N86143

0 i

DEVELOPMENT OF CONSTITUTIVE MODELS FOR CYCLIC PLASTICITY

AND CREEP BEHAVIOR OF SUPER ALLOYS AT HIGH TEMPERATURE

Final Report

Submitted by

Walter E. Haisler
Aerospace Engineering Department
Texas A&M University
College Station, Texas

to

NASA Lewis Research Center
Cleveland, Ohio

September 30, 1983

Research Foundation Grant No. NAG 3-31
Project 4246 ‘

REFRODUCED BY: __"r.§.'
U.S. Department of Commerce
i i ion Service-
Springfield, Virgima 22161







ABSTRACT
SUMMARY OF RESEARCH
PUBLICATION LIST

APPENDIX (Selected Papers)

TABLE OF CONTENTS

15
16







ABSTRACT

This report presents the Final Report on NASA Grant NAG 3-31
entitled "Development of Constitutive Models for Cyclic Plasticity and

Creep Behavior of Super Alloys at High Temperature. An uncoupled
constitutive model for predicting the transient response of thermal and
rate dependent, inelastic material behavior has bhbeen developed. The

uncoupled model assumes that there is a temperature below which the
total straln consists essentially of elastic and rate insensitive
inelastic strains only. Above this temperature, the rate dependent
inelastic strain (creep) dominates. The rate insensitive inelastic
strain component is modelled in an incremental form with a yield
function, blow rule and hardening law. Revisions to the hardening rule
permit the model to predict temperature-dependent kinematic-isotropic
hardening behavior, cyclic saturation, asymmefric stress-strain response
upon stress reversal, and variable Bauschinger effect. The rate
dependent inelastic strain component 1is modelled using a rate equation
in terms of back stress, drag stress and exponent n as functions of
temperature and strain. A sequence of hysteresis loops and relaxation
tests are utilized to define the rate dependent inelastic strain rate.
Evaluation of the model has been performed by comparison with
experiments involving varicus thermal and mechanical load histories on
5086 aluminum alloy, 304 stainless steel and Hastelloy X.






SUMMARY OF RESEARCH

Constitutive models may generally be grouped into three
categories: microphenomenological, nonlinear viscoelastic, and
classical plasticity. Each group can be further separated into unified
and uncoupled theories, where the two differ in their approach to the
treatment of rate independent and rate dependent inelastic deformatlon.
The unified approach separates the total strain rate as

£=65 + €T+ €7 (1)
where & represents the total strain rate and superscripts E, I, and T
represent the elastic, inelastic and thermal components, respectively.
Alternatively, the uncoupled theories partition the inelastic strain
into plastic and creep components. This can be expressed as
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where superscripts P and C represent the rate independent "plasticity"
and rate dependent "creep" strain terms, respectively. Such uncoupling
of the strain components provides for simpler theories to be developed
(along with simple tests to define material constants) but does preclude
any creep-plasticity interaction except through ad hoc rules. More
complete discussions and literature reviews are provided in the papers
and reports contained in the Appendix.

The constitutive model developed in this research is based on
uncoupled strain components as written in equation (2). The model
.assumes that there 1is a temperature below which the 'total strain
consists essentially of elastic and rate insensitive inelastic (plastic)
strains only. Abcve this temperature, the rate dependent inelastic
strain (creep) dominates. The rate insensitive plastic strain is
modelled by an incremental model with a yield function, flow rule and
hardening law. Provisions are made for cyclic saturation and variable
Bauschinger effect. The rate dependent inelastic component is modelled
using a rate equation in terms of back stress, drag stress, and exponent
n as functions of temperature and strain. The rate dependent and
independent inelastic components are selected so that their sum is
always equal to the total inelastic strain at all temperatures.

Rate Insensitive Strain Component

The rate insensitive inelastic (plastic) strain component is
modelled using a modified and improved incremental theory applicable to
cyclic thermomechanical material response. The model makes use of four
major components. For simplicity, the following equations will be
presented in unliflal form; their extension to multiaxial form is
presented by Allen

First, we assume a relation between stress and elastic strain

Eef=rF(e-g"¢g%¢7) (3)




or in incremental form ) ..
P
Av= 8% (ag-as"- a5% 4s7) + 4E (g7 ¢C
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where U is the uniaxial stress, E is elastic modulus, and &£ 1is the
uniaxial strain. Superscripts P, C, and T denote plastic, creep, and
thermal components respectively while t denotes values at the start of
the load step, and t+At denotes values at the end of a load step.

