. TLOUT, VMPRT

DCIDEI. DETINF. DETXBI. FILTRT, HFCOM. INOU. MAIN2.
MULTDT. NAMES. PLOTS. SETCOM. SIMCOM. SYSU1

RECONF
RECONF reconfigures the FTS for proper operation lif possible)
after failures have been detected and isolated. and after
sensors heal. Figure 9 shows a functional flow diagram of
the operation of RECONF. Also. see section 2.6 of [2].
Call RECONF (IHfail.Iabort)
IHfail- integer in Heal/Fail recontiguration flag where

IHfail=l for failures. and otherwise for healings
Iabort- integer out run abort flaq where Iabort=O

indicates normal operation. and otherwise indicates
the run should be aborted

ALTYP. CLPSIO. EQUATE, IMTCG2. KALMAN. MATCG2. MATNUL. MINSET
MSCALE. MTH$DEXP. MTH$DLOG. NOISR, PNTINV. RCOV, RESCMP.
SETISN. SUMIN. TLOUT
CHKRAD. NAV
DCIDEI. DETINF. DETXBI. EKBFO, EKF1. FILTRT. GBLEND, HEALCM.
HFCOM. INITVL. SETCOM. SIMCOM. SYSU1, SYSX1. SYSXBO. SYSYBO

65

cycle through all i
1IIfa:U failures r', ,.

(e-rrER)
..... 1 set nission abort nag

L...-_--. __ --l to "no abort- status

.J!.' ! reconfigure for healinos
no

J tnI new failures ~ .
!t:/" "to consJ.der ,:

.< ~:"i return

reset healer.
detection. met

est.:i.nati.on windows

reset log-likelihood
ratios to ·infinity·

j = Nfail + index
lend = IfailT(j)

Ireplc = IfailR(j)

Ir@plf(ICftd) = Ir@plf(ICftd)-l
INoutF(Iend.lreplf) = -2

yes

.. ~ is this a MasureMnt sensor

..
x.::• .!j neasurenent

\. l sensor

Figure 9. Flow Diagmn for St.tlIWUne REc;cN=

66

~~ic;"
abort

Figure 9. Flow Diagrcm for Sl.tlroutine RECCl\F (contirued')

67

1'10

XFl = RBFO[l]c
PFl = RBFO[i·l.NX]c

";;~:"""""f re-propagate the MFF

~,........, .+.········1 return
10 '

Fi~e 9. Flow Dlagr~ for SlJlroutine REC(t.F (contlrued)

68

,,~ J reconfiglaation
, ~ for hul.ings

'&""1 not at. end of decision window?

yes

no

'."~. . . ". "' .. ";1 SlY sensors to heal?
:~

jindex = IhealP(index)
lend = IfailT(jindex)

lreplc = IfailR(jindex)

correct no-fail
prior probability

.l~i···········1 return

>,
~""".1 a neasurenent sensor

(has healed

Figure 9. Flow Olagrcm fOr SltJroutlne RECQ\F (cootlrued)

69

'\

collapse Ifllil T
and IfailR.

decrenent Nfail

adjust !fail T «Of
IfailR to account for
increMntal failures

Tstop = Tines

EXIT

FigJIe 9. FIO\tol Diagnm for SLtIrrutine RE~ (corclOOed)

70

name:
func:

CLPSIO

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

CLPSIO is used to collapse (or expand) the no-fail filter and
its associated data structures due to a single failure
(healing) of a sensor. In particular. CLPSIO does the
following:
1) If Iclps(O (i.e. collapse no-fail filter)

al if Isns(=NU1 (i.e. for input sensors)
NOTE: currently FINDS doesn't allow input sensors to
be removed. The logic that is used currently is only
partially complete.

* set OF1(Isns)=O.O
* reset PF1 and PBFO by calling subroutine RCOV
* collapse the input mapping vector. INOUP and adjust

NUIC
* if NB!=O and this sensor has a normal operating bias

being estimated. collapse the bias estimator by
calling subroutine CLPSBE

b) if Isns>NU1 (i.e. for measurement sensors)
* set RF1(ICmdY)=O.O
* reset PF1 and PBFO by calling subroutine RCOV
* update NY and INOYP
* update NYF and INORYP
* collapse the residuals vector. RESBOC
* update the inverse measurement pointing vector.

lNOYPI
* if NB!=O and the no-fail filter is estimating a

normal operating bias for this sensor - collapse the
bias portion of the filter by calling subroutine
CLPSBE

2) If Iclps>=O (i.e. expand the no-fail filter
al for input sensors:

* reset the process and measurement noise matrices
OF1 and RF1. by calling subroutine NOISR

* update NUIC and INOUP
* if a normal operating bias ;s to be estimated add it

via subroutine CLPSBE
b) for output sensors:

* call NOISR to set OF1 and RF1
* update NY. and INOYP
* update NYF. and lNORYP
* expand RESBOC
" update INOYPI
* if NB!~O and a normal operating bias is to be

estimated - call CLPSBE

71

FINDS Programmer's Manual
Documentation For File: FSFD1.FOR

call:
args:

ints:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

* correct the partial derivative of h w.r.t. x. HPI
by calling subroutine UPDPH

Call CLPSIO (Iclps,Isns,Ireplc)
1clps - integer in flag used to control the collapse/
expansion of the no-fail filter, where Iclps=-l indicates to
collapse and Iclps=l indicates to expand it.
1sns - integer in absolute index of the sensor
Ireplc- integer in replication of the sensor
1cmdY - integer absolute measurement sensor index as

described in Table 1 on page 9 in [1]
1Rsns - integer absolute replicated sensor index (see

Table 6).
ALTYP, CLPSBE. IMTCG2, MATCG2. NOISR, PNTINV, RCOV, UPDPH
RECONF
DETINF. DETXBI. EKBFO. EKF1. FILTRT, INITVL. SYSU1. SYSX1.
SYSXBO. SYSYW1

NOISR
NOISR resets the process or measurement noise covariance terms
in the no-fail filter for a given sensor type. In particular:

* if Isns <= NUl (i.e. it corresponds to an input
measurement to th~ no-fail filter) and if body
mounted sensors are used:

QFl(Isns) = sig(Isns)**2
otherwise if the RSDIMU is used:

QF1(Isns) = si9(18)**2 for 1<Isns<3
or OF1(Isns) = sig(17)**2 for 4<Isns<6

* if Isns > NUl (i.e. a measurement sensor)
RF1(1sns) = sig(1sns-NU1)**2/Ireplf(Isns)

(remember Ireplf(1sns) is the number of active
sensors of this type currently used by the no-fail
filter)

Call NOISR (Isns.1replc)
1sns integer in absolute index of sensor
1replc- integer in currently not used
None
CLPSIO. RECONF
ASOUT, FILTRT, SIGTAU. SYSU1. SYS~l

72

name:
func:

ca 11 :
args:
refs:
refby:
comm:

name:
func:

call:
args:
refs:
refby:
comm:

name:
func:

RESCMP

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

RESCMP computes the expanded residuals sequence from the
collapsed residual sequence generated by the no-fail filter.
The results are then stored in RESBOC. This sequence is
the same as the one which would have been generated had the
filter been driven by all replications of the measurement
sensors rather than their average value. See section 2.3.1
in (2]. RESCMP also computes an estimate of the filter
observations and stores this result in HXKP1.
Call RESCMP
None
None
NAV. RECONF
AGOUT. ASOUT. CNTROL. DETINF. EKBFO~ EKF1. FILTRT,
MLOUT. PSIR, RAOUT. RIOUT. SYSU1, SYSXBO, YOBSRV

FILCOL
FICOL estimates colored MLS noise states and compensates the
expanded innovations sequence generated by RESCMP. This is
done in an effort to "whiten" the innovations sequence. since
it is known that the MLS sensors have colored rather than
white noise statistics.
Call FILCOL
None
EOUATE. MTH$DEXP
NAV
CNEST. COLFIL. DETINF. FILTRT~ FLTCTL. MAIN1. MLOUT, PJUNCK.
SENSCM. SYNC. SYSU1

CLPSBE
CLPSBE is responsible tor resetting the bias estimator portion
of the no-fail filter such that a single bias can be added or
deleted. In particular. CLPSBE:
1) calls ADJSTBP to determine IBkey and IYkey and to adjust

the bias pointer vector INOBP. as well as NXB. NUB, NYB.
NUB1, and NB.

73

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

call:
args:

ints:

refs:
refby:
comm:

2) if IBkey(O (implying that either the bias exists and we've
tried to add it. or the bias doesn't exist and we've tried
to delete it) then CLPSBE fails by printing out this
message on the terminal:

CLPSBE: Routine Fails
3) if kflag=-1 (collapse the bias estimator)

a) the IBkey row and column of the bias filter error
covariance. PBFO. is deleted

b) the IBkey column of the bias filter blender gain, VBO,
is deleted

c) the IBkey row of the vector of bias estimates, XBFO,
is deleted

4) if kflag!=-1 (expand the bias estimator)
a) PBFO is expanded about the IBkey row and column, and

they are zeroed out
b) The initial value of the bias fiter error covariance is

loaded into the appropriate diagonal element s.t.
PBFO(IBkey,IBkey)=PBFOI(Ibias)**2

c) VBO is expanded about the IBkey column. and it is zeroed
out

d) XBFO is expanded about the IBkey row and zeroed out
Call CLPSBE (kflag,Ibias)
kflag - integer in flag to indicate whether to collapse

or expand the bias filter. (-1 =) delete. +1 =) add)
Ibias - integer in absolute index of bias type to be

added or deleted
IBkey - integer pointer to the location of the bias

(absolute sensor index) IIIbias li in the reduced
no-fail filter bias vectors and matrices

IYkey - integer pointer to the location in the no-fail
filter measurement vector which corresponds to bias
IIIbias li

ADJTBP. ALTYP, MATCG2
CLPSIO
EKBFO. GBLEND. INITVL, SYSU1, SYSX1, SYSXBO, SYSYW1, YOBSRV

74

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

ADJTBP
ADJTBP increments or decrements various and
scalars used by CLPSBE and the bias filter itself~ ~hen adding
or deleting biases in the estimator.
Call ADJTBP (Iflag,Index~Irkev,Iykey)
Iflaq - integer in flag indicating addition or deletion

of a bias. ~here -1 =) delete. and +1 =) add
Index - integer in absolute index to sensor type of

bias to be added or deleted
Irkev - integer out to bias in the reduced

bias set (i.e. the bias vectors used by the filter)
if the routine succeeds and Irkey=-l if the routine
fails

Iykey - integer out to absolute output
index ~hich corresponds to the bias referred to by
Index. If the bias is on an input measurement then
Iykey=O

ALTYP. IMTCG2, PNTINV
CLPSBE
CMPSTF. DETXBI. SYSUl, SYSXl, SYSXBO, SYS~l

RCOV
RCOV resets the no-fail filter's estimation error covariances
once a failure has been detected and isolated. In particular
it sets:

1)
/ \

I PO 0
I

I
I

Pb I I 0
\ I

=
I

I PO
I
I .0

\

\
o I

I
Pb I

/
~here X**2 = Xmi**2 + 1.0/Pmi

+ Vi*Vi'*X**2

2) if PBFO) PbfOI then PBFO is set to PbfOI (i.e. the initial
uncertainty) and XBFO = 0.0.

This corresponds to the conditional covariance reset method
discussed in section 2.6 of [2]. Logic still exists in this
routine ~hich can be used to cause the other t~o reset methods
discussed in [2] to be used. ho~ver. a re-compilation of the
code ~ould be required.
Call RCOV (PO,Pb.XO,Vi,Xmi.Pmi.lcmd)
PO - double inout bias free filter estimation error

75

FINDS Programmer's Manual
Documentation For File: FSFOI.FOR

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

covariance
Pb - double inout bias filter estimation error

covariance
XO - double 1nout vector of current state and bias

estimates
Vi - double in blender gain for the i'th detector
Xmi double in estimate of the i'th failure level
Pmi - double in information matrix for the i'th

failure
Icmd - integer in absolute sensor type of the failed

sensor
~TNUL. UPOH, VMPRT
CLPSIO. RECONF
CMPSTF, EKBFO, EKFl, INITVL, INOU, MA.IN1, SYSU1, SYSX1,
SYSXBO, SYSYW1, YOBSRV

M1NSET
MINSET determines if the A/C can operate if a particular
sensor is removed. by knowinq the minimal sensor sub-sets
allowed for stability. Currently MINSET will allow all
replications of 1MJs to be removed. all replications of M...S
elevation - provided the radar altimeter is available, and
all replications of the radar altimeter - provided MLS
elevation is available. Otherwise, if all replications of any
other sensor are lost MINSET will abort the run.
Call MINSET (1sns,Ireplc,1ok)
I5ns - inteqer in absolute sensor index
Ireplc- integer in replication of the sensor - currently

not used
10k - integer out abortlrun flag where if

None
RECONF

10k = -1 perform a misson abort, otherwise if
10k = 1 allow the sensor in question to be removed

and the run to proceed

FILTRT, LOGIC4

76

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

name: HEALR
func: HEALR manages the operation of the healer detection logic.

Its primarY function is to maintain all sensors selected
as "failed" by the FOI logic and determine if they have
healed or recovered. Healer decisions are made ONLY at the
end of a healer decision window. Special logic is employed in
order to force the lMUs to heal in a coordinated fashion
(i.e. for the ;'th replication of an IMU to heal; phi. theta.
and psi must all be healthy). This loqic, while specific to
the IMUs. forms the framework required to impose arbitrary
additional constraints on a sensor's healing. A detailed
explanation of how the healers operate can be found in section
2.5 in [2]. Also helpful in understanding this routine is the
description of common blocks HEALCM and HFCOM. Figure 10
provides a detailed flowchart to indicate how the healers are
rea I ized.

call: Call HEALR
args:
ints:

and

that

number.

None
Xsum - double vector of runninq sums - one for each

active healing process. See subroutine AVECMP for a
description of how the elements are computed

IfailP- integer where the row index ;s
the healer process number. and the value of each
element the corresponding failed sensor's
location in the list of failed sensors
(IfailT and IfailR)

NfailL- integer length of IfailP. i.e. number of
healer processes currently running. Both IfailP and
NfailL are updated at the start of each new healer
window.

lMUrep- integer
logic.

local test vector used for IMU healing
The row index is the IMU replication number.

the value is the number of sensors within that IMU

have healed
IMUmap- integer

logic.
local test matrix used for IMU healinq

The column index is the lMU replication

the rows store particular sensors which have healed.
and the value stored ;s the corresponding position in
the list of healed sensors, IhealP. Note this matrix
allows us to map the locations in IhealP to each
replication of an IMU

77

FINDS ProQrammer's Manual
Documentation For File: FSFDI.FOR

refs:
refby:
comm:

Iremov- integer local test vector used for IMU logic.
This array stores the locations in IhealP which
correspond to sensors which passed the healer decision
criterion but cannot be allowed to heal - due to other
constraints. Currently, this means only a portion of
an lMU has healed

Nremov- integer length of Iremov. i.e. number of
sensors which must be removed from the list of healed
sensors. IhealP

AVECMP, BUBBLE. LRTHLR. TLOUT
NAV
HEALCM. HFCOM. SYSUl

78

return

"'~ are there -.y failed sensors1
I r ::

~ .

"~""""';' return
~

, ; are q huler processes currently IUVling? ,
no

initialize neu healer
processes. Le. set

Nfaill & IfailP

ll=IfailP(i)
JJ=IfailT(ll)
kk=IfaiIR(ll)

~ establish pointers for MCh
~ hHler where

". ~ ll=pointer into failure
x;··················} vectors

~ JJ=8bsolute sensor type I KK=sensor replication

Perfom routine
pr -"nn for ;, <':;»
v~ ... ,.,. ;~

each healer process J
processed IU healers?

.~>:-:.,.:.:-:.:.>: .. /:,.:.,.:-)::::.::~::::.:.);.y;.»:.m»»:.x(lo;om:·:·;.>:·:·:·» ~~ end of
".' "'j healer window?

,.,."

no yes ~ ~ return

Figure 10. Flow D1agrcm for Slbroutlne t-£ALR

79

I perrorn enCI or
·It··········~ window healer

i tests

«'t ; 0011 out local pointer arrays
~

II=IfaiIP(i)
JJ=IfailT(U)

LRTHLR(Xsuft(i).kCThlr.BthrSh(JJ).
FthrSh(JJ).Dthrsh(JJ).IHF)

.. .J is the healer vector (IhealP) filled? ".

~
<~\, i: add to the list of healed sensors

, Yo

>:

~ 1ncrenent the nunber of
.;i , ... :;: sensors that have ~aled·

is the heUad sensor NOT
GO mu output 1

special looic to
r8fteflber what
pet of the

.. D'lU healed

NO sensors heUed?

no

Figure 10. Flow Diagmn for Slbroutine t-£.ALR (cootirued)

80

return

special
processinQ
required to
condition
each InU
to heal as
a Wlit

yes

no

comter for sensors which ~ed· but ~t
be rencmd yet clJe to additional constraints
(besides those iftposed by the healer logic)

~ did ILL. or MOE of the COIIpOMf'Its of
... ,., ~ the i °th replication of the DIU ~al""?

:~
;~

no

lrenov(Nrenov+j)=DlUnap(j.i)

j::l, ... InUrep(j)

i store the colunn of DlUrep (which
.. :: .. J (which correspond to partial DIU
" %. hNlings) into a tenporary linear

~ array, Irenov

Nrenov=Nrenov+ InUrep(j)

,.' A finihsed?

.•..

~ have tInY sensors been declar@d
.:; ~ed· but which cannot heal

/!: due to additional conuaints?
~/ i (i.e. only a part of Sl IrIU

./ * has healed)

no

II=If811P(IhealP(i)
JJ=If811T(U)
U=IfaiIR(U)

TlOUT(17,O.JJ.U.l)

no

I remve the sensors frOft the
.. ! list Of sensors to heal and

yes 4·" wait for ENTIRE InU to ~al·

collapse lhealP
by renovinc;l the

sensors pointed to
by lrenov

hal=hal-tcrenov

sort Irenov
frOft snal.l
to large
values

EXIT

Fl~ 10. Flow Dlagrcm for StJ)rouUne H:.ALR (~IlXEd)

81

FINDS Proqrammer's Manual
Documentation For File: FSFDI.FOR

name: AVECMP
func: AVECMP supports the operation of HEALR bv computinq the

running sum of (Xwork-Xfail) over the healer window of
length kmxhlr. The value of the sum is reset to zero at the
start of a new healer window. Xwork and Xfail are defined
as follows:

* for input measurement sensors:
Xwork = a measurement from a (assumed) correctly

workinq replicated sensor of the same type
as the railed one

Xfail = a measurement from the failed sensor
* for output measurement sensors:

Xwork = the estimate of the observation obtained
from the no-fail filter

Xfail = the measurement from the failed sensor.
call: Call AVECMP (Xsum,IfailT~IfailR.kreset)
args: Xsum - double inout the running sum of (Xwork-Xfail) for

refs:
refby:
comm:

name:
func:

a particular failed sensor
IfailT- integer in absolute sensor type of failed sensor
IfailR- integer in replication of failed sensor
kreset- integer in reset flag which indicates the start

None
HEALR

of a new healer window if kreset=1

AGOUT. ASOUT. EKF1. LAOUT. MLOUT, PSIR, RAOUT, RIOUT,
RGOUT, SYSU1. YOBSRV

LRTHLR
LRTHLR performs a likelihood ratio test to determine if
a sensor has healed at the end of a healer window. The
test ;s performed as follows:
1) a maximum likelihood estimate of the normal operational

bias is computed as:
Best = Xsum/length

where Xsum is computed in AVECMP. and length is the number
of samples in the window. The estimate is limited by:

if Best> Bthrsh then Best = Bthrsh
if Best < -Bthrsh then Best = -Bthrsh

where Bthrsh is the largest expected bias level for this
sensor type (set in INITG)

82

Call:
args:

refs:
refby:
comm:

name:
func:

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

2) a maximum likelihood estimate for a failure level is
computed as:

Fest = Xsum/length
The failure estimate is then limited by:

if Fest) 0.0 & Fest < Fthrsh then Fest = Fthrsh
if Fest < 0.0 & Fest) -Fthrsh then Fest = -Fthrsh

where Fthrsh is the smallest expected failure level for
this sensor type (set in INITG)

3) a decision function is evaluated as:
xtmp = 2.0*(Fest-Best)*Xsum + length*(Best**2+Fest**2)

4) the value of the decision function is compared to a
decision threshold, Dthrsh (set in INITG), and if xtmp is
less than Dthrsh the sensor is declared "healed" (by
setting IHF=-l). A detailed description of this method can
be found in section 2.5 in [2].

Call LRTHLR (Xsum.length.Bthrsh.Fthrsh.Dthrsh,IHF)
Xsum - double in the sum. over the entire healer

Hindow. of (Xwork-Xfail) as computed by AVECMP
length- integer in the number of samples included in the

healer Hindow
Bthrsh- double in the maximum expected value for a

normal operating bias level on this sensor
Fthrsh- double in the minimum expected value for a

failure in this sensor
Dthrsh- double in the decision threshold to be used in

determining whether a sensor has healed
IHF - integer out a flaq indicating the outcome of the

LRT. IHF=-l if the sensor has healed and if IHF=O it
has not healed

DABS. DFLOAT
HEALR
None

CONVRF
CONVRF determines the proper conversion factor needed to
convert from "program" engineering units to "user" or output
units. It also supplies a 5 character literal name describing
the name ot the units. Currently only no-fail filter states
and sensors are accounted for. The routine operates as
fol10~s:

83

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

ca 11 :
arqs:

refs:
refby:
comm:

name:
func:

call:
arqs:

1) the user supplies a flag, Iopt, to indicate ~hether states
or sensors are to be considered

2) the user also supplies an index, n, ~hich indicates in an
absolute ordering convention found in table 1. page 9 in
[1], ~hich element of the state or sensor vector is
desired.

3) CONVRF then determines the conversion factor required and
stores it in the value of the function CONVRF, and the

name of the units. stored in Lname.
X=CONVRF (n.Iopt,Lname)
n - integer in

sensor vector
absolute index into the state or

Iopt - integer in
the no-fail
sensor type

a flag indicating n is an index into
filter state vector if Iopt=l; or n is a
index if Iopt !=1

Lname - char out a 5 character name for the units to be
converted to.

CONVRF- double out the value of the conversion factor
required to convert to user units.

None
DECIDE, INITG, PRNTIC, TLOUT
~ONCO

AVBIAS
AVBIAS computes. for a particular sensor type, the effective
average bias seen by the no-fail filter. AVBIAS operates
as follo~s:
1) for input sensors it subtracts the true signal and noise

from each measurement and then. if the no-fail filter
uses more than one replication. averages these quantities
across replications. The true signal and noise are saved
in the appropriate sensor modules in EFBSLA and EFBSRG for
linear accelerometers and rate gyro's respectively.

2) for output measurement sensors AVBIAS simply averaqes the
true (i.e. simulated) bias levels across replications.

X=AVBIAS (n)
n - integer in the absolute sensor type index found

in table 1 on page 9 in [1]
AVBIAS- double out the effective average bias for the

n'th sensor type

84

refs:
refby:
comm:

SLMv'fR
PR INTIC. SAVIT

FINDS Programmer's Manual
Documentation For File: FSFDI.FOR

A~lP. ASMP. EFBS. FILTRT. LAMP. MLSMP. RALMP. RGMP

3.3.3 Documentation For File; FGAC.FOR-

3.3.4 Documentation For File: FWIND.FOR-

85

FINDS Programmer's Manual
Documentation For File: FWINO.FOR

3.3.5 Documentation For File: FSENS.FOR-

3.3.6 Documentation For File: FIO.FOR-

name: SAVIT
func: To save a user selectable set of program variables in a

periodic fashion on a binary plot file. SAVIT uses a 3 pass
structure to provide this capability, ~here:

Ipass=l provides initialization - SAVIT interactively
prompts for groups of outputs to be saved

Ipass=2 save (record) variables
Ipass=3 flush buffers and close files

The reader is directed to section 4.4 in [1] for a detailed
discussion of the plot file contents and interactive prompts
provided by SAVIT.

call: Call SAVIT
args: None
ints: Ipass - integer in

FLTCTL
pass flag stored in common block

Lsave - integer vector of yes/no responses to the
prompting questions (found in Table 6 in [7]) -
used to control execution of the routine.

refs: ALTYP, AVBIAS, FILERl, ISPEC, LASK, MTH$DSORT, RECRDS,
SAVIT. SEONCE, VECHG1, VECNUL

refby: FINDS
comm: ACCLS. AGMP, AGOUT, ANGLES, ARSTAT. ASMP. ASOUT. CMPSTF.

CNEST. CNTROL. CONTRL. CRTE. DCIDEI. DETINF. DETXBI, DETYBI.
EGUIDE. EKBFO. EKF1. FCOM1. FC~. FILTRT. FLTCTL, GSLOPE.
GUIDE, GYROS, IMLS. INITVL. INOU. LAMP. LAOUT. LlNAC. LOGIC4.
MAINl, MAIN2. MCONCO. MLOUT. MLSALL. MLSMP. PJUNK. PORT,
PSIR. RALMP. RGMP. RGOUT. RGUIDE. RGYRO. RIOUT. RIOUT2,
SPCFOR. SYSUI. SYSX1. SYSXBO. SYSYW1. VARLAT. VARLON. UPDAT.
WIND. YOBSRV

86

name: PRNTrC

FINDS Programmer's Manual
Documentation For File: FIO.FOR

func: To print FINDS Fi1ter-detector-hea1er initial conditions. as
well as sensor module simulated normal operating parameters
and scheduled failure information. The output is printed to
a user specified ASCII file in a special table format. The
output is printed in three passes - correspondinq to different
types of information - controlled by an input flag, IoptnZ.
The reader is referred to fiqure 8 starting on page 66 of (1]
for an example of the output generated by PRNTIC. See also
discussion on IoptnZ below.

call: Call PRNTIC (kdsk,IoptnZ)
args: kdsk - integer in fortran unit number of the ASCII

file output will be directed to
IoptnZ- integer in output control flag where if:

* IoptnZ = 1; print page 66 of (1] - except for the
last two lines

* IoptnZ = 2; print last two lines on page 66
in (1] and tables 1. and 1a

* IoptnZ = 3; print tables 2-5 on pages 68-69
in (1]

refs: AHEDR. AVBIAS, CONVRF. FOR$DATE_T_DS, FOR$INQUIRE.
FOR$TIME_T_DS, FSCHED. IDTS. M[H$DEXP. MTH$DSORT, OUTDAT.
PAGEFD. PTITL3

refby: FINDS, NAV
comm: AGFP. AGMP. ARFDIP. ARFP. ARMP. ASFP. ASMP. DCIDEI. DETSIG.

DETXSI. EARTH, FILNAM. FILTIC, FILTRT. FLTCTL. FTITL1, GRFDIP.
GRFP. GRMP. HEALCM. lEST. INITVL. LAFP. LAMP. LINAC2. LNAVl.
MAINl. MAIN2. MCONCO, MLSFP. MLSMP. MULTDT. NAMES, PLOTS.
ORANO. RALFP. RALMP. RGFP. RGMP. RIOUT. RIOUT2. SIGTAU.
SIGVOR. SIMCOM. SYNC. SYSUl. SYSX1. SYSXBO. WIND. WINDCO

name: FSCHED
func: To determine if a particular sensor (addressed by type and

replication) is scheduled to fail in this simulation run.
If FSCHED determines that a failure will occur. it determines:

* the time of failure
* the failure type (i.e. bias, null. etc.)
* the simulated failure magnitude

call: Call FSCHED (IsensT,IsensR,convrt,IfailT,failT,failTY,failm)
args: IsensT- integer in absolute sensor type (from Table 1

87

FINDS Programmer's Manual
Documentation For File: FIO.FOR

refs:
refbv:
comm:

in [1]\
IsensR- integer in
convrt- double in

failure level

replication number of this sensor
conversion factor to be applied to the

IfailT- integer out failure indication flag where:
if IfailT = 0 - no filaures are simulated, and if
IfailT > 0 then IfailT is the failure type with:

o = no failures
1 = increased noise failure
2 = increased bias failure
3 = increased scale factor failure
4 = hardover failure
5 = null failure
6 = ramp failure

failT - double out failure onset time in simulation
seconds

failTY- double out failure type (loqical) strinq. Ten
character strinq used to indicate the simulated
failure mode - if no failures then failTY = '

failm - double out simulated failure maqnitude (in user
units)

CHKFL. FLEVEL
PRNTIC
AGFP. AGMP. ASFP. ASMP, LAFP, LAMP, MLSFP, RALFP. RALMP.
RGFP. RGMP

name: CHKFL
func: This routine checks for the occurrence of a failure. It

assumes that a sensor can only fail once.
call: Call CHKFL (IpntTF,mxtyp.mxrow.timeF,failT,Ifail)
args: IpntTF- integer in row number in timeF to be checked

(indicates which sensor is to be considered)
mxtyp - inteqer in maximum number of sensor failure modes

simulated (also = col. dimension of timeF)
mxrow - integer in row dimension of timeF. i.e. matches

dimension statement's row dimension for timeF
timeF - double in matrix of failure times. The rows

correspond to the sensors. and the col. correspond
to the failure more. Therefore. if sensor i fails
with a bias failure. timeF(i.2) = the time of failure.

88

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

FINDS Programmer's Manual
Documentation For File: FIO.FOR

(second col. represents bias failures. see section 3.3
in [1] for more details). If timeF(i ,j))= tstop no
failures will be simulated.

failT - double out time of failure determined bv
subroutine CHKFL

Ifail - double out failure indicator flaq. Ifail = 0 if

AHEDR
FSCHED
SETCOM

FLEVEL

no failure and Ifail = failure type if a failure was
found. See description on Ifai1t in subroutine FSCHEP
for details.

To determine the simulated failure level - returned in
function
X = FLEVEL (IFtype,index.Fin,Fib.Fisf,Fhard.Framp,convrt)
IFtype- integer in absolute failure type

(1 (= IFtype (= 6) See FSCHED for details.
index - integer in index into the failure level vectors

(sensor indicator). Each failure level vector is
dimensioned to be the number of sensor types in that
sensor group. For example, MLS = 3 (azim.e1,rng),
las = 1

Fin double in increased noise failure levels
(vector)

Fib double in increased bias failure levels (vector)
levels

Fisf - double in incresed scale factor failure levels
(vectors)

Fhard - double in hardover failure levels (vector)
Framp - double in ramp failure levels (vector)
convrt- double in conversion factor to be applied to the

failure level (conversion from proqram to user units)
F1evel- double out Simulated failure level in user units
ALTVP. CONVRF. MTH$DSORT
FSCHED
ANGLES, AZELRN, CRTE, DETXBI, EGUIDE. EKFl, GSLOPE,
lNOU, LOGIC4, MCONCO, PSIR, SIMCOM, UPDAT, VARLON

89

FINDS Programmer's Manual
Documentation For File: FIO.FOR

name: OUTDAT
func: To print a double preclslon array in a formatted fashion.