The von Mises yield criterion is used herein in combination with a
variable ratio isotropic-kinematic hardening law. The modified
hardening rule used in this research permits the model to predict
temperature dependent kinematic-isotropic hardening behavior, cyclic
saturation, asymmetric stress-strain response upon stress reversal, and
variable Bauschinger effect. The essential features of the hardening
rule are described in the thesis by Cronenworth included in the
Appendix.

While metals 1like aluminum exhibit a similar strain hardening
behavior for reyield after the initial yield, some metals (stainless
steels, for example) exhibit different forms of hardening behavior for
each half cycle of loading even after several loading cycles, i.e., the
stress-gtrain response is asymmetric. To account for the asymmetry,
both halves of a stress-strain cycle are used as input to the model and
the hardening ratio & is allowed to be a function of the direction of
loading. Typical experimental data and the linearized representation
are shown in Fig. 1. For temperature T curve ABC corresponds to the
first half cycle of response while curve DE (or D'E') corresponds to the
second half or reverse loading response

For a combined hardening law, the hardening ratio, A? , i3 the
ratio of isotropic to kinematic hardening such that A&=g constitutes a
kinematic hardening law where the yield surface retains its initial
size, shape and orientation thus simply translating in principal stress
space. Isotropic hardening, 8=/, indicates that during plastic flow the
yield surface expands uniformly about the origin and never translates.
Using a values for the hardening ratio such as O0%S = 1 constitutes
a combined hardening rule where the yield surface is allowed to both
expand and translate. The hardening ratio may be variable if it is
defined as a function of plastic strain and temperature using

(QQ;—G;') . (5)
(203 -27;)

where the stress values are defined in Fig. 2 for each temperature. If
is a function of plastic strain as well as temperature, several cycles
of stress-strain data are required to characterize this parameter.
Typical curves for the hardening ratio are also shown in Fig. 2. As
approaches a 1limiting or asymptotic value with respect to - plastic
strain, we note that the cyclic hysteresis loops will saturate.

BT T) =

The growth law for the yield surface size K may be obtained from
using
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K=+ (7 ) @

where Oy represents the yield stress and ¢ is the applied stress. In
equation (6), K=K (P, 7). For the case where loading and reverse
loading response 1is different, we employ the following procedure at the
reverse loading point. Consider that base diagrams of K vs §7° have
been obtained as shown in Fig. 3. Recall that the "a" curves are the
ones that result from reverse yielding while the "b" curves are from the
virgin stress-strain curves. If a reverse yielding occurs at fP=§ ,
we assume the "b" curves are linked to the global diagram as shown at
the bettom of Fig. 3, always linking-on the complete curve starting from
zero plastic strain. When another reverse yielding takes place, either
the "a™ or "b" curvés are 1linked to the global diagram at that
particular value of plastic strain that has been accumulated. A similar
procedure 1is carried cut for the global uniaxial stress vs. plastic
strain diagram. ' :

The experimental requirements required to characterize the
hardening law depend upon the metal. For the most general case,
isothermal c¢yclic stress-strain tests are run till the hysteresis loops
stabilize. Cyclic tests are required for several temperatures so that
the temperature dependence can be adequately characterized. Loading
rates must be selected so that time-dependent effects are negligible.

Rate Dependent Inelastic Strain Component

In the present, the rate sensitive strain component is obtained
from Thysteresis loops and stress relaxation tests at various
temperatures. Fig. 4 shows a typical set of these tests and details how
the rate dependent deformation is extracted from the saturated cyclic
data. A reference temperature hysteresis 1loop 1is defined at a
temperature below which the total strain consists essentially of elastic
and rate insensitive plastic strains only. Above this temperature, the
rate dependent inelastic strain (creep) dominates. Experimental tests
conducted by Yuen (see Appendix) seem to indicate that such an
uncoupling is feasible for Hastelloy X. The basic concept of decoupling
strains according to Fig. 4 is to take that part of the inelastic strain
which is strongly time dependent and call it 5“: ; the remaining part
is assumed to be all rate insensitive and incorporated into j/g

Micromechanical consideration suggest a model for the rate
dependent inelastic strain of the form ‘

P
o- <2 ' | o
[

éc; ,47»4—(0"--!7-) {

where EC represents the rate dependent inelastic strain rate, L2 is
the back stress, K is the drag stress, and n is a temperature-dependent
"constant." The back stress, drag stress, and exponent n are generally
function of temperature and strain (or stress). However, for some
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materials a good assumption 1is that the drag stress and n are constant
at sufficiently high temperatures. The experimental determination of {2,
K, and n 1s based on stress relaxation tests at low temperature and
stress drop/strain transient test at high temperature. Details of these
experiments are presented in the thesis by Yuen (see Appendix).

Evaluation of the Model

The capabilities of the constitutive model develcped during this
research have been evaluated through several hypothetical numerical
experiments as well as by comparison with experimental results., Only a
few of these results are presented here. More complete comparisons and
details of the -experiments, as well "as experimental laboratory
facilities developed during this research, are presented in the
Appendix.

In the first example, we illustrate the effect of a change in
strain hardening upon stress reversal, which is typical of many alloys.
Figure 5 illustrates the stress-strain curves for a theoretical single
cycle reverse load test. The input can be taken from either first or
saturated cycle data. Curve B represents the initial strain hardening
behavior while curve ‘A represents the high rate of strain hardening seen
upon stress reversal. If a single cycle reverse load test is performed
with this theoretical data, the results will be similar to those shown
as output in Fig. 5. The revised model using both halves of the cyclic
stress-strain response (curves A and B) is a much more realistic
representation of actually observed experimental  behavior for many
metals than the combined hardening rule previously used by the current
researchers., Even the revised model representation using only curve B
is an improvement over existing hardening rules which "square-off" the
behavior upon reyield.

In the next example, we consider a hypothetical fully-reversed
cyelie uniaxial strain history of +/- 0.25% strain with two different
assumptions for the hardening law. In Fig. 6a, a combined hardening law
with 4&=z0.5 was used while in Fig. 6b results are presented for a
variable hardening ration given by B =06 - %.7 £~ . It is seen
that different rates and amounts of cyclic saturation are easily
predicted by the model.

In- the third example, we consider a uniaxial specimen subjected to
a thermomechanical lcading history as shown in Fig. 7. The stress-
strain curves do not include any asymmetric hardening ( B=¢.5 ), but
are considered to be dependent on temperature as shown. Results from
the constitutive model for modulus, strain hardening, and yield surface
size as functions of plastic strain and temperature are shown in Fig. 8
(ti in Fig. 8 corresponds to t, in Fig. 7). It is interesting to note
the change in yield surface size as a function of plastic strain. As
discussed previously, the curves are modified each time there 1is a
stress reversal which causes yield or reyleld. This physically
represents the rounded shape of the stress-strain' curve after reverse
yielding seen -in experiment in terms of the mathematical modelling,
this corresponds to the linking of the original yield surface curve onto
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the current global diagram. The squares in Fig. 8 point out where this
process takes place each time. ’

The numerical experiments discussed above serve to indicate the
potential response possible with the constitutive model. The model has
also been compared to experiments involving several different materials
and thermomechanical loading histories. Three of the comparisons are
presented here. The first involves a‘gniaxial test of 5086 aluminum
alloy between Troom temperature and 275°F. Stress—-strain curves were
obtained for one complete cycle (with "asymmetric strain hardening
accounted for) and, from experiment, the hardening ratio was found tc be
approximately 0.U45 for the first loading cycle and approximately 0.0
(kinematic) for  all reloading cycles. Figure 9 presents the cyclic
loading and temperature history. We observe that the theoretical
results are in very good agreement with experiment and the high rate of
strain hardening during load reversal is modelled accurately.

In the next test, we attempt to model the evolution of hysteresis
loops for a mechanically cycled 304 stainless steel specimen at 1,000°F.
We note from Fig. 10 that the loading-reloading response is quite

asymmetric and the difference alternates throughout many cycles. In
this case, tension preceeds compression; however, the same effect is
observed 1if compression 1is applied first. From experiment, the

hardening ratios were determined to be approximately 0.2 for the first
quarter cycle and 0.35 for the second.quarter cycle. "Results for the
first and. fourth c¢ycles indicate reasonably good - correlation with
experiment.

In the last case, we consider the prediction of cyclic saturation
of Hastelloy X at room temperature when cycled between +/- 1.1% strain
under strain control. Figure 11 presents the experimental results while
Fig. 12 shows a comparison between theory and experiment. In Fig. 12,
expérimental data is shown only for the first one-half "‘cycle and the
last (saturated) cycle. The model results depict the gradual saturation
response as well as the limiting response. A hardening ratio function
given by A= p 075 44375 £7 was used in tension while that used
for compression was & =o./0 — 0.5 £ . Notice that as model
predictions approach saturation, some fluctuation 1is seen on the
compression side. This is thought to be due to increasing numerical
error at this point as no equilibrium iterations are performed in the
finite element analysis. Most of the difference in experiment and
theory is due to difficulty in modeling of the second quarter cycle,
otherwise the model predictions are reasonably good.:

13
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CHAPTER I
INTRODUCTION

Modern computatiohal methods for the‘stfess analysis of structures
are well established. For behévior that is linear and even geometric-
ally nonlinear, the finite element method has proven to bé a very
capable tool for the structural engineer. However, nonlinear material
analysis is much more difficult‘and not yet as fully developed as proven
by the large amount of research donme in this area in recent years. Of
particular interest to this research, the solution of thermal and rate
dependent elastic-plastic material behavior is quite difficult. Appli-
cations of thi; technology are needed in components such as nuclear
reactor pressure vessels and’gas turbine blades.