Specifically OUTDAT performs the fo110~ing:
1) prints a one line comment (up to 70 characters)
2) if convrt!=1.0 each element of the array is

multiplied by convrt
3) the array is printed ~ith up to 4 (user specified)

columns and ~here each element contains 15 digits.
call: Call OUTDAT (kdsk,A,n,convrt,nco1,letrs)
args: kdsk - integer in fortran unit number of the ASCII file

output ~i11 be directed to
A - double in array to be printed
n - integer in length of the array, A
convrt- double in conversion factor to be applied to

all elements of A before printing
ncol - integer in desired number of columns (i.e. the

number of elements per ro~ of printout); 0<nco1<S
letrs - char in a one line comment ~hich ~i11 be

printed preceeding output of the array
refs: AHEDR
refbv: PRNTIC
comm: None

name: TlOUT
func: To print a coded message (corresponding to an "event") in the

time line (TlN) file. The reader is referred to section 4.2
on page 71 of [1] for a detailed description of this file and
its format.

call: Call TlOUT (msg,Imsg1,Imsg2,Imsg3,Imsg4)
args: msg - integer in message number corresponding to the

event # in table S in [1]
Imsg1 - integer in first message qualifier - corresponds

to 1.0.#1 in table 5 in [1]
1msg2 - integer in

to 1.0.#2 in
Imsg3 - integer in

to 1.0.#3 in
Imsg4 - integer in

to 1.0.#4 on
all float i ng

second message qualifier - corresponds
table S in [ll

third message qualifier - corresponds
table 5 in [1]

fourth message qualifier - corresponds
pages 71-72. ~here Imsg4=0 means that
point information ~ill be recorded in

90

refs:
refby:

comm:

FINDS Programmer's Manual
Documentation For File: FIO.FOR

absolute values. and Imsg4=1 means they ~ill be
recorded as estimation errors

Note: Information for the floatinq point descriptors
discussed in Section 4.2 in [1] is obtained from the
common block variables.

ALTYP. CONVRF. MTH$DSORT
AIRSPS. ATITGS, AUTLD. BLMAS, BMRGS. CHKRAD. CKUNST. DECIDE.
FINDS. GETMLS, HEALR. LINAC1. NAV, RADALS. RATEG1, RECONF
ANGLES. AZELRN. CRTE. DETXBI. EGUIDE. EKF1. GSLOPE, lNOU.
LOGIC4. MCONCO, PSIR, SIMCOM, UPDAT. VARLON

91

FINDS Programmer's Manual
Documentation For File: FIO.FOR

3.3.7 Documentation For File: FUTSUB.FOR-

name: ABSLIM
func: Limits an input variable to lie within a symetric bound

about zero.
call: Call ABSLIM eX,Xlim)
args: X - double inout variable to be limited. On return

-IXliml (= X (= IXliml

refs:
refby:
comm:

name:
func:

call :
args:

refs:
refby:

Xlim - double in value of the boundary
None
AUTOLD. BANKTR
None

ACCVEL
Computes velocity and acceleration terms. Usually used
in G-frame.
Call ACCVEL (RDq,RDDg,hdot,Vg,dtvg,hddot.psita,xtacc)
RDg - double in derivative of position vector [3]
RDDg - double in 2nd derivative of position vector [3]
hdot - double out vertical component of velocity vector.

i.e. hdot = -RDg(3)
Vg - double out magnitude of velocity in x-y plane
dtvg - double out down track velocity
hddot - double out vertical component of acceleration

vector, i.e. hddot = -RDDg(3)
psita - double out direction of velocity vector in x-V

plane
xtacc - double out
DATAN2, DSQRT
FINDS

cross track acceleration

comm: None

92

name:
func:

call:

args:

refs:
refby:
comm:

name:
func:

call:
args:

ROTATV

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

Rotates position, velocity, and acceleration vectors in the
I-frame into the E-frame and G-frames.
Call ROTATV (Ri,RDi.RDDi,comet.sinet.we,~ee,rmag,REi,RDe.
RDg,RDDe.RDDg)
Ri - double in

I-frame (3]
RDi - double in

I-frame (3]
RDDi - double in

I-frame (3]
comet - double in

rotation
sinet - double in

~e -
~ee -
rmag -
REi -
ROe

rotation
double in
double in
double out
double out
double out
the I-frame

RDg - double out
RODe - double out

frames

inertial position vector in the

inertial velocity vector in the

inertial acceleration vector in the

cosine of angle swept by the earth's

sine of angle swept by the earth's

earth's rotation rate
~e '* we
absolute value of the length of Ri
pOSition vector in the E-frame
earth velocity vector coordinitized in

velocity vectors in G-frame
relative acc1eration bet~een E and I

RDDg - double out RODe transformed to G-frame
ASIN. DATAN2, MATMUL. ROTMAT
FINDS
TRANS

ROTMAT
Computes various frame transformation matrices. Common
block TRANS provides the inputs to this routine and common
blocks TRANS and ANGS store the results. In particular if.

i=1. ANG(1)=phi. ANG(2)=theta and ANG(3)=psi => Tbg
i=2. ANG(4l=latitude. ANG(5)=longitude =) Til.Tel,Tge
i=3. ANG(3)=lat1. ANG(4)=lat2. ANG(5)=lon2-1on1 => Tgg
i=4. ANG(1)=phi. ANG(2)=theta. ANG(3)=psi => Tbi

Call ROTMAT (i)
i - inteqer in

to compute
flaq indicating ~hich transformations

93

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

call :
args:

refs:
refby:
comm:

DCOS, DSIN, MATMUL
ACEOIN, AUTLD. FINDS. ROTATV. RUNWAY. WAYPNT
ANGS. TRANS

RUNGK3
Perform Runge-kutta integration for one simulation step
ahead
Call RUNGK3 (dtime,Dx,X,DERSUB.n)
dtime double in simulation step size in seconds
Ox - double out perturbation in X
X - double out state vector of length n
DERSUB- double in subroutine name of the function to

be integrated. (must be of the form DERSUB(Ox,X,n))
n - integer in length of X and Ox
OERSUB
FINDS
RUNGEK

RUNWAY
Computes the aircrafts position and velocity vectors in
the G-frame
Call RUNWAY (Reor,Ri,RDi.we.cospsi,sinpsi,cwt,swt,Posit,Veloc)
Reor - double out runway origin in the I-frame
Ri - double in inertial position vector in I-frame
ROi - double in inertial velocity vector in I-frame
we - double in earths rotation rate
cospsi- double in cosine of the runway yaw angle
sinpsi- double in sine of the runway yaw angle
cwt - double in cosine of we*dtime
swt - double in sine of we*dtime
Posit double out A/C position in the G-frame
Veloc - double out A/C velocity in the G-frame
ROTMAT, MATMUL
FINDS
TRANS

94

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
arqs:

refs:
refby:
comm:

SETJ.Xv1

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

Initializes all elements of a vector to a constant
scalar, i.e.

X (i) = v
Call SETUM (X.k,V)
X - double out
k - integer in
V - double in
None
AUTLD
None

VECM

for 1 (= ; (= k

vectors to be initialized
length of vector X
value to use for initialization

Multiplies two vectors in an element by element fashion. s.t.
for 1 (= i (= n A(i) = A(i)*B(;)

Call VECM (A,B,n)
A - double inout
B - double in
n - integer in
None
BM..AS, BMRGS
None

VECMS

output vector of length n
input vector of length n
length of A and B

Increments a vector by the element
two other vectors. s.t.

by element product of

A(i) = A(i) + B (i) *C (i) for 1 (= i (= n
Call VECMS (A.B,C,n)
A - double inout
B double in
c - double in

integer in

output vector of length n
input vector of length n
input vector of length n
length of A. B. and C n -

None
ATITGS.
None

BMLAS. BMRGS. LINACI. RATEGI

95

FINDS Proqrammer's Manual
Documentation For File: FUTSUB.FOR

name:
func:

call :
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

xDname:
func:

call:
args:

refs:
refby:
comm:

VECSUM
Increments a vector by another s.t.

A(i)=A(i) + B(i) for 1 <= i <= n
Call VECSlJv1 (A,B,n)
A - double inout vector to be incremented
B - double in input vector
n - integer in length of A and B
None
ATITGS, Br-t..AS, Bfv1RGS, LINACl, RATEGI
None

MATV3
Multiply a 3x3 matrix by a vector s.t.

X = A*Y
Note: X and Y CANNOT reside in the same memory locations.
Call tAATV3 (X,A,Y)
X - double inout output vector
A - double in input matrix
y - double in input vector
None
BM..AS, BMRGS, GTOI
None

MATTV3
Multiplv the transpose of a 3x3 matrix by a vector s.t.

X = A'*Y
Note: X and Y CANNOT reside in the same memory locations.
Call tAATTV3 (X.A,Y)
X - double inout
A - double in
Y - double in
None
GYROCR
None

output vector
input matrix
input vector

96

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:
call:
args:

refs:
refby:
comm:

MATMUL

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

Multiply a 3x3 matrix by a vector (passed as 3 scalar
elements). Used primarily to multiply the frame
transformation matrices stored in common block TRANS
Call MATMUL (V,a,b,c,d~e,f)
V - double in matrix stored with rows packed into

a 9 element linear array
a,b,c - double in elements of vector multiplied by V
d.e.f - double out elements of resultant vector
None
ACEOIN, AUTLD. FINDS. ROTATV. ROTMAT. RUNWAY. WAYPNT
None

MOVUM
Equates two vectors. i.e.

TO = FRCM
Call MOVUM (FROM.TO,num)
FROM - double in input array
TO - double out output array
num - integer in length of TO and FRCM
None
AUTLD
None

DGATIO
Prints a matrix out on unit kout with an identifier label
Call DGATIO (A,nr.nc, let)
A - double in matrix to be printed
nr - integer in number of rows in A
nc - integer in number of columns in A
let - integer in 4 character name for the matrix
None
BIASF
INOU. MAIN!

97

FINDS Proqrammer's Manual
Documentation For File: FUTSUB.FOR

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
args:

S~R
Computes the averaqe sum of the elements of a vector.
Elements are included in the average ONLY if a corresponding
entry in the row of an index matrix is exactly one.

1
SUMMER = - SUM {XI;)}

n
for 1 <= i <= nx. and

Index(i). Where n is defined as the number of unit entries
in Index
XX = SUMMER (X.nx,Index)
X - double in vector to be averaged
nx - inteqer in length of X and Index
Index - integer in row vector (of length nx) whose

elements indicate whether corresponding entries in
another vector are valid (Index(i)=l) or not
(Index(i)!=1). Note it is implicitly assumed that
Index is a matrix with row dimension equal to ndim.

SUMMER- double out value of the average sum of X
conditioned on the elements of Index

None
AVBIAS. SUMIN, SUMOUT
MAINl

ASUMER
Computes the average sum of the elements of a vector.
Elements are included in the average ONLY if the
absolute value of a correspondinq entry in the row of
an index matrix is exactly one.

1
ASUMMER = - SUM {Xli)} for 1 (= i <= nx. and

n
IIndex(ill=1. Where n is defined as the number of unity
magnitude entries in Index
XX = ASUMER (X,nx,Index)
X - double in vector to be averaqed
nx - integer in length of X and Index
Index - integer in row vector (of length nx) whose

elements indicate whether corresponding entries in
another vector are valid (IIndex(ill=l) or not
(IIndex(i)1 !=1). Note it is implicitly assumed that

98

refs:
refbv:
comm:

name:
func:

call:
arqs:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:

FINDS Proqrammer's Manual
Documentation For File: FUTSUB.FOR

Index is a matrix with row dimension equal to ndim.
ASUMER- double out value of the average sum of X

None
GTOI
MAINI

MAXMIN

conditioned on the elements of Index

Searches a double precision vector and determines the
maximum and minimum values and their corresponding
locations.
Call MAXMIN (V,npts~vma)(.vmin~nmax.nmin)
V - double in vector to be searched
npts - inteqer in lenqth of V (i.e. number of elements

in V to be searched)
vmax - double out value of
vmin - double out value of
nmax - inteqer out location
nmin - inteqer out location
None
None
None

MAXMINS

the maximum element in V
the minimum element in V
of the maXlmum element
ot the minimum element

in V
in V

Searches a single preclslon vector and determines the
maximum and minimum values and their corresponding
locations.
Call MAXMINS (V.npts,vmax.vmin,nmax.nminl
V - real in vector to be searched
npts - integer in length of V (i.e. number of elements

in V to be searched)
vmax - real out value of
vmin - real out value of
nmax - inteqer out location
nmin - integer out location
None

99

the maximum element in V
the minimum element in V
of the maximum element
of the minimum element

in V
in V

FINDS Proqrammer's Manual
Documentation For File: FUTSUB.FOR

refby: None
comm: None

name: MXMN2
func: Searches a double preclslon vector and determines the

maximum and minimum values and their corresponding
locations conditioned on the value of a correspondinq
active/inactive flag in a second Vector. Only those
elements which correspond to "active" elements in the
conditioning vector are consldered in the max-min operation.

call: Call MXMN2 (Imactv.V.npts.vmax.vmin.nmax,nmin)
args: Imactv- integer in an array of active/inactive flags -

s.t. if an element of Imactv is non-zero then a
corresponding element in V is active and should be
considered in the operation.

V - double in vector to be searched conditioned on
Imactv

npts - integer in length of V & Imactv
vmax - double out value of the maximum element in V
vmin - double out value of the minimum element in V
nmax - integer out location of the maximum element in
nmin - integer out location of the minimum element in

refs: None
refby: None
comm: None

name: VECHGI
func: fo collapse or expand the size and ordering of a vector. X.

as directed by a pointer vector. KX. and a flag kflag. S.t.
The pointer vector KX 15 simplv an array 01'

monotonically increasing index pointers into X if kflag=l.
or Y if Klaq=2~ which define the proper elements of the
resulting vector.

Y = collapsed X if kflaq = 1

V
V

Y = expanded X if kflaq = 2 (new elements are zeroed)
One of the key features of this routine is that X and Y

100

call:
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

can be equivalent.
Call VECHGI (ktlag,X,KX.Y,n,nmax)
klaq integer in flaq indicating to collapse if 1 and

to expand if 2
X - double in input vector to be collapsedl

expanded
KX - integer in pointer vector used to allocate the

proper elements to use in the operation
Y double out output vector which is

collapsed/expanded version of X
n - integer in the dimension of KX
nmax - integer in the dimensioned length of X and Y.