Historically, the study of plasticity of metals began in 1864 with
the publishing by Tresca [1] of a prélihinary account of experiments
on punching and extrusion. This led him to state that a metal yielded
plastically when the maximum shear stress attained a critical value.
Application of Tresca's yield criterion was investigated by Saint-Venant
[2] to determine stresses iﬁ cyclinders and tubes. He also recognized
that there was not a one-to-one relation between stress and total plas-
tic strain. Levy in 1871 proposed multiaxial relations between stress
and plastic stfain [2].

Advancement to a more satisfactory yield criterion was constructed

on the basis of purely mathematical considerations by von Mises [3]

This thesis follows the style and format of the Journal of Applied
Mechanics.




in 1913. Further work was done in the 1920's by Prandtl [4], Nadai,

Lode, and von Karman [2]. It was in the early 1930's that two impor-

tant generalizations of the available theory were made. The first was
made by Reuss in 1930 [5] who allowed for the elastic component of
strain. The second was made by Schmidt (1932) and Odquist (1933) [2]
who showed how to 1ncorporate work hardening into the framework of the o ,i
Levy—Mises equations.- Thus by 1932 an elastic—plastic theory had been
constructed to model‘these properties of an isotropic metal at room
temperature [2].

Work in this area in the 1940's and beyond was done by several

prominent researchers like Hill [2], Drucker [6], Prager [7], and o :J

‘Ziegler [8]. Recently, the basic trend has been to extend the rate

» independent theoriesptovinclude rate effects by adding on a creep term.
fhis 1eads to an uncoupled'or‘partioned theory, and many are now in
use:today in-finite element structural analysis‘codes. Most recently
with the recognition:that the rate independent and rate dependent in- E =

elastic deformations are not autonomous phenomenon, a number of "uni- —

fied" constitutive models have been developed and are still underg01ng

active development [9] Present day efforts include the extension of

classical plast1c1ty to predict rate dependent behav1or and the modifi-

cation of linear v1scoelast1city to model nonlinear material response e

"1[10] Many theories are available but none have shown clear superiority

over the others : modelling material behav1or over w1de ranges of

-talftheorv:of'plasticitv‘to develop;and:evaluate:the uniaxial




constitutive relations necessary to model the nonlinear behavior of
crystalline materials experiencing thermoelastic~plastic-creep. Among
the requirements for a éound constitutive theory for the media mention-
ed above are that it incorporate the ability to model transient teﬁ—.
pérature response; cyclic behavior including cyclic satufafion, the
change in strain hardening upon stress reversal, and the Bauschinger
effect; and rate dependence.

In fulfillment of these objectives, this thesis will p;oceed in
the followiﬁg manner. First, a brief literature review of the avail-
able theories is presented along with a discussion of the details of
the constitutive modei used in this research. Next, the development
of thé model is accomplished by derivation of the uniaxial theory in-
cluding experimental data requirements and computational considerétions.
Several theorgtical examples are presented élong with comparison to

experiments on several different metals at elevated temperature.







CHAPTER II
BACKGROUND

Present Status of Constitutive Modelling

.To characterize the structural response of any general three-di-
mensional body, one must satisfy mechanics (conservation of mass.and
momentum, and kinematics), thermodynamics, and constitution. Since
mechanics and thermodynamics are well established for most continua,
it becomes the physical characteristics or constitﬁtion of a body that
deterﬁines whether one can successfully analyze its structural re-
sponse. Furthermore, because of the widely varying material‘proper—
ties and environments that structural media are subjectéd fo, consti-
tutive modelling is usually festricted to specific types of media. An
all encompassing.model that works équally well fo: all materials is
simply not feasible. One such category of material response, and the
Ene that this research-will deal specifically with, is the elastic-
plastic-rate-dependent crystalline material at elevated temperature,

N

The major types of constitutive laws available to model the ma-

- terial behavior discussed above can be grouped into three categories,

microphénémenological, nonlinear.viscoelastic, and classical plastici-
ty. Also, thefe is an existing subdivision within the categories
labeled unified and uncoupled theories, where the two differ in their
approach to the treatment of rate independent and.rate dependent in-
elastic aeformation. The unified approach separates the total strain

as

€ =€ + eI + e, ' (1




' where ¢ represents the total strain and superscripts E; I, and T repre-

sent the elastic, inelastic, and thermal components respectively. Al-

te;natively, the uncoupled theories partition the inelastic strain into

plastic and creep components. This can be expressed as

€ = EE/+ EP + ec + eT, (2)

where superscripts P and C represent the rate independent ''plasticity"

and rate depgndent "creepf'strain terms respectively. Researchers like

Walker [9] and Krieg [11] question the partitioning as it has no under-
lying physical basis and does not account for creep and piasticity in-

teraction.

. "The uhcouplihg of inelastic behavior into rate independent and
rate dependent componénts is unsatisfactory to the material scientist
because it is not microbhysically justified {11]. Although many recent
unified theories have been proposed, they still are not yet proven to
be more successful overall than the uncoupled theories.

For example, Walker's theory [9] (considered one of the better
unified models) reproduces cyclic stress-sfrain behavior at elevated

temperatures very well. Unfortunately, the theoretical hysteresis loops

at smaller strain rates or lower temperatures are too square in compari-

son with the actual experimental loops. Thus, Walker's theory does
not characterize adequately the classical plasticity that is occurring
in this load-temperature range. Walker also proposes an extension to

include temperature depemndence, but no attempt has been made to model

transient temperature response [1l0]. His theory is restricted in its

S




use to an elevated temperature environment. The author does not want
to leave the impression that Walkef's theory is an inferior one as it
is not. This discuésioﬁ is simply to point out that the ﬁncoupled
theories are nof necessarily inferior to the unified ones.

As discussed below, present theories attempt to model these physi-
cal mechanisms in a variety of ways.

Microphenomenological theories. The mechanisms for micropheno-

menological theories are discussed;in detail by Allen [12]. These
theories represent an element of material called a polycrystal as be-
ing composed of a large number of randomly oriented monocrystals.
Statistical averages of the propérties of each monocrystal and their
interactions determine the behavior of the polycrystal [13]. Theée
crystalline materials form lattice structures that contain many im-
perfegtions called dislscations Which vary in density and location de-
pending upon the processing used in manufacturing the matérial. -Plas—
tic deformation occurs by slip on certain crystallographic planes and
is explained in terms of dislocation theory of plastic deformation.
For example, dislocation interaction explains how strain hardening can
occur in any crystal [14].

One example of a microphysically based constitutive law is an

‘elastic-viscoplastic theory based on two internal state variables by

Bodner, et al. {15). The authors state the constitutive equations

abilify to represent the principal features of cyclic loading behavior
including éoftening upon stress reversal, cyclic hardening or soften- j
ing, cyclic saturation, cyclic relaxation, and cyclic creep. One

limitation of the formulation though is that the computed stress-strain




curves are independent. of the strain amplitude and therefore too "flat"

or "square"

Another example is in the paper by Miller [16] on modelling of

cyclic plasticity with unified constitutive equations. He also recog—

nizes the shortcoming of many theories in predictlng hystere51s loops

which are "oversquare'' in comparison to observed experimental behav1or.

Improvement is accomplished by making the kinematic work-hardening z

coefficient depend on the back stress and the sign of ‘the nonelastic

strain term. Results compare favorably with that observed in 2024-T4

‘

aluminum alloy. Miller states his approach appears consistent with an

existing phvsical explanation in terms of annihilation of previously—
generated dislocation»loops upon reversals in the direction of dislo- - e
_cation‘motion. i

A theory that is similar in format to Miller's is by Krieg,

Swearengen, and Rohde [11]. The model uses two‘internal state variables

to reflect current microstructure and is based upon models for dislo-~

cation process in pure metals. It is an extension of an equation of ‘ =

...
»

state theory originally attributed to Kocks [17] where the inelastic

flow rule is taken to be a power function incorporating a kinematic jq

and isotropic internal variable.‘ They assume that all the net mechani-

cal effect of the complex dislocation processes can be contained by ’ :l

one or two readily measurable macroscopic variables. The theory can- ' _ ;)

£t
. Y

'not accurately:model cyclic hardening or softening behav1or and the

strain hardening behav1or is necessarily square in nature because of

e the[powerwlaw assumption,l Also, applications of the model over a w1de

e

."_range of homologous temperatures or,to‘alIOys in general is not_advised.




Nonlinear viscoelastic theories. Nonlinear viscoelastic or ther-

‘

modynamically based theories are usually distinguished by their single

integral or convoluted form. This type of constitutive model employs
the first and second laws of thermodynamiecs along with physical con-
stréiqfs to complete the formulation [12]. A detailed review of sey-
eral existing theories is presented ih both [10] and [18].