None
SAVIT
None

MATCG2

Note: if expanding X, elements of Yare zeroed out
between nand nmax

To add or delete a row in a double precision matrix or vector.
or to add or delete a column in a matrix. If a row or column
is added. its elements are set to zero.
Call MATCG2 (jflag,index.Y,nr.nc)
jflag - integer in operation flag where:

jflag = 1 add a row -1 delete a row
jflag = 2 add a column -2 delete a column

index integer in pointer to row or column to be added
or deleted

Y - double inout matrix whose index 'th row or column
is to be added or deleted

nr - integer inout number of rows of Y (incremented or
decremented accordingly in MATCG2)

nc - integer inout number of columns of Y (incremented or
decremented accordingly in MATCG2)

ALTYP
CLPSBE. CLPSIO. RECONF
MAINI

101

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

ca 11 :
args:

refs:
refby:
comm:

IMTCG2
To add or delete a row in an integer matrix or vector.
or to add or delete a column in a matrix. If a row or column
is added. its elements are set to zero.
Call IMTCG2 (jflag,index.IV.nr.nc)
jflag - integer in operation flag where:

jflag = 1 add a row -1 delete a row
jflag = 2 add a column -2 delete a column

index integer in pointer to row or column to be added
or deleted

IV - integer inout matrix whose "index" row or column
is to be added or deleted

nr - integer inout number of rows of V (incremented or
decremented accordinq1y in IMTCG2)

nc - integer inout number of columns of Y (incremented or
decremented accordinglY in IMTCG2)

AUYP
CLPSBE. CLPSIO. RECONF
MAINI

PNTINV
Searches a pointer vector for particular entry. The pointer
vector is an integer array with monotonically increasing
elements. Typically, a pointer vector will show how a
(possibly collapsed) vector's elements relate to a standard
(absolutely indexed) vector. Therefore. this routine can
be used to answer the followinq question: "hhat element of
the measurement vector (a possibly collapsed vector)
corresponds to the indicated airspeed's output (an absolute
index)?"
Call PNTINV (;sns.lpoint.n.index)
isns - inteqer in valve searched for in Ipoint (usually

relates to an absolute index in a standard mappinq)
Ipoint - integer in pOinter vector to be searched
n - integer in length of Ipoint
index - inteqer out index in Ipoint where isns was found.

If isns was not found index < 0
None
ADJTBP. CLPSIO. RECONF
None

102

name:
func:

ca 11 :
arqs:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

LIMVAL

FINDS Proqrammer's Manual
Documentation For File: FUTSUB.FOR

Applies a two sided. svmetric limiter about zero to the
elements of a vector. A. s.t.

Ali) = A(i), if IAlill (= BLim(i)
A(i) = signIA(i))*BLim(i). if IAlill) BLimli)

where BLim is a vector of absolute limit stops - one for each
element in A.
Call LIMVAL (A.BLim.n)
A - double inout
BLim - double in
n - integer in
None

vector to be limited
vector of absolute limit stops
length of A and BLim

ATITGS. BMLAS. 8MRGS. LlNACl, RATEGI. UPDO
None

LIMVL2
Applies a two sided anti-svmetric limiter to the
elements of a vector. A. s.t.

Ali) = BLim(k) if Ali)) BLimlk) - upper limit
A(i) = BLim(k+l) if AI il <: BL iml k+l) - lower 1 imit
Ali) = A(i) otherwise

where k = (i-1)*2+1
Call LIMVL2 (A.BLim.n)
A - double inout vector to be limited
BLim - double in vector of upper and lower limits

12 for each element of A)
n - integer in length of A. and half the length of

BLim
None
AIRSPS
None

103

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

name: NOISEG
func: Generates a vector of random samples from a normal

distribution with zero-mean. and unity variance.
call: Call NOISEG (X.jseed,n)
args: X - double out vector of n samples from a N(O,I)

gaussian distribution

refs:
refby:
comm:

name:
func:

call:
args:

refs:
refby:

comm:

jseed - integer inout seed value for the random number

n -
GAUSS
ATTIGS.
None

BARN!

generator
integer in length of X

BMLAS. BMRGS. LlNAC!. RATEGI. STARTF

Generates a single random sample from either:
a N(O.I) distribution if iflag < 0 or.
a Uniform(-l.l) distribution if iflaq > O.

X = BARNl (iflag.ikey,iseed)
iflag - integer in flag which determines the distribution

from which to select the sample. If iflag < 0 use an
NCO,l) distribution. else use a uniform (-1,1)
distribution

ikey - integer in not used
iseed - integer inout seed value for the random number

generator
BARN! - double out the value of the sample conditioned on

iflag
UNIFRM. GAUSS
AIRSPS. ATITGS. BMLAS. BMRGS. GETMLS. ILNAGI. IRATGI.
NOISEG. RADALS
None

!04

name:
func:

call:
arqs:

refs:
refbv:
comm:

name:
func:

call:
ars:

refs:
refbv:
comm:

name:
func:

call:
args:

GAUSS

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

Selects a single random sample from a N(am.s) distribution.
Where am = mean~ and s = standard deviaiton. Note: this
routine is specific to the VAX computer.
Call GAUSS (iseed.s~am.v\
iseed - integer inout seed value for the random number

generator
s - double in
am - double in
v - double out
RAN. DSORT~ DLOG
BARN!. WINDGT
None

UNIFRM

standard deviation of the distribution
mean value
the sample selected

Selects a random sample from a uniform distribution
between 0 and 1. This routine is specific to the VAX
computer.
Call UNIFRM (iseed.v\
iseed - integer inout seed value for the random number

qenerator
v - double out value of the sample obtained from a

Uniform 10.1) distribution.
RAN
BARNI
None

NAMFIL
ro create VAX VMS file names which have a common name. and
various extensions. The common file name is prompted for
in the first call to NAMFIL - it can be read from the TTY
or from a data file.
Call NAMFIL (kunit.Lext,Name)
kunit - integer in Fortran unit number from which

res pones are to be accepted
Lext - char in a 4 character file extension of the

105

FINDS Programmer's Manual
Documentation For File: FUTSUB.FOR

refs:
refby:

form ".FOO", which is to be appended to the common
group name

Name - char out rhe resulting (12 character max) file
name created by concatenating a common group name with
the specific file extension

ALTYPO. ENCODE
FINDS

comm: None

3.3.8 Documentation For File: F~SUB.FOR-

name:
func:

ca 11 :
args:

refs:
refbv:
comm:

GMINV
Computes the inverse of a square matrix A. If A is
sinqular or if A is NOT square. the routine computes
the Penrose generalized inverse. See Rust. B .• Burrus.
W.R •• and Schneeberger. C •• "A Simple Algorithm for
Computing the Generalized Inverse of a Matrix". CACM.
Vol. 9. No.5, May 1966.
Call GMINV (nr,nc,A,V.mr,mt)
nr - integer in number of rows in A
nc - integer in number of columns in A
A - double in matrix to be inverted
U - double out generalized inverse of A
mr - integer out rank of A
mt - integer in used for print control. mt=O

suppresses possible error message printout.
DOT. DOT2. SWAP. VADD
BIASF. DETECT. EKFN1
lNOU. MAIN1

106

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

name: MvUL
func: Forms the matrix product

Z=X Y
A sparseness test is performed on x.

call: Ca 11 MVlIL (X. Y. n 1. n2. n3.n
args: X - double in input matrix

Y - double in input matrix
n1 inteqer in row dimension

(n1 x n2)
(n2 x n3)
of X and Z

n2 - integer in col length of X. row length
n3 - integer in col 1enqth of
Z - double out output matrix

refs: VADD1
refbv: BIASF~ BLEND, DETECT, EKFN1
comm: MAIN1

name: rvMJL2
func: Forms the matrix product

Z=X Y
A sparseness test is performed on Y.
Call MMUL2 (X.Y,n1,n2.n3.Z)

Y and Z
(n1 x n3)

call:
args: X - double in input matrix (n1 x. n2)

Y - double in input matrix (n2 x n3)
n1 integer in row dimension of X and l

of Y

n2 - integer in col. 1enqth of X. row length of Y

refs:
refbv:
comm:

n3 - integer in col. length of Y and l
Z - double out output matrix In1 x n3)
VADD
BLGAIN. DETECT. EKFNI
MAIN1

name: MATl
func: Forms the straightforward matrix product

Z=X Y
No sparseness tests are performed.

call: Call MAT! (X,Y~n1~n2~n3.Z)
args: X - double in input matrix (n1 x n2)

107

FINDS ProQrammer's Manual
Documentation For File: F~SUB.FOR

refs:
refby:
comm:

name:
func:

ca 11 :
args:

refs:
refby:
comm:

name:
func:

Y - double in input matrix (n2 x n3)
n1 integer in ro~ dimension of X and Z
n2 - integer in col. length of X. ro~ length
n3 - integer in col. length of Y and Z
Z - double out output matrix (n1 x n3)
DOT3
BIASF. BLEND, BLGAIN, DETECT. MAT3, MAT3A
MAIN1

MATlA
Forms the matrix product

Z=X Y
No sparseness tests are performed. Z and Y can start
at equivalent core locations.
Call MAT1A IX.Y.n1.n2.n3.Zl
X - double in inout matrix (n1 x n2)
Y - double in input matrix (n2 x n3)
n1 integer in ro~ dimension of X and Z
n2 - integer in col. lenqth of X. ro~ lenqth
n3 - integer in co 1. lenqth of Y and Z
Z - double out output matrix (n1 x n3)
None
BIASF. EKFN1
MAIN1

MAT2
Forms the matrix product

Z=XY'
in cases ~here the product Z is S~TRIC. No
sparseness tests are done. The arrays Z and Y
can start at equivalent core locations.
Call MAT2 (nl.n2.X,Y,Z)

of Y

of Y

call:
args: n1 - inteqer in ro~ dimension of X.Y, and col.

n2
X -

length of Z.
inteqer in
double in

col. dimension of X and Y
input matrix (n1 x n2)

108

ret's:
refbv:
comm:

name:
func:

ca 11 :
arqs:

refs:
refbv:
comm:

name:
rune:

(" a Ii:
':if':!C; :

"

,' ... , .,:

y -
Z -
DOT2
EI<.FNl
MAINl

MAn

double in
double out

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

input matrix (n1 x n2)
output matrix (n1 x n2)

Forms the sYmmetric matri:.: product
Z = X V X'

where V is sYmmetric. ana no soarseness tests ar~ done.
Call (VlAT3 Inl.n2.X.V.ZI
nl - inteqer In row lenqth of K and Z. col.

length of Z.
n2 - inteqer in

lenqth of Y
x - double
Y - double
Z - double
DOT2. f"lA Tl
BrA. SF. Ei:-.FNI
rV\AINl

rvlp r 3~,

In
in
in

col. 1enqth at' X and Y. row

inout matrix In1 x n21
input (svmmetricl matrix in2 x n21
outout (svmmetric) matri~ (n1 x n11

for'ms thE' 'O'lmm":'ty'lC matt'l' l)t"("jU-: r

i = '" v x
wn.-:y·E' Y 15 5vrnm":tY'i(. Cll10J 11':- '.;U<'tY''';''::rl''.''';S t:.:-":-ts ar": '1(:.n",.
'~a ; 1 f'lL\ T jA \ n 1 . ni • ~ . y • ~ ,
nl - int":(l~:Y 1n Y'OW I.:-nqtn '~.I Z. (.j. i,,:n'Jtn (".t .. ~n,.1

n:: o.

1\ -

,-,j If I"V-i .

1 nt'?'),","y·

(JC'UC' i..:--

,jr)uti it"

q(II.IO i .-
l

, n

1 !",

1 t;

111

Hlp.,1 mary", ,n,; • nl,
i nour. ,,, ',/mrn"'t t' 1,.:, m.jt y' 1. .". .. p .•

,:,u1;('ut ,'~vrnrn"'t r II~ I m::lt (,1' I II i ' n j ,

\"'. ~ t n Ii : t. r .M ":; r.. L t~ r

ilY·'

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

comm: MAIN1

name: MAT4
func: Forms the matrix product

Z = XY'
No sparseness tests are performed.

call: Ca 11 MAT4 (X~Y.n1,n2.n3.Z)
arqs: X - double in input matrix

y - double in input matrix
(n1
(n3

n1 integer in row dimension of
n2 - integer in col. length of X
n3 - integer in row length of Y.

x n2)
x n2)
X and Z
and Y
col. length

Z - double out output matrix (n1 x n3)
refs: DOT2
refbv: BIASF. BLEND
comm: MAIN1

name: MAT5
func: Forms the matrix product

Z = XY'
A sparseness test ;s performed on Y.

ca 11 : Call MAT5 (X. Y.n1.n2.n3.2)
args: X - double in input matrix (n1 x n2)

Y - double in input matrix In3 x n2)
n1 integer in row dimension of X and Z
n2 - integer in col. length of X and Y
n3 - integer in row length of Y, col. length
Z - double out output matrix In1 x n3)

refs: VAOD. VSCALE
refbv: EKFN1
comm: MAIN1

110

of Z

of Z

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

ca 11 :
args:

MAT6
Forms the matrix product

Z = KY'

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

in cases where Z is symmetric.
perrormed on Y. Neither X nor

A sparseness test is
Y may be equivalent to Z.

Call MAT6 (n1.n2.X,Y,Z)
n1 - integer in
n2 - integer in
X double in
Y - double in
Z - double out
VADD
DETECT
MAIN1

MADDI

row length or X~Y~ and Z
col. lenqth of X. Y. and Z
input matrix (n1 x n2)
input (svmmetric) matrix (n1 x n2)
output (svmmetricl matrix (n1 x n1)

Adds two matrices as follows:
Z = X+c1*Y

Call MADD1 (nr.nc,X,Y,Z.cl)
nr - integer in row length of X,Y. and Z
nc - integer in col. length of X,Y. and Z
X double in input matrix (nr x nc)
V - double in input matrix (nr x nc)
Z - double out output matrix (nr x nc)
el - double in scale factor applied to Y
None
BIASF. BLEND. BLGAIN. DETECT. EKFNl
MAIN1

MADDI
Sets up square matrix A where:

A = c1*B+c2*I
I is an identity matrix.
Call MADDI (n,A.B.c1.c2)
n - integer in size of matrices
A - double out output matrix (n x n)

111

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

refs:
refby:
comm:

name:
func:

call :
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refby:
comm:

B - double in input matrix (n x n)
c1 - double in scale factor app 1 ied to B
c2 - double in scale factor applied to I
None
BIASF, BLGAIN~ DETECT~ EKFN1
MAIN1

EQUATE
Sets a matrix A equal to a matrix B (can be used for
equating matrix partitions or sub-blocks as well)

A=B
Call EQUATE (A,B.nr.nc)
A - double out
B - double in

inteqer in
integer in

output matrix (nr x nc)
input matrix (nr x nc)
row length of A and B
col. length of A and B

nr -
nc -
None
BIASF.
MAIN1

BLEND. DETECT, EKFN1. FILCOL. INITG. RECONF

t-1ATNUL
Initializes columns of a matrix to zero. Where:

Xi = 0, for n1 (= i (= n2:
and Xi is the ith col. of X. In addition. if a flaq is
set. rows between n1 and n2 can be nui1ed out as well.
Call MATNUL (X.nl.n2.ktrig)
X - double inout matrix to be nulled
n1 - integer in first col. (row) to be nulled
n2 - integer in last col. (row) to be nulled
ktriq integer in flag, when ktrig=O only columns

are nulled. otherwise rows and columns are nulled
None
DETECT, RCOV, RECONF
MAINl

112

name:
func:

call :
args:

refs:
refby:
comm:

name:
func:

ca 11 :
args:

refs:
refby:
comm:

name:
func:

ca 11 :
args:

refs:
refbv:

FINDS Programmer's Manual
Documentation For File: F~SUB.FOR

MSCALE
Sets a matrix A equal to a matrix B and scales.