One of the more promising theories is credited to Walker {9,18].
It is a unified integral viscoplastic theory developed by modifying the
constitutive relation for a linear three parameter viscoelastic solid.
The theory contains clearly definéd material parameters, a rate depen-
dent equiliﬁrium stress, and a proposed multiaxial model. An impor-
tant shortcoming of Wélker's theory is its failure to model transient
temperature conditions, but Allen and Milly [10] conclude that his
theory is the best presently available for predicting cyclic response
at elevated temperatures under isothermal conditions.

Other nonlinear viscoelastic theories discussed by Walker [18] .
are by Cernochy and Krempl, Valanis, and Chaboche.

Classical plasticity theories. The type of constitutive law con-

sidered in this research is derived from classical incremental plas-
ticity. It is termed a macrophenomenological theory as it derives its
state variables purely from experimental results without direct
reference to the microstructure of the material. This type of consti-
tutive law can be defined as one that attempts to describe the elastic-
plastic behavior of a material based on properties obtained from a
single stress state and then 'use them to establish relationships be-

tween the general. stress and strain tensors [13]. Most incremental




pla;ticity theories have four major components: (1) a stress-elastic
strain relation, (2) a yield function describing the onsét of plastic
deformation, (3) a hardening rule which prescribes the étrain-hardening
of the material and the modification of the yield surface during plas-
tic flow, and (4) a floQ rule which defines the component of strain
that is plastic or nonrecoverable [19].

Research in this area ié voluminous. The inviscid plasticity is
well established while the extension to include rate and thermal ef-
fects is not. References [10,12] and [13) summarize some of the im-
portant research efforts in their field of study. Of the classical
plasticity theories reviewed in [10], the most promising onés belong
to Zienkiewicz and Cormeau, and Allen and Haisler. The former is a
rate dependent unified theory which allows fof nonassociative plas-
ticity and.sfrain éoftening>but does not model the Bauschinger effect
or temperature dependence.‘ The-latter is an extension of classical
plasticity to model both rate and thermal effects. It is a two‘state
variable uncoupled theory with clearly defined material parameters and
extension to multiaxial form. Still another example is a model pro-
posed by Poﬁov and Petersson [20,21]. Excellent agreement with experi-
ment is shown in the isothermal, rate independent case. Snyder and
Bathe [22] have proposed a modification to classical plésticity which
does model both rate and thermal effects in the monotonic load case
but is res#ricted to a_kinematic hardening rule. Allen [12] suggests
that the theory praposed by Yamada and Sakurai [23,24] may be ;he best.
for modelling the tyﬁe of behavior described herein. Temperature de-

pendence of material properties, a combined hardening rule, and an
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CHAPTER III
DEVELOPMENT OF THE MODEL

The author gives the following justifications for using the un-

coupled approach proposed by Allen and Haisler. One can partition

the total inelastic strain into components as long as their sum yields

the total nonrecoverable deformation without significant adverse ef-
fects [12]. The theory is able to model behavior over a wide range
of load and temperature up to at least one-half the melting point for
several metals. It is also one of oﬁlyva few to address transient
temperature conditions. Also, with the revised hardening law pre-
sented herein, the rate independent inelastic deformation is modeled
as well as or better than the unified theories reviewed. Reasonable

experimental data requirements are another strong point of this theory.

Derivation of the Constitutive Equations

The constitutive equations of the Allen and Haisler model are de-
rived in a uniaxial incremental form relating the total stress incre-
ment to the total strain increment. Development of the theory in this
form is a logical approach as it lends itself to much simpler evalua-
tion without iﬁtroducing unnecessary complications of a multiaxial
theory. Many components of the work required are much more easily done
in uniaxial form such as the computer code development and experi-

mental model verification.

As stated earlier, most classical plasticity theories have four
major components., First, there is a relation between stress and

elastic strain

PRECEDING PAGE BLANK NO’I“'Z.FI_LMED'
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0 = Ee& = E(eme —cCme ), (3)

or in incremental form

t t t
T
P_cC ()

P-AEC-AET) + AE(st—e - =€)

20 = EFFBE (he-ne
where ¢ is the uniaxial stress, E is the elastic modulus, .and € is the
uniaxial strain. Superscripts P, C, and T denote plastic, creep, and
fhermai components respectively while t denotes values at the start of
the load step, and t + At denotes values at the end of a load step.
Note thaf the elastic modulus is measured at the end of the step be-
cause the time step is finite rather than infinitesimal as described
by Allen [12]. A graphical decomposition of the total strain is shown
in Fig. 1. The term "zero time'" denotes a loading input short enough
to negate any time dependent deformation but long enough to disregard
inertiai effects (a few seconds for many metals) [12]. Converself,
the long time éurveicharacterizes.the rate dependent deformation. Re-
call that there is no physical basis for uncoupling the inelastic de-
formation, but it is valid as long as coupling effects are insignifi-
cant or thé uncoupling is done properly.