A = cl*B
Call MSCALE (A.B.nr,nc.cl)
A - double out output matrix (nr x nc)
B - double in input matrix (nr x nc)
nr - integer in row length of A and B
nc - inteqer in col. lenqth of A and B
c1 - double in scale factor applied to B
None
BLGAIN. DETECT. EKFN1. RECONF. UPDPH
MAIN1

fRANS2
Transpose a matrix

AT = A'
Call TRANS2 (nl,n2,A,AT)
n1 - integer in row length of A.
n2 - integer in col. length of A.

col. length
row length

A - double in matrix to be transposed n1 x
AT - double out transposed matrix (n2 x nl)
None
BLEND
MAINI

BUBBLE
Performs a bubble sort on an array of inteqers. The
elements of the array can be ordered increasinq or
decreasinq in value.
Call BUBBLE (NA.n.k)

of AT
of AT
n2)

NA - inteqer inout array of inteqers to be sorted
n - inteqer in lenqth of array NA
k - integer in a key. where k>O orders NA decreasinq

in value while k<=O yields an increasinq order
None
HEALR. INITG. READRC

113

FINDS Proqrammer's Manual
Documentation For File: F~SUB.FOR

comm:

name:
func:

call:
arqs:

refs:
refbv:
comm:

name:
func:

ca 11 :
arqs:

ret's:
refby:
comm:

name:
func:

call:
arqs:

None

DOT
Computes the dot (or inner) product between two linear
arrays (column vectors)~ with accumulation carried out
in double precision.
x = DOT (nr~A,B)
nr - integer in lenqth of arrays A and B
A - double in vector
B - double in vector
None
GMI NV. MA T3A
None

DOT2
Computes the dot (or inner) product between two rows of
a matrix.
x = DOT2 (nn.A,B)
nn - integer in 1 enqth of A(B) times the dimensioned

row length of A(B)
A - double in row vector (or row of a matrix)
B - double in row vector
None
GMINV. MAT2. MAT3. MAT4
MAINl ndim - dimensioned row lenqth of A and B

DOT3
Computes the dot (or inner) product between two arrays,
where one array is stored as a row vector and the other
as a column vector.
x = DOT3 (n,A,B)
n - integer in length of A and B

114

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

name:
func:

ca 11 :
args:

refs:
refbv:
comm:

A -
B -
None
MAT!
MAIN1

VADD

double in
double in

FINDS Programmer's Manual
Documentation For File: FVMSUB.FOR

row vector
column vetor

ndim - dimensioned row length of A

ro increment a qiven vector A by a second vector s.t.:
A = A+cl*B

Call VADD (n~c1.A~B)
n -
c1 -
A -
B -
None

integer in
double in
double inout
doub 1 e in

lenqth of A and B
scale factor
vector to be incremented
vector to scale with

GMINV. MAT5. MAT6. MMUL2
None

VADD1
To increment a given row vector A bv a second row vector
B s.t.:

This
Call
nn -

c1
A -
B -
None
r«JL
MAINl

Arow = Arow+cl*Brow
routine assumes A and B are stored as matrices.
VADD1 (nn.c1.A~B)

inteqer in
row length of
double in
double inout
double in

length of AlB) times the dimensioned
AlB)

scale factor
row vector to be incremented
row vector to be scale

ndim - dimensioned row ienqth of A and B

115

FINDS Proqrammer's Manual
Documentation For File: FVMSUB.FOR

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
arqs:

refs:
refby:
comm:

name:
func:

call:
arqs:

VSCALE
Equates a vector A to a scaled vector B.
equivalent.

A = c1*B
Call VSCALE (A,B,n.c1)

A and B can be

A double out
B - double in
n - integer in

vector to store result in
vector to be scaled
length of A and B

c1 - integer in scale factor
None
MA.T5
None

SEONCE
Initializes an integer array to a monotonically
increasing sequence s.t.:

K = [l.2.3, •••• n.O.O, ••• ,0]'
Call SEONCE (K,n)
K - integer out array to be initialized
n -
None

integer in lenqth of sequence to be stored in K

INITG. READRC. SAVIT
MA.IN1 - ndim - dimensioned 1enath of K

INSRTN
Used to update (and maintain) an inteaer vector (of
pointers) with a new (unique) value. The new value
is added to the list ONLV if:

1. it's not alreadY present in the list
2. the current 1enqth of the list is)=0
3. the current length of the list is < a

maximum length.
Call INSRTN (Iseq~ index, ivalue, mxsize)
Iseq - integer inout array (list) of unique inteqers
index - integer inout current length of the list
iva1ue- integer in candidate for addition to the list.

116

refs:
refby:
comm:

name:
func:

ca 11 :
args:

refs:
refbv:
comm:

name:
func:

call:
args:

refs:
refbv:
comm:

Iseq
mxsize- integer in
None
READRC
None

VECNULS

FINDS Proqrammer's Manual
Documentation For File: F~SUB.FOR

maximum (dimensioned) length of Iseq

Initializes a linear array to zero - single precision version.
Where:

Call
Xli) = 0.0 for i1 (= i (= i2

VECNULS (X.i1.i2)
X -
il -
i2 -
None
None
None

VECNUL

real inout
integer in
integer in

vector to be nulled
starting element to null
final element to null

Initializes a linear array to zero - double precision
version. Where:

Xli) = 0.0 for i1 (= i (= i2
Call VECNULS (X,i1.i2)
X - double inout
il­
i2 -
None

integer in
integer in

vector to be nulled
starting element to null
final element to null

BLEND. CHKRAD. DETECT. SAVIT
None

117

FINDS Proqrammer's Manual
Documentation For File: F~SUB.FOR

name:
func:

call:
args:

refs:
refby:
comm:

name:
func:

call:
arqs:

refs:
refby:
comm:

name:
func:

call:
args:

swo.p
Interchanqes 2 rows. 2 columns. or 2 diagonals of two
matrices.
Call SWAP (A.B.n.inc)
A - double inout a matrix to be interchanged
B - double inout a matrix to be interchanged
n - integer in number of elements to be swapped
inc - inteqer in interleavinq factor. where: inc = 1

swaps columns. inc = ndim swaps rows. and inc = ndim+1
swaps diaqonals. Where ndim is the row dimension of A
and B.

None
GMINV
None

VMA.T1
Multiplies a given vector by a matrix.

Y = A X
where: X is an n2 vector and A is an n1 by
Ca 11 VMA.T1 CA,X.nl,n2,Y)
A - double in input matrix (n1 x
X - double in input vector (n2)
n1 - inteqer in row of A and length
n2 - integer in col. of A and X
y - double out output vector (n1)
None
BLEND
MAIN1 ndim - dimensioned row lenqth of A

VMA.T2
Computes the vector-matrix product sum

Y = Z+A X

n2 matrix.

n2l

of Y

where is an n2 vector. and A is an n1 by n2 matrix. Y
and Z can be equivalent.
Call ~T2 (Z.A.X,n1.n2.Y)
Z - double inout input vector (nl)

11B

refs:
refby:
comm:

A -
X -
nl

n2
Y -
None
BLEND
MAINI

double
double
integer
Y and Z
integer
double

in
in
in

in
out

FINDS Proqrammer's Manual
Documentation For File: FVMSUB.FOR

input matrix (nl x n2)
input vector (n2)
row len9th of A, col. lenqth of

col. length of A and X
output vector (nl)

ndim - dimensioned row length of A

3.3.9 Documentation For File: PLOTD.FOR-

name:
func:

call:

outs:

PLOTO
Utility proaram to plot the unformatted (binarY) time historY
data stored in the .PLT file aenerated by FINDS.
To invoke PLOTD. the user simply types (at the VMS monitor
1 eve 1) :

$ RUN PLOTOINODEBUG
or. if FOREIGN.COM has been executed :

$ PLOTO
PLOTD will then prompt the user for various directive
commands. Time history data is identified by a unique name
stored in the header of the .PLT file. (See Table 6 on
page 82 of [1] for a current list of these names.)
PLOTD can be used to generate plots of one or several
variables versus time. or to create cross plots of one
variable vrs. another. CurrentlY PLOTO creates a single plot
per paae. The plots can be generated on a TEKTRONIX
4010/4014 or any terminal capable of emulating a 4010 or 4014.

119

FINDS Proqrammer's Manual
Documentation For File: PLOTD.FOR

3.3.10 Documentation For File: PRINTD.FOR-

name:
func:

call:

outs:

PRINTD
Utility program used to examine the unformatted (binary) time
history data stored in the .PLT file qenerated by FINDS.
PRINTD can be used to either display selected data in tabular
form. or to compute temporal means and autocorrelations. The
results are presented to the users terminal. the sYstem line
printer. or to a user specified data file.
To invoke PRINTD. the user simply types (at the VMS monitor
1 eve 1) :

$ RUN PRINTDINODEBUG
or. if FOREIGN.COM has been executed

$ PRINTD
PRINTD will then prompt the user for various directive
commands. Time history data is identified by a unique name
stored in the header of the .PLT file. (See Table 6 on
page 82 of [1] for a current list of these names.)
either:
a. A table of selected data. where each column of data is

headed by the name and enqineering units. Data can be
"windowed ll by selectinq upper and lower temporal limits.
Within a window~ one can further seqment the data by
specification of a constant skip factor.

b. All of the following:
1. The sample mean.
2. The sample variance.
3. The sample autocorrelation function normalized bv the

sample variance.
4. The decision of a whiteness test performed on the

selected data.
Please see Appendix A.1 of [1] for a more complete
description.

120

FINDS Proqrammer's Manual
Documentation For File: PRINTD.FOR

3.3.11 Documentation For File: DOC.RAT-

name:

func:

DOC
(Ratfor and Fortran Documentation generator)
Prepares a RUNOFF input file from specially formatted embedded
documentation contained in a RAT FOR or FORTRAN program or
9roup of programs. Each source file is entered in the table
of contents and each source file. subroutine. and common block
is entered in the index.
The program is executed by typing:

$ DOC
The user is prompted

Output file name

Header level

Line lenqth
Input file

for the follo~ing items:
The name to use for the RUNOFF input
file
A header at this level is created for
each separate source file. containina
the source file name.
Line length to specify to RUNOFF
Name of source file to be processed.
or name of indirect file.

No default extensions are assumed for any of the above.
In place of specifYinq a source file as input. the user may
specifY an indirect file by enterinq "@indirect_file_name"
~hen prompted for an input file. The indirect file should
contain a list of the source files to be processed. This
option is useful ~hen processing complicated programs spread
over many source files.

Installation notes:
Simply compile and link DOC. then execute this command:

DOC :== Run/nodebuq DOC
Source proaram formating notes:

A documentation header must beqin ~ith the characters "#{doc".
or "Cdoc" starting in the first column on a separate line. and
end ~ith the characters "} #" (~ithout the space), or
"Cenddoc" also on a seperate line for RATFOR. and FORTRAN
sources respectively. All the enclosed text ~ill be included
in the runoff file ~ith the follo~ing exceptions:

121

FINDS Proqrammer's Manual
Documentation For File: DOC.RAT

* The comment character "C" is stripped off the first column
of each line in FORTRAN sources.

* Lines of the form "FIG: FFPF(n)" will be used to set aside
pages for "Floating Full Page Figures". The number 1< n <99
is the number of pages required for the figure.

Any data in a line beqinning "name:" will be assumed to be the
name of a subroutine or common block and hence will be entered
in the index.

122

4 INTERNAL DATA STRUCTURES

FINDS Programmer's Manual
Documentation For File: DOC.RAT

This section describes the important common blocks used by FINDS
routines to communicate with each other. The first section reviews
some of the important assumptions and concepts used in buildina and
manipulatinq the internal data structures. The last section describes
each common block in detail. Each such description contains a
statement about the contents of the common block and a description of
each variable in the form:

name type units description

These are followed by a list of all the routines which use the common
block.

4.1 Data Structure Conventions

In the course of developing FINDS. various indexina schemes were
required. as well as many special purpose data storage conventions.
Many of these conventions become apparent when the detailed flow
diaqrams are studied carefully. The individual realizations of these
methods are described in the next subsections. This subsection
attempts to describe the conventions and concepts themselves.

The aeneral storaae format used for matrices is to allocate
tdimension) them "ndim" by "ndim", where "ndim" is an integer variable
stored in common block lMAIN11 tndim=15 in this version of FINDS).
The i j element of the matrix ;s then stored ;n the i i element of the
storaae area. Therefore. if the matrix to be stored were of size 5 by
5. and ndim = 15. then we view the matrix as a linear array. with a
column offset of 15 elements (i.e. five data locations followed by
ten unused elements in each of 5 columns). Althouah this storaae
scheme is less efficient (from a memory access point of view) than
simply storing the columns contiguously (with a column offset of
five), it was necessary in order to use many of the utility routines
documented ;n file FUTIL.FOR.

123

FINDS Proqrammer's Manual
Data Structure Conventions

The OrlqlnS of most of the internal data storaqe conventions can be
grouped into the followinq areas:

· No-fail filter
• FDI logic
• Reconfiguration

The first two areas require internal data structures that maintain an
absolute index so the program can relate states, measurements.
inputs. failures. etc .• to particular "phvsical" sensors or
quantities. The last area. however, imposes a need to modify the
absolute ordering to reflect loss or addition of a sensor. Tables 1-7
define the important absolute indexing schemes employed by FINDS.
These tables not only define conventions for particular arrays. but
also implicitly define all the matrices which operate on them.

As mentioned above. in order for FINDS to be capable of reconfiqurinq
itself the absolute indexinq schemes had to be modified. This was
accomplished by using two techniques. They are:

• use pointer arrays to provide the mappinq between the absolute
indexing scheme (actual locations of the data) and the current
collapsed/expanded sets.

• physically collapse or expand the arrays

Both methods are used in FINDS. The following is a typical example of
the first method:

YFI is a fixed lenqth vector of averaged measurements
presented to the no-fail filter. It uses the absolute
measurement indexing convention discussed in Table 2.
If ALL replications of a particular type of sensor have
failed. and are therefore not available to the NFF. the
corresponding element in YFI is zeroed out. A pointer
array lNOYP is used to provide the mapping between the
(possibly) collapsed measurement vector required by the
NFF and the fixed lenqth vector YFI which is maintained.
Fiqure 11 graphically shows how this arrangement works. The
important point to see here is that the data is phYSically
stored in the array usinq the absolute indexing scheme.
and it is extracted usinq the pointer array INOYP which
accounts for any reconfiquration.

124

An example of the second method is as follows:

FINDS Programmer's Manual
Data Structure Conventions

RESBOC is a variable lenqth vector of expanded residuals
from the NFF. The vector is formed by first computinq the
residuals usinq the (absolute) replicated measurement
indexinq convention (see Table 7). and then collapsinq
it to eliminate elements correspondinQ to sensors which
are not available. The pointer array. INORYP is used to
mao each element to the absolute index in Table 7.
Figure 12 shows how this approach works. Notice that
here the data is storeo in a collapsed fashlon and
INORYP is used to identify each element (the value of
an element in INORYP is the measlJrt?ment index in Table 71

The followinq arrays use this method of oraanization:

HPl. RESBOG. RESBOC. RBFO. and (SFO

T~le L No-Fall Fllter Absolute State Indexing Conventioos

Array state ProgrmI
Index Vari~le lilits

1 Xrlll feet

2 Vrlll feet

3 Zrlll feet

4 XrlJf feet/sec
.

5 Yrlll feet/sec
.

6 Zrlll feet/sec

7 Phi radians

8 Theta rad1ans

9 Psi radiCfis

10 XIII feet/sec

11 v. feet/sec

126

Table 2. No-Fall Filter ,Absolute Measurement Indexing GoovenUons

Array t1easurenmt Prograll
Index Nelle lklits

1 Azm rooic.ls

2 El rooic.ls

3 Rng feet

4 lAS feet/sec

5 Phi rooic.ls

6 Theta rooic.ls

7 Psi radi~s

8 RA feet

127

Table 3. f\{)-Fail Filter Absolute IflJut Indextrg conventions

Array Irprt Progrcrn

Index Nare lklits

1 Ax feet/sec/sec

2 Ay feet/sec/sec

3 Az feet/sec/sec

4 p ICKjians/sec

5 Q ICKjlcr1S/ sec

6 R ICKjlCYls/sec

128

Table 4. No-Fail Filter Process Noise Indexing Conventions

Array Progr(JIJ

Index NaJE Iilits

1 AX feet/sec/sec

2 Ay feet/sec/sec

3 Az feet/sec/sec

4 p radlcr1s1 sec

5 Q radicr1S/sec

6 R radicr1S/sec

7 Xw feet/sec

8 Vw feet/sec

129

Tctlle 5. Mlsolute Sensor Inaextng cooventlons

Array sensor Progran
Index I~ lhits

1 Ax feet/sse/sse

2 Ay feet/sse/sse

3 Az feet/sec/sec

4 P radims/sec

5 Q radims/sec

6 R radims/sec

7 Azm r8(Ums

8 El radiB'ls

9 Rng feet

10 lAS feet/sec

11 Phi radians

12 Theta r8(Ums

13 psi mllcrts

14 RA feet

130

Table 6. Replicated sensor Irdexlng Cooventioo

Array Sensor Progrnn
Irdex I~~l1cat1oo lXlits

1 Ax-* feet/sec/sec
2 Ay-* feet/sec/sec
3 Az-* feet/sec/sec
4 P-* radi~s/sec

5 Q-* radl~s/sec

6 R-* radi~s/sec

7 Azm-1 radiEris
8 El-1 radiClls
9 Rng-1 feet

10 IAS-1 feet/sec
11 Phi-l radia1s
12 lheta-1 radi~s

13 Psi-l radiEris
14 RA-1 feet
15 Azm-2 radicrls
16 El-2 radia1s
17 Rng-2 feet
18 IAS-2 feet/sec
19 Phi-2 radi~s

20 Theta-2 radians
21 Psi-2 radians
22 RA-2 feet

* - refers to the repllcatloo currently In use by the ~
(e.g. 1, 2, or 3)

131

T~le 7. Replicated Measurement Indexing COOVentloo

Array
Index

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

NeasurenEnt Sensor
I~LBoolicatioo

Azm-1

El-1

Rng-l

IAS-1

Phi-1

lheta-1

Psi-l

RA-1

Azm-2

El-2

Rng-2

IAS-2

PI1i-2

Theta-2

Psi-2

RA-2

132

Progran
lilits

rooiCl'ls

radiCl'ls

feet

feet/sec

rooiCl'ls

radiCl'ls

radi~s

feet

radians

radiCl'ls

feet

feet/sec

radiCl'lS

radi~s

radi~s

feet

ny

nyf

IJ\k)YP YF1

1 • Azm
2 • E1
3 • Rng
4 • IPS
8 0
0 0
0 0
0 RA

Fl~re lL E)((Il1)le Of Pointer Array IrxlexlrYJ

RESBOC

Azm-l • 1
EI-l .. 2

IAS-1 • 4
Phl-l .. 5

Treta-1 • 6 ..
Psi-l .. 7
EI-2 • 9

Rng-2 • 10
0 0
0 0

0

Figure 12. EXBlllle of Collapsed Array Indexing

133

nymax

:i
:!
:1
:<
~~
~ .
~
~

1 nyf
~
~

~
:1

FINDS Proqrammer's Manual
Detailed Descriptions Of FINDS Common Blocks

4.2 Detailed Descriptions Of FINDS Common Blocks

4.2.1 Description Of CMPSTF -
name: CMPSTF
cont: Ouantities associated with the composite (bias-free plus bias)

no-fail filter.
vars: nxb - integer unitless the total number of states and

bias states in the NFF
GAINKX- double mixed the combined no-fail filter

gain matrix
PXF1 - double mixed the combined no-fail filter

estimation error covariance. (see 2.2.32-2.2.35
in [2])

refbv: ADJTBP. BIASF, BLEND. CHKRAD. DETECT, INITG. NAV, RCOV.
SAVIT. STARTF, UPDPH

4.2.2 Description Of DCIDEI -
name: DCIDEI
cont: Quantities needed by the LR computations and the decision

vars:
logic.
Ihyp -

kCTdwh-

kMXdwh-

integer unitless the hypothesis chosen by the
decision loqic. Where Ihvp = the replicated sensor
index of the failed sensor if Ihvp(NFT1. or if Ihyp =
NFT1 it siqnifies nothinq has failed. whereas if
NFTl(Ihyp<NFTl+3 then it signifies a multiple failure
of MlS azimuth. elevation. or ranqe respectively
inteqer unitless counter for elapsed samples
since last decision window was started
inteqer unitless maximum number of samples in a
decision window (i.e. number of samples/decision
window)

kCTewh- integer unitless vector of decision window
counters - one for each detector. The elements
are arranged bv absolute replicated sensor index

kMXewh- integer unitless vector of maximum decision

134

FINDS Proqrammer's Manual
Description Of DCIDEI

windows in an estimation window (i.e. number of
decision windows/estimation windows) - one for each
detector

PRIORI- double unitless vector of the log of the prior
probabilities of failure - one for each sensor,
ordered by replicated sensor index

ALamda- double un1tless vector of the log-likelihood
of a sensor failinq - one for each sensor, ordered
by replicated sensor index

BetaI - double unit1ess not used currently
COSTI - double unitless not used currently

refby: CHKRAD. DECIDE. DETECT. INITG. NAV. PRNTIC. RECONF. SAVIT

4.2.3 Description Of DETINF -
name: DETINF
cont: Information pertinent to the detectors
vars: nft - inteqer unitless the total number of replicated

sensors (considered for FDI)
nft1 - inteqer unitless nft+1
nyf - integer unitless the current number of

replicated measurement sensors
INORYP- integer unitless pointer vector to the

measurement sensor type (from Table 1 in [1]). The
array index is the replicated (and possibly collapsed)
set of sensors used by the NFF, and the value of an
element of INORYP is the absolute sensor type of that
sensor

ICNTSN- integer unitless ICNTSN is used to determine
1. if a particular sensor type and

replication is being used by the NFF
2. and if it is being used - which element of

the input vector or expanded measurement
vector it corresponds to

ICNTSN is organized as follows: the array index
corresponds to the absolute replicated sensor index.
the value is either

1) the index in the input vector

135

FINDS Proqrammer's Manual
Description Of DETINF

(if index(=NUl)
2) or the index in the expanded measurement

vector (if index)NUl)
if the sensor is not used bv the NFF the value of its
element in ICNTSN ;s zero

RESBOC- double mixed expanded residual vector from
the no-fail filter. (see 2.3.1-2.3.3 in [2]\

refbv: BLEND. CLPSIO. DECIDE. DETECT. FILCOL. INITG. NAV. RECONF.
RESCMP. SAVIT. SETISN

4.2.4 Description Of DETSIG -
name: DETSIG
cont: Sensor noise statistics assumed bv the detectors.
vars: PDETCT- double mixed vector containing standard

deviations of the expected noise (in program units)
assumed for each sensor type by the detectors. PDETCT
is ordered bv absolute sensor type

refbv: INITG. PRNTIC

4.2.5 Description Of DETKBI -
name: DETKBI
cont: Ouantities associated with the sensor failure detectors
vars: NF - integer unitless current number of sensor

TYPES that are active (i.e. not failed\
NFmax - inteqer unitless maximum possible number of

sensor TYPES that can be considered
NYmax - inteqer unitless maximum possible number of

measurement sensor types that can be considered
XBFI - double mixed vector of current failure

level estimates - one for each detector. Detectors

136

FINDS Proqrammer's Manual
Description Of DETKBI

are ordered usin~ the absolute indexinq scheme for
replicated sensors. (see 2.3.18 in [2])

PBFI - double mixed vector of estimation
information for each estimated failure. Ordered in
the same fashion as XBFI. (see 2.3.20 in [2])

VBI - double mixed matrix of blender gain vectors
where each column of VBI is a blender gain vector.
The columns are indexed using the same scheme as XBFI.
(see 2.3.17 in [2])

BDFI - double mixed matrix of partial derivatives
evaluated about the current failure estimates.
Specifically~ it is the partial of BF1 w.r.t. failures
in phi. theta. and psi. The matrix is organized as a
partitioned matrix with each partition of size NX rows
by 3 columns. The partitions are ordered (in the
column direction) as the partial of BF1 w.r.t •• the
first replication of phi. theta. psi. the second
replication of phi. theta. pSi. and so on. If dual
redundancy is assumed the entire matrix would be
nx bv 18. (see 2.3.16 in [2])

refby: ADJTBP. CHKRAD. CLPSIO. DECIDE. DETECT. INITF. INITG. PRNTIC.
RECONF. SAVIT. SETISN. SUMJUT. TLOUT. UPDAB

4.2.6 Description Of DETYBI -
name: DETYBI
cont: Observation matrices and compensated residual vectors for the

bank of detectors
vars: RESBI - double mixed matrix of failure compensated

residuals vectors where each column of RESBI ;s a
residuals vector. The columns are ordered by
replicated sensor index. (see 2.3.14 in [2])

CBFI - double mixed matrix of detector observation
matrices where each column of CBFI is an observations
vector for a detector. The columns are ordered by
replicated sensor index. (see 2.3.15 in [2])

refby: DETECT. INITG. SAVIT

137

FINDS Programmer's Manual
Description Of EKBFO

4.2.7 Description Of EKBFO -
name: EKBFO
cont: Bias filter arrays used in the bias fiter portion of the

no-fail fiter (extended Kalman fiter). (see [4])
vars: XBFO - double mixed bias filter state vector (i.e.

vector of current normal operating bias estimates
RESBO - double mixed residuals vector generated by

the bias filter portion of the NFF
GAINBO- double mixed Kalman gain for the bias

filter
PBFO - double mixed bias filter estimation

error covariance (or information)
refby: BIASF. BLEND. CHKRAD. CLPSBE. CLPSIO. DETECT. INITG. NAV.

ARCOV. RECONF. RESCMP. SAVIT. SUMIN

4.2.8 Description Of FCOMI -
name: FCOMI
cont: Communication and common variables between FILERI and

RECRDS. All quantities are therefore used in generating
the binary PLT file.

vars: ntick - integer unitless ratio of no. of simulation
steps/record step

itick - inteqer unitless counter variable~ when
itick=ntick variables are recorded in the loqical
record

nchan - integer unit1ess total no. of channels to be
saved minus one

jchan - integer unitless current channel number beinq
saved

mxchan- integer unit1ess maximum no. of channels
allowed

nbuf - inteqer unit1ess (fixed) lenqth of the phYsical
record buffer

ibuf - inteqer unitless current length of the phYsical
record

ifo1d - integer unitless flaq indicatinq a previous
call

138

to RECRDS when ipass=2 or 4

FINDS Proqrammer's Manual
. Description Of FC(JYI1

xbut - real mixed array of lenQth nbuf used to
store the logical records

refby: FILER!. FINDS. INITG. NAV. RECRDS. SAVIT. SET

4.2.9 Description Of FC0M2 -
name: FC0M2
cont: Storage for the names and units of all variables saved

in the PLT file
vars: Lname - char strinq list of unique 5 character

names for each variable stored in the PLT file.
Lname is of length mxchan

Lunit - char strinq list of 5 character names for
the enQineerinQ units associated with each variable
stored in the PLT file. Lname is of length mxchan

refbv: FILERl. FINDS. RECRDS

4.2.10 Description Of FILNAM -
name: FILNAM
cont: Stores the (12 character) names of all the disk files used

by FINDS.
vars: KKBLNK- char string blank name used for testing

FNDK! - char string name of PLT file
FNDK5 - char strinq name of general input file
FNOK6 - char strinq name of OUT file
FNDK7 - char string name of filter input file
FNDK8 - char string name of TLN file
FNDKll- char string name of SIj'JI file
FNDKl2- char strinq name of sensor input file

refby: FILERl. FINDS. PRNTIC

139

FINDS ProQrammer's Manual
Description Of FlLTlC

4.2.11 Description Of FILTIC -
name: F IUlC
cont: Additional initial conditions for the no-fail filter
vars: SDXIC - double mixed vectors of standard deviations

which define the statistics of an initial normal
distribution used to choose the initial no-fail filter
state estimation error (stored in user units)

XICerr- double mixed vector of initial no-fail
filter state estimation errors (stored in user units)

SDPlC - double mixed vector of standard deviations
of the diagonal elements of the no-fail filter state
estimation error covariance (stored in user units)

POSbnd- double feet position error bound for the
no-fail filter's divergence test

VELbnd- double feet/sec velocity error bound for the
no-fail filter's divergence test

ANGbnd- double radians anQular error bound for the
no-fail filter's divergence test

refby: CKUNST. lNlTG. STARTF. PRlNTlC

4.2.12 Description Of FILTRT -
name: FILTRT
cont: FlaQs and pointing vectors used by the no-fail filter
vars: Iupc - integer unitless (not currently used) rate at

which NFF covariance is updated [= l/(dt*Iupc)]
ikc - inteqer unitless (not currenty used) rate at

which NFF is updated [= 1/(dt*luDc*lKC)]
dtc - double seconds Iupc*Dtime
lIMUF - inteqer unitless flag to indicate if NFF uses

the lMU measurements (O:don't use. !=O:use)
IRSDF - integer unitless flaq to indicate where the

input measurements are obtained from. (O:body mounted
accelerometers and rate gyros. !=O:RSDIMJ)

IRSDFY- inteqer unitless flag to indicate if the RSDlMU
computed attitudes are to be used by the NFF (O:don;t
use. else if IRSDF!=O & IlMUF=O & IRSDFY!=O : then use
them)

140

MXRPLF-

IREPLF-

inteqer unitless
replications used
logic - currently
inteqer unitless
used by the NFF.
sensor type, and
that sensor used

FINDS Programmer's Manual
Description Of FILTRT

the maximum number of sensor
in the NFF and in the FINDS FDI
limited to 2.

vector of sensor replications
The array index is by absolute

the value ;s the replication count of
by the NFF

INOUTF- inteqer unitless a matrix which indicates the
status of all the sensors used by the NFF. The row
index of INOUTF corresponds to the absolute sensor
type, and the column index is the replication number
of the sensor. The value of each element shows the
current status of the sensor where:

-3: unavailable (selected out by decision
logic)

-2: failed
-1: available - but not used by the filter

(i.e. standby status)
0: not available to the NFF
1: available and used

refby: AVBIAS, BIASF, BLEND. CHKRAD. CLPSIO. DECIDE. DETECT, EKFN1.
FILCOL. GTOI, INITF. INITG. MINSET. NAV. NOISR, PRNTIC.
RECONF. RESCMP. SAVIT, SETISN. SUMIN. SUMOUT. UPDH

4.2.13 Description Of FLTCTL -
name: FLTCTL
cont: FINDS proqram control flaqs
vars: lfilt - inteqer unitless indicates form of NFF.

Currently Ifilt=1. signifYinq only the standard EKF
is used (i.e. not the square root form)

IBfilt- integer unitless indicates type of covariance
propagation in the bias filter. where 1: propagate
covariance. and 2: propagate information

IgainP- integer unitless frequency of Kalman filter
gain printout (in samples/printout)

lpass - integer unitless flag to control output to
(binary) PLT file where 1: initialize PLT fie,

141

FINDS Proqrammer's Manual
Description Of FLTCTL

refbv:

Istop -
lwoc -

Ierc -

Ivsc -

Hradar-

BIASF.
INITG.