Secondly, a yield fuﬁction describes the onset of plastic deforma-

tion. A possible functional form, supported by experiment, is given

by
F(o-a) = K>(/deb , T) ‘ (5)

where o and K represent the center and radius of the yield surface re-

spectively, deP is the history of the equivalent uniaxial plastic
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strain and T is the temperature. Note that microphysically a is a state
&ariable cémbining the effects of the back and drag stresses while
de is a second state variable representing the dislocation arrange-
ment. This arrangement of dislocations and dislocation loops will be
discussed later as to their effect on reyield and'stréin hardening be-
havior upon reyield.

A h;rdening rule preécribes the strain hardening of the material

and the modification of the yield surface during plastic flow and can

be stated in a combined isotropic-kinematic form as
da = dp(o-a) (6)

Qhere‘du is a écalar. Lastly, if yielding does occur we ﬁeed fur—
ther iﬁformation concerning the rate of deformation to complete the
description of the material behévior. This information is provided by
the flow rule which defines the component of strain that is plastic ar

nonrecoverable and can be written as

P 3F
de” = dk—a? @)

where d)\ is a scalar determined from material data. Equation (7)

is called an associated flow rule because it is the less general case
c&ntaining the partial derivative of the yield function rafher than a
general plastic potential. It is also known as a normality condition
becaﬁse it can be interpreted as requiring the normality of the plas-
tie strain increment 'vector' to the yield surface in n stress di-

mensions [26].
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Differentiation of (5) is the first step in deriving the consti-

tutive equations and will yield

oF .- oF oK
3 do - % do 2K 3e d + 2K 3T dT. (8)

The above consistency condition requires that loading from a plastic
state must lead to another plastic state [27]. Substitution of (7)
into (4)

SOt pt ¢t 1H (9)

do = (de dxs— —de -de ) + dE(e - - =€

and then (9) into (8) yieldé

t t t

%g {E t+At(d dka —dec—deT) + dE(et—eP —eC -eT )}
9F 4 _ K P, 3K
- == do = 2K, de°  + 2Kz dT. (10)
9E
Solving for dA from above
t .t .t
dr ={ aF[ t+At(de dec—ds Y + dE(e —eP —ec —aT )1 - oF do
of s
2k g2 - xR aryy BE gtHALIE, (11)

—P oT ao ls}
J€

and substituting (11) into (4) yields

: t t t
do = EX ({ae-[2E B  (demde®-deT) + dE(e—e’ —& ~T )

3F 3K ~P 3K 3F_t+AtdF, . oF
- 35 da ZI(aE_P de” - 2K= BT dT]/G——E 30)fac
t t t
—dec - deT 1+ dE(et-eP —ec -eT ). (12)

Rearranging the last equation to obtain
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do = E¥(ae-acCde’) + dm(et-ef € e

t+At 3F JIF t+At

E 30 30 (de-de —dg )
- 3F  t+it 3F
.90 3o
LEHSE OF 3 dE(Et_EP L &
80
- §§_Et+At JF
30 30
eear or ‘BF do -zx—EP g’ -2x%¥ dT
+ E 35 | ] (13)
3F _t+At OF :
30 T 30

Using the normality condition (7) one can write

—P
t+At OF t+it de
-E 35 - -E a . (14)

Then equation (4) can be rewritten as

t t t
_tHAt de _do 1 _t¥it _..C . T t_p_C T
-E FrurT d (E (de-de -de”) + dE(e -~ =~e~ =" )],
(15)
-and equation (13) can alse be rewritten as
: +
6 do = E-TCF(de dsC—de )8 - Et+At OF SF gt e deCgel)
‘ 90 90
t t t t t t
+
#dE(ete’ —eC T ) - EFPR R A p(etet O e, e
» c aq
where
_P ’ ) .
oo 2F o 2Ka GNP - L xx 17

= 30 dx dx 3T dx

SR
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Rearrange above to obtain

t+At 3F OF _t+it

do = [Et+At _ 80830 ]‘(de—dgc—deT)
pttit 2E 5F 4 t ot .t
4 [dE - 30 50 ©F e P CF_ 1"
5 : (18)