2: write data to file. 3: close PLT file
integer unitless not used currently
integer unitless indicates whether white or
colored MLS noise corrections should be used in the
NFF. (1: use colored noise assumptions [defaultl.
0: use white noise assumptions)
integer unitless specifies whether or not
corrections for earth's rotation are to be used bv NFF
(1: use corrections [defalutl. 0: don't use
corrections)
integer unitless flag to indicate if
measurements are to be scaled by Yscale. (-1: scale
[defaultl. 0: don't scale)
double feet altitude below which the radar
altimeter is used bv the NFF in place of the MLS
elevation sensor

BLEND. CHKRAD. DETECT. EKFNI. FILCOL. FINDS. INITF.
NAV. PRNTIC. SAVIT. SUMIN. SUMOUT. UPDB

4.2.14 Description Of FTITLI -
name: FTITLI
cont: To store the comment records to be stored in the file header

of the PLT file
vars: nline - integer unitless number of 56 character comment

records
mxlin1- inteqer unitless maximum number of columns

in LTITLl
LTITLl- integer string

the columns of LTITLl.
mxlinl

refbv: FILERl. FINDS. INITG. PRNTIC

142

comment records are stored in
LTITLI is dimensioned 15 bv

4.2.15
name:
cont:
vars:
refby:

4.2.16
name:
cont:
vars:

Description Of GBLENO -
GBLEND

FINDS Programmer's Manual
Description Of GBLEND

No-fail filter blender qain (see (3] and (4])
VBO - double mixed no-fail filter blender qain
BIASF. BLEND. CLPSBE. INITG. NAV. RECONF

Description Of HEALCM -
HEALCM
Ouantities used by the healer logic (see section 2.5 in (2])
kCThlr- integer unitless contains a running count of

the elapsed samples since the start of the current
healer window

kMXhlr- integer unitless total number of samples to
process before a healer window should be reset

CONFBD- double unitless logarithm of the initial
confidence bound (1/19) for the healer test

PhealT- double mixed vector containing standard
deviations of the expected noise (in program units)
for each sensor type - to be used exclusively by the
healers (this allows flexibility in specifyinq the
sensor noise statistics appropriate to the healers -
i.e. different from the detectors. no-fail filter. and
simulation.) PhealT is ordered by absolute sensor
type

Bthrsh- double mixed vector of largest expected
normal operatinq biases for each sensor type (in
program units). Bthrsh is only used in the healer
logic and is ordered by absolute sensor index

Fthrsh- double mixed vector of smallest expected
failure levels for each sensor type (in proqram
units). Fthrsh is only used in the healer logic and
is ordered by absolute sensor index

Dthrsh- double mixed vector of a decision
thresholds to be applied to each healer process.
This vector is ordered by sensor type.
Dthrsh is defined as:

Dthrsh(i) = 2.0*CONFBD*PhealT(i)**2

143

FINDS Programmer's Manual
Description Of HEALCM

refbv: CHKRAD~ DETECT, HEALR. INITG. PRNTIC. RECONF

4.2.17 Description Of HFCOM -
name: HFCOM
cont: Common quantities used by the healing and failure -

reconfiquration logic in FINDS.
vars: Nfai1 - inteqer unitless total number of sensors that

FINDS has determined to be "failed"
Nfai1~ integer unitless The maximum number of failures

that FINDS can process (i .e. dimension of !fai1T &
IfailR)

NNfail- integer unit1ess number of new failures. i.e.
the incremental number of sensors which have ;ust been
detected as failed - but have not been removed bv the
reconfiguration 10Qic

Nhea1 - inteqer unitless total number of sensors which
the healer logic has declared healthy at the end of a
healer window

Nheal~ inteqer unitless the maximum number of sensors
which can heal in one instant. (i.e. the dimension
of Ihea1P)

IfailT- integer unitless vector containing the absolute
sensor type for each failed sensor. Whenever a sensor
fails its absolute sensor type (from Table 5) is added
to Ifai1T. Therefore. this vector is ordered by
relative time of occurrence of the failure. (failed
sensor index)

IfailR- integer unitless vector containing the
replication number for each failed sensor. It is
ordered the same as IfailT. Together IfailT(i) and
IfailR(i) determine the i'th failed sensor's type and
replication.

IhealP- inteqer unitless vector containing a list of
the failed sensors which have healed. The value of
an element is the index in IfailT and IfailR of the
healed sensor. Therefore. IhealP(j) represents the
j'th healed sensor and it (i.e. the value of

144

FINDS Programmer's Manual
Description Of HFCOM

IhealP(1)) points to the IhealP(j)'th failed sensor
in IfailT and IfailR.

refby: CHKRAD. DECIDE. INITG. HEALR. RECONF

4.2.18 Description Of INITVL -
name: INITVL
cont: Initial values for the no-fail filter
vars: INOBPS- integer unitless lNOBPS=INOBP at the start of

the run
PBFOI - double mixed initial values for the

standard deviations of the bias free estimation error
(in user units). Addressed by absolute state index
(see Table 1)

PBFIC - double mixed initial values for the
standard deviation of the detector error information
(in user units), addressed by absolute sensor index
(see Table 5)

refby: CLPSBE. CLPSIO. DETECT. INITG. PRNTIC. RCOV. RECONF. SAVIT

4.2.19 Description Of INOU -
name: INOU
cont: Contains Fortran unit numbers tor 1/0 to the users terminal

and to all disk files.
vars: kin - integer unitless unit no. for input from TTY

kout - inteqer unitless unit no. for output to TTY
kdsk1 inteqer unitless unit no. for output to PLT

file
kdsk5 - inteqer unitless unit no. for input from

general input file
kdsk6 - integer unitless unit no. for output to OUT

145

FINDS Programmer's Manual
Description Of INOU

file
kdsk7 - integer unitless

input file
kdsk8 - integer unitless

fi le
kdskl1- integer unitless

file

unit no. for input from filter

unit no. for output to TLN

unit no. for output to SUM

kdsk12- integer unitless unit no. for input from sensor
input file

refby: AIRSPS 4 ATITGS. AUTLD. BANKTR. BIASF, BMLAS. BMRGS, CHKRAD.
DECIDE, DGATIO, FILERl4 FINDS. GETMLS. GMINV. ILNAC1,
INITF, INITG, IRATGl, NAV~ RADALS, RCOV. SAVIT, STABCN,
TLOUT, VMPRT, WAYPNT

4.2.20 Description Of MAINl -
name: MAINl
cont: Provides common dimensioninq information for two dimensional

arrays and a scratch area for temporarY use by all
subroutines.

vars: ndim - integer unitless row dimension for two
dimensional arrays

ndiml - integer unitless ndim + I
COMI - double temporary scratch array dimensioned

ndim by ndim
refby: ASUMER, BIASF, BLGAIN. DETECT. DGATIO. DOT2. DOT3. EQUATE.

FILCOL. GETMLS. GMINV. GTOI. IMSCLE, IMTCG2. INITG, LKF.
LRT, MADDl. MADDI. MATl4 MATlA4 MAT2. MAT3, MAT3A, MAT4,
MATS. MAT6. MATCG2. MATNUL. fvMJL. Mv1JL2~ MSCALE 4 NAV.
OUTOAT. PRNTIC, RCOV. SAVIT, SEONCE~ STARTF 4 SUMIN, SUMMER.
TRANSP. UPOA, UPDAB, UPDB. UPDH. UPDPH, UPDO, VAODl, VMATI.
Vf'i!AT2. VMPRT,

146

r

4.2.21 Description Of MAIN2 -
name: MAIN2

FINDS Programmer's Manual
Description Of MAIN2

cont: Provides a temporary scratch array for use by all routines.
vars: C0M2 - double temporary scratch array dimensioned

ndim by ndim
refby: BIASF. BLEND. BLGAIN. DETECT. DECIDE. EKFN1. INITG. NAV.

PRNTIC. SAVIT

4.2.22 Description Of MULTDT -
name: MJLTDT
cant: Quantities used in detectinq
vars: PRIORJ- double mixed

the prior probability
the same type to fail
failure) (ordered MLS

mUltiple simultaneous failures
vector of the logarithms of

of more than one MLS sensor of
in the same instant (common mode
azimuth. elevation~ range)

ALamdJ- double mixed
of a multiple MLS
as PRIORJ

vector of the log-likelihood
sensor failure. Ordered the same

RESBJ - double mixed matrix of multiple MLS failure
compensated residuals vectors. Columns are ordered
the same as elements of PRIORJ.

refby: DECIDE. DETECT. INITG. PRNTIC

4.2.23 Description Of SENSCM -
name: SEN SCM
cant: Ouantities used in determining the SIMULATED sensor

confiquration
vars: lIMUS - integer unitless flaq to indicate if the IMU

sensor signals are simulated (available to the NFF)
where 1: IMU exists. and 0: IMU doesn't exist

147

FINDS Proqrammer's Manual
Description Of SENSCM

IRSDS - inteqer unitless flaq to indicate if the RSDIMU
is simulated. Where 1: simulated: and 0: not
simulated

MXRPLS- inteqer unitless the larqest maximum number of
replications of any sensor that was simulated

IREPLS- integer unitless vector whose elements indicate
the simulated replications of accelerometers, rate
gyros, MLS, lAS. and IMU sensor systems. respectively

IREAOS- integer unitless not used currently
refby: CHKRAD. DETECT. INITG. FILCOL

4.2.24 Description Of SIMCOM -
name: SIMCOM
cont: Provides communication between the simulation and the routines

used to record the PLT file (RECRDS and FILER1)
vars: ifq - integer

thalf - real
time - real seconds
de 1 t - rea 1 seconds

size

not used
not used
current simulation time
simulation integration step

nstep - integer not used
tstart- real seconds startinq time of the

simulation
tstop - real seconds final time (estimated)

refby: CHKRAD. CKUNST. DECIDE. FILER1. FINDS. GYROCR. lNITG.
NAV. PRNTIC, RECONF, RECRDS. TLOUT

4.2.25 Description Of SMPRM -
name: SMPRM
cont: Saves qeneral simulation quantities associated with the

148

PLT file
vars: nbuf - inteqer unitless

used to incrementally
ntick - integer unitles5

steps/record steps
delt - real seconds

by FINDS
LCODE - inteqer

refby: READRC

4.2.26 Description Of STITL -
name: SrITL

FINDS Programmer's Manual
Description Of SMPRM

length of the phYsical record
store the data in the PLT file

the ratio of no. of simulation

the integration step size used

not used

cont: Stores the comment records contained in the file header
of the PLT file

vars: nline - inteqer unitless
comment records

mxline- inteaer unitless
in LTITL

LTITLE- inteqer strinq
the columns of LTITLE.
m):.line

refbv: READRC

4.2.27 Oescriotion Of SvSUl -
nam.:: :; y:;Ul

number of 56 character

maximum number of columns

comment records are stored in
LTITLE is dimensioned 15 bv

cont: 0uantities associated with t~e inout~ to th~ no-fai1 filt~r.

\far-~: flJU - inteoer' unitless t(ltai numt·er of inputs to
nl)-fail tilt--,. In(ll1dinq ar.;t\litv inour:s

1\)lJl _. total number of inputs to

14'~

FINDS Programmer's Manual
Description Of SYSUI

NU-NG)
NUlPl - integer unitless NUl+1
NG - integer unitless total number of qravity inputs
NU1C - inteqer unitless NUl - currently not used
INOUP - inteqer unitless pointer vector to absolute

input measurements used by the NFF. Where~ the array
index corresponds to the location in UFl, and the
value is the absolute input measurement type index
found in Table 3. Note: since we do not allow the
input vector to collapse this array is not strictly
required - however, it does provide much of the
functionality needed to facilitate reconfiquring the
inputs to the NFF in future releases of FINDS.

UFI - double mixed vector of compensated inputs
used by the no-fail filter (computation in SUMIN)

refby: ADJTBP. AVECMP, BIASF, BLEND, BLGAIN. CLPSBE, CLPSIO, DECIDE.
DETECT EKFNl, FILCOL~ GTOI. HEALR, INITF, INITG. NAV, NOISR.
PRNTIC. RCOV, RECONF. RESCMP, SAVIT, SETISN. SUMIN, UPDPH

4.2.28 Description Of SYSXl -
name: SYSX1
cont: Bias free filter state dimensions and sYstem matrices
vars: NX - inteqer unitless total number of states in bias

free portion of the no-fai filter
NXI - integer unitless NX+l
AFI - double mixed describe state transition

matrix - set in UPDA. (see 2.2.13 in [2])
BFl - double mixed discrete processes noise

covariance matrix (i.e. EWE/). (see 2.2.13 in [2])
refby: ADJTBP. BIASF, BLEND, BLGAIN. CLPSBE. CLPSIO. DETECT, EKFNl.

INITG, NAV, PRNTIC, RCOV, RECONF. SAVIT, STARTF

150

r

4.2.29 Description Of SYSXBO -
name: SYSXBO

FINDS Proqrammer's Manual
Description Of SYSXBO

cont: Ouantities associated with the bias filter portion of the
NFF.

vars: NB - integer unitless the current number of biases
estimated by the NFF (NB=NUB+NYB)

NUB - integer unitless the current number of input
sensor biases estimated by the NFF

NUBl - integer unitless NUB+1
NYB - 1nteger unitless the current number of

measurement biases estimated bv the NFF
NBMXI - integer unitless the original (total) number

of biases requested to be estimated bv the NFF
INGBP - integer unitless pointer vector to the sensor

type of each bias estimated 4 where the array index is
the bias index used bv the filter. and the value of
each element is the absolute sensor index (from
Table 5) of the corresponding sensor

ABFl - double mixed discrete state transition
matrix which accounts for the estimation of normal
operating biases. (see eq. 2.2.30 in (2])

refby: ADJTBP. BIASF, BLEND. BLGAIN. CHKRAD. CLPSBE. CLPSIQ, DETECT
EKFN1. INITG. KALMN. NAV 4 PRNTIC. RCOV 4 RECQNF. RESCMP. SAVIT.
SLMIN. UPDPH

4.2.30 Description Of SYSYW1 -
name: SYS'(WI
cont: Quantities associated with the no-fail filter's observations

and process noises
vars: NY - inteqer unitless total number of possibly

averaqed (or collapsed) measurements presented to the
no-fail filter

Ndistb- integer unitless total number of process noise
inputs to the NFF

NYMXI - integer unitless initial (maximum) number of
averaged measurements to the NFF

INOYP - inteqer unitless pointer vector to "active"

151

FINDS Proqrammer's Manual
Description Of SYSYW1

refby:

4.2.31
name:
cont:
vars:

refby:

averaged outputs used by the NFF where INOYP is formed
such that the array index corresponds one-to-one with
the elements of the (possibly collapsed) measurements
of the NFF. and the value of each element corresponds
to the absolute measurement index in Table 2.

lNOYPI- integer unitless inverse mapping of INOYP. i.e.
the array index is the absolute measurement index. and
the value is the corresponding index in the current
measurement vector to the NFF. If a particular
measurement type is not used by the filter its value
in INOYPI will be zero

YF1 - double mixed vector of averaged
measurements used by the NFF - uses absolute
measurement sensor indexing

RF1 - double mixed vector of measurement noise
covariances organized by absolute measurement index
(Table 2). Each element in RF1 is adjusted to
reflect the number of sensors averaged

OF1 - double mixed vector of process noise
covariances organized by absolute input index
(Table 3). (see 2.2.14 in [2])

HP1 - double mixed effective observation matrix
for NFF (partial of h w.r.t.x) (see 2.2.31 in [2])

ADJTBP. BIASF. BLEND. BLGAIN. CHKRAD. CLPSBE. CLPSIO. DETECT.
EKFN1. INITF. INITG. NAV. NOISR, RCOV. SVIT. SUMOUT. UPDPH

Description Of YOBSRV -
YOBSRV
Contains the scaling array for the filter observations
Yscale- double mixed vector of scale factors used

to scale each averaged measurement into the NFF. The
scaling is performed to ensure that the measurement
noise variance is unity for each sensor

AVECMP. BIASF. BLGAIN. CLPSBE. DETECT. INITF, INITG. RCOV
RESCMP. SAVIT. SUMOUT. UPDH. UPDPH

152

153

FINDS Proqrammer's Manual
Description Of VOBSRV

FINDS Proqrammer's Manual
REFERENCES

5 REFERENCES

(11 Lancraft. R.E. and Caglayan. A.K .• "FINDS: A Fault
Inferrinq Nonlinear Detection System - User's Guide".
NASA CR-172199. September 1963.

(2] Caqlavan. A.K. and Lancraft. R .E.. "A Fault Tolerant SYstem
for an Inteqrated Avionics Sensor Confiqurat'ion". NASA CR-3634.
1964.

(3] Caqlavan. A.K. and Lancraft. R.E •• "An Aircraft Sensor
Fault Tolerant System", NASA CR-165876. April 1982.

(4] Caqlavan. A.K. and Lancraft. R.E •• "A Separated Bias
Identification and State Estimation Alqorithm for
Non-l1near Systems". Automatica, Vol. 19. No.5.
pp. 561-570. September 1983.

(5] "VAX-ll DIGITAL Standard Runoff version 2.0. Users Guide".
Digital Equipment Corporation. No. AA-J268B~ May 1982.

154

APPENDIX A

SUMMARY OF SPECIFIC HARDWARE AND SOFTWARE REOUIREMENTS

Computer:
Storage:
Terminals:

Hard-copv
devices:

Operatina
System:

Software:

Digital Equipment - VAX-7ao or 750
At least one disk drive
Either a Tektronix model 4010/4014 or one that emulates a
Tektronix 4010/4014 (for plotting purposes.)

No specific requirements. All output is directed to
disk files or to the users terminal.

VMS Version 3.0 or higher. VMS utilities and
libraries are required.
Fortran-77 compiler

The followina files are supplied:

Command Files:
FINDS .COM
FINDSLIB.COM
GETDOC .COM
MAKEFPG .CctJI

Executable Files:
DOC.EXE
FINDS.EXE
PLOTD.EXE
PRINTD.EXE

Fortran Files:
DOC.FOR
FGAC.FOR
FIO.FOR

A-1

SlM'1A.RY OF SPECIFIC HAROWA.RE AND SOFTWt\RE REQUIREt-ENTS

FIOSUB.FOR
FMA.IN.FOR
FSENS.FOR
FSFDI.FOR
FUTSUB.FOR
FVMSUB.FOR
FWII\O.FOR
PLOTO.FOR
PRINTD.FOR

Libraries:
FINDSLIB.OLB

OPT Fil es:
PLOT.OPT
PRINTO.OPT

COM files:
- FINDSC.COM

FINDSL.COM
FINDSLIB.COM
FOREIGN.CCM
FPMV3.COM

FIL files:
FINDSPM.FIL
FINDSPMA.FIL
FINDSPMB. FIL

RNO files:
FPMV3.RNQ

LISA floppy disk files:
A 5 1/4 floppy disk ~hich contains t~o Lisa Dra~ applications:
1. FINDSfiqs - all the flo~charts in the FINDS programmers

manual.
2. FINDScharts - all the tables used in the FINDS programmers

manual.

A-2

APPENDIX B

GENERATING THE FINDS PROGRAMMERS MANUAL

It was stated in the introduction that this manual was generated in a
semi-automatic fashion usinq a combination of a rudimentary text
formattinq program called Digital Standard Runoff (OSR), an Apple Lisa
computer usinq LisaOraw, and a text stripping program (DOC). This
appendix provides the details of this system. In particular this
appendi x wi 11 :

o Enumerate the procedure required to produce a COPy of this
proqrammers manual.

o Briefly describe the mechanics of the automatic documentation
system.

o Document the current set of "rules" for embedded source code
documentation.

o Describe the steps required for addinq future documentation
to the manual.

o And finally, present some observed stenqths and shortcominqs
of this approach.

The following steps are required to produce a copy of this manual:

1. Type $ @foreign and then $ @findspg ,this produces a file
fpmv3.mem which can be printed on a suitable printing device
(daisv wheel, dot matrix_ or laser printer).

B-1

GENERATING THE FINDS PROGRAMMERS MANUAL

2. Load the Lisa floppy disk into an Apple Lisa computer and
print all the figures and tables using LisaDraH, or
alternatively if a file of current figures is maintained,
simply make copies of the figures and tables.

3. Insert the figures and tables into the document in the
approriate places.

As shoHn above. only three simple steps are required to produce a copy
of an existing manual. NoH let's take a closer look at Hhat actually
Has performed in step 1. Figure 13 ShOHS a closeup of the underlying
mechanics. From this figure He can see that step 1 first stripped.
from a list of files, documentation containing:

o Each file's contents

o Subroutine descriptions

o Common block descriptions

In addition. index items Here added and the files Here put in a form
compatible Hith DSR (all done via the program DOC.) Each type of
information is saved in a separate file. These files are then
referenced in a runoff file Hhich contains a template of the manual
(e.g. the Introduction, Appendicies, and beginnings of chapters Hhere
the files Hill be included.) The output of DSR is a file Hhich
contains all the written text, and saves "Hhite" space for all the
figures and tables.

B-2

Text Editor

Documentation
Template File
(e.g.DSR
Text file)

LISA/Draw

Figures & Tables

File Header
Documentation

Finished
Manual

•••

ooc

Subroutine
Documentation

D.S.A.

Text of Manual

Common Bkx:k
Documentation

Figure 13. Mechanics of Automatic Manual Generation

B-3

GENERATING THE FINDS PROGRAMMERS MANUAL

In order for the text stripping program, DOC, to work properly various
"rules" are required for placing embedded documentation in Fortran
source files. The basic premise is that comment lines which occur
between special header lines are to be treated as documentation.
Currently the following header delimiters are supported:

1. Cfil Cendfil - These bracket file content comments.

2. Cdoc Cenddoc - These bracket subroutine documentation.

3. Ccom Cendcom - These bracket common block documentation.

In qeneral. formattinq within header delimiters is arbitrary.
However. if "Cname:" is encountered. the rest of the line is treated
as a file. subroutine or common block name and is entered into the
index. Furthermore. if fiqures are required, DOC can be used to save
space for them. This is done bv using the followinq construct:
"Cfiq: FFPF(n)" where 1<n<99 is the number of Floatinq Full Page
Fiqures required. The following rules must be followed:

1. Header delimiters must occur on separate lines

2. Each line between header delimiters must start with a comment
character "e" (for FORTRAN files).

3. Each line of documentation must be less than or equal to 70
characters (not counting the comment character.)

4. Each line is passed verbatum into the document so that block
formatting can be performed using tabs and spaces.

5. The special symbols "Cname" and Cfig" discribed above must
start in column 1.

Althouqh the formatting of documentation is arbitrary and therefore up
to the programmer, in order for the final document to be consistent a
documenting convention is required. In this document the following
convention was adhered to:

B-4

GENERATING THE FINDS PROGRAMMERS MANUAL

File header documentation

Cfil
Cname:
Ccont:
Csubr:
Cendfil

Name of the file.
Description of what the file contains.
list of subroutines ~ith a one line description of each.

Subroutine and Program documentation

Cdoc
Cname: Name of subroutine or function (~ith optional enumeration of

Cfunc:
Ccall :
Cargs:

Mnemonics.)
Short description of ho~ the subroutine functions.
Sample calling sequence.
list of arguments used in calling sequence along ~ith a short
definition and an indication of ~hether they are used as inputs
outputs or both.

Cints: list of key internal variables and there definitions.
Crefs: list of subroutines referenced by the routine (~ith optional

description of each.)
Crefby: list of the routines that reference this routine.
Ccomm: list of the common blocks used by this routine (~ith optional

description of each.)
Cfig: FFPF(n) TITlE[•••]
Cenddoc

Common block documentation

Ccomblk
Cname :
Ccont:
Cvars:
Crefby:
Cendcom

Name of
Purpose
List of
List of

the common block.
or contents of the common block.
variables alonq ~ith a definition of each.
routines containing this common block

8-5

GENERATING THE FINDS PROGRAMMERS MANUAL

At this point the reader should have a basic understanding of how the
automatic documentation system works, as well as how to add
documentation to a Fortran source file (the reader is refered to [5]
for a complete discussion of the DSR commands used to format the
runoff file.) However, it is not yet clear what steps are required to
generate the manual if additional documentation~ and/or figures or
tables are added or deleted. Basically the same steps mentioned at
the start of this appendix apply, with the following exception: since
DSR doesn't support the notion of lists of tables, figures, or
references -- they must be maintained by hand. This means that:

1. If table or figure numbering is modified, all direct
references to figures or tables by number must be updated to
reflect the new sequence. This can be avoided if they are
refered to by title or placement.

2. The page numbers in the list of figures and the list of
tables must be corrected. This is accomplished by simply
running DSR once. noting the correct page numbers~ correcting
the runoff file, and re-running DSR.

3. If references are added or subtracted from the manual.
citations made in the body of the report must be corrected.
as well as the list of references itself.

In closing. the following
effectiveness of this method.

observations are made
On the positive side:

as to the

1. The documentation is available inside the source file itself,
therefore it is readily available for a programmer to
reference.

2. Documentation can be kept up to date by simply making an
incremental addition to existing text. Moreover it can
conveniently be done at the same time the code is altered
when the concept is clearest.

3. WOrking documentation can be made available at any point in
the development process.

4. It's flexible. All documentation is stored electronically.
Therefore. changes can be made without disturbing the overall
structure, or compleatly re-drawinq old figures to add minor

B-6

GENERATING THE FINDS PROGRAMMERS MANUAL

modifications.

For all its strong points. there are of course some ~eaknesses as
~ell:

1. DSR's lack of support for tables. figures. and references can
create some extra maintainence effort. This could be
eliminated if a more po~erful text formatter ~here used. or
if a pre-filter ~ere ~ritten to do the maintainence
automatically.

2. Because the documentation is ~ritten in a decentralized
fashion it can be discontinuous in style and notation. unless
clearly defined rules are follo~ed.

3. If a correction in notation is desired several files must be
modified, rather than a single one in the case of a more
conventional document.

4. Source files ~ill. of course. be larger if this method is
used. This may be a concern if disk space is at a premium.

B-7

Common blocks
cmpstf. 134
dcidei, 134
deti n t'. 135
detsig, 136
detxbi. 136
detybi. 137
ekbfO~ 138
fcoml. 138
fcom2. 139
fil nam. 139
fil ti c. 140
fi ltrt, 140
fltctl. 141
ftitll. 142
gblend. 143
healcm. 143
hfcom. 144
initvl. 145
i nou, 145
main1, 146
main2. 147
multdt. 147
sen scm. 147
simcom. 148
smprm. 148
stitl. 149
sysu1, 149
Sysxl. 150
sysxbO. 151
sysywl. 151
yobsrv. 152

Source files
doc.rat. 17. 121
fqac.for. 13. 85

IM)EX

fio. for. 14, 86
fmain.for. 11~ 18
fsens.for, 14, 86
fsfdi.for. 11~ 28
futsub.for. 15. 92
fvmsub.for. 16, 106
fwind.for. 13. 85
plotd.for~ 17. 119
printd.for. 17, 120

Subroutines
abslim. 92
accvel. 92
adjtbp. 75
asumer. 98
avbias, 84
avecmp. 82
barnl. 104
biasf. 41
blend. 44
blgain. 47
bubble, 113
chkfl. 88
chkrad. 48
ckunst. 36
clpsbe, 73
clpsio, 71
convrf, 83
decide. 64
detect, 51
dgatio. 97
doc. 121
dot. 114
dot2. 114
dot3. 114
ekfn1. 38
equate. 112

Index-l

fllcol. 73
finds - (main program). 18
flevel. 89
fsched. 87
gauss. 105
gminv. 106
gtoi. 36
gyrocr. 35
hea1r. 77
imtcg2. 102
inital. 27
initf. 32
initg. 32
i nsrtn. 116
kalmn. 37
1 imva 1. 103
limv12. 103
1 kf, 63
lrt. 64
lrthlr. 82
maddl. 111
maddi. 111
matl. 107
matla. 108
mat2. 108
mat3. 109
mat3a. 109
mat4. 110
matS. 110
mat6. 111
matcQ2. 101
matmu I. 97
matnu 1. 112
mattv3. 96
matv3. 96
maxmin. 99
maxmins. 99
minset. 76
mmul. 107
mmu12. 107

Index-2

movum~ 97
msca1e. 11.3
mxmn2. 100
namfil. 105
nav (fault tolerant naviqator\.

28
noiseQ. 104
noisr. 72
outdat, 90
plotd. 119
pntinv. 102
printd. 120
prntic. 87
rcov. 75
reconf. 65
rescmp. 73
rotatv, 93
rotmat. 93
rungk3, 94
run~ay, 94
savit. 86
seqnce, 116
set. 27
setisn. 47
setum. 95
startf. 33
sum;n, 34
summer. 98
sumout. 34
s~ap. 118
tlout. 90
trans2. 113
unifrm. 105
upda. 48
updab. 49
updb. 49
updh. 51
updph~ 51
updq, 50
vadd. 115

vaddl. 115
vechg1. 100
vecm~ 95
vecms~ 95
vecnul. 117

Index-3

vecnuls. 117
vecsum, 96·
vmatl, 118
vmat2. 118
vscale, 116

Standard Bibliographic Page

1. Report No. 12. Government Accession No. 3. Recipient's Catalog No.

NASA C:R-177986
4. Title and Subtitle 5. Report Date

rINDS: A :;.'ault Inferring Nonlinear Detection System - December 1985
Prop,rammers J'anual Version 3.0 6. Performing Organization Code

7. Author(s)
8. Performing Organization Report No.

P,oy E. Lancraft Report No. 6012

9. Performing Organization Name and Address 10. Work Unit No.

BBN Laboratories 11. Contract or Grant No.
lQ !foulton Street NASl-16579
Cambridl!e. HA 02238

13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Contractor Report

14. Sponsoring Agency Code

Washington DC 20546 505-34-13-12
15. Supplementary Notes

Langley Technical '~onitor: :;.'rederick ~lorrell

Comnuter Prop,ram Documentation

16. Abstract

This report provides detailed software documentati.on of the digital computer
program FINDS (~ault Inferring Nonlinear Detection System) Version 3.0. FINDS
is a highly modular and extensible comnuter program designed to monitor arid
detect sensor failures, while at the same time providinp, reliable state estimates.
In this version of the program the PINDS methodology is used to detect, isolate,
and compensate for failures in simulated avionics sensors used by the Advanced
Transport Operating Systems (ATOPS) Transport System p.esearch \Tehicle (Tsny)
a ;-!icrm"rave Landing System (HLS) environment. !t is intended that this report
serve as a programmers guide to aid in the maintanence, modification, and
revision of the FINDS software.

17. Key Words (Suggested by Authors(s» 18. Distribution Statement

Sensor failure detection, fault toleran
navigation, HLS, no-fail filter Unclassified - Unlimited

Subject Category 06

19. Security Claseif.(of this report) 120. Security Ciassif.(of thill pag ..) ! 21 No. of Pages i 22. Price

Unclassified Unclassified . 173 A08

For sale by the National Technicill InfoJ'!!lctj~I' So!l'Yic.e, Springfield, Virginia 22161
NASA LaDlley Form 63 (JUDe 1985)

in

End of Document