Now make the assumption made by Hunsaker [28] that

(do ~ Cdeb) %g -0 (19)

which defines C as a scaling parameter requiring (do = CdeP) to be
perpendicular to the yield surface outer normal. The verification of

this assumption is discussed by Allen [29]. Rewrite equation (8)

P
F gL dar e +xXar (20)
3o a0 — ‘ aT
d€
and equate with (19) to obtain
. _P
caef BE_0F 45 2 9F 4o 4 ¥ av o+ xXoar.
A 30 ag 90 s oT

Also, substitute the normality condition (7) into (21) will give

3F 3F OF 3F ) 3K
CdA % -50— =35 do = o do + ZKEE_P de + 2K3T dT 2
or
_P
‘ SF oF _ _1 3F - OF da 3K 2de oK 3T
30 50 _ dx 30 30 dn T ZKBEP o T KT o (23)

o Using the relations in (23), equation (17) can now be rewritten as




6 =C=—

90 Bq dg do
where
oF
€= Sga:GaF - 5
dA 5 3o dxi 3o

Applying (7), the above becomes

OF OF | t+bt 3F OF

(24)

(25)

(26)

Physically, C is the slope of the uniaxial stress vs. equivalent

uniaxial plastic strain diagram during an isothermal load increment.

However, during a nonisothermal load step

3¢ ~P , 3¢ —p
dG——_PdE +ﬁ'dT—Cd€ + — dT
ac
or
Ldo L dodT _ o,
="ty -8 ¢
de 77 de

The above statement is required because the uniaxial stress is a func-

3c dt
3T —P

(27)

(28)

tion of both the plastic strain history and temperature during non-

isothermal loading.

Finally, substitute (24) and (28) into equation (18) to obtain

t+it 3F 3F _t+at
tHAL 30_3o

] (de—dec—deT)

do = [E
OF 3F | pt¥it OF OF

'
B 30 30 30 30

18
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Etﬂt%%ﬁ | t pt ¢t Tt
+ [dE - ] (e - -¢~ -e )
yr SF 3F t+it 3F IF
90 30 30 a0
t+At OF 3F 3o |
B 3530 aT
+ [ - ] dT. (29)
,££+Et+At3_F3_F

90 90 - 30 30

Now for the yield surface translation scalar, substitute (6) into

(8) and solve for dy as follows

oK oK

3F 3F v
o do - e [du(o=-a)] = 2K 3EP + 2K 3T dT (30)
3F _3F . .. & ~P . 3K
du 5o (og-a) = 59 do 2K QEP de 2K 3T dT (31)
%g do - 2K %%? det - 2K %%-dT
du = . (32)

oF
G (o-a)

An outline for the uniaxial computer program utilizing the above

equations is contained in the Appendix.

Yield Function
The von Mises yield criterion is used herein an can be written in

terms of principal stresses o, as

;007 + (0,007 1= & (33)

F(oi) = %{(01—02)2 + (o 1

where K represents the current yield surface size. It has been shown

to be in excellent agreement with experiment for many ductile metals,
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for example aluminum, cold-worked mild steel, medium carbon and alloy
steels [2]. The von Mises yield criterion can be written in uniaxial

form (with the use of a combined isotropic-~kinematic hardening law) as

F(o-a) = (o-a)° = K° (34)

where u is the figld surface center.

Note that the aséumed yield function is dependent only on the
second deviatoric stress invarient, i.e., independent of hydrostatic
stress and with the assumptioﬁ of initially isotropic materials. Also,
the temperature dependence is handled through thermally dependent ma-
terial properties and is isotropic in nature, but there is no rate de-

pendence in this form of the yield function.

Hardening Rule

Laws governing the influence of plastic deformation on the yield
surface and strain hardening of a material are called hardening rules.
A significant amount of research has been done in this area, and there
are many different rules in use.

Consider Fig. 2 as a comparison of several hardening rules for a
given isothermal load history. Although isotropic hardening will
successfully mbdel‘loading histories in which stress reversals do not
occur, it is not satisfactory to model the Bauschinger effect or cyclic
phenomenon. Conversely, kinematic hardening will model the Bauschinger
effeét, but.neither hardening rulerpredicts the increased strain hard-
ening upon reyield as their ''square' hysteris loop predictions show.

Oak Ridge (ORNL) [30] and combined hardening rules predict overall

‘a 3
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response somewhat better. Hunsaker [13] suggests the mechanical sub-
layer model for loadings in which stress reversals may occur. Of ali
the plasticity models displayed in Fig. 2, the multisurface approach
of Petersson and Popov [20,21] clearly gives the best theoretical re-~
presentation of the experiment.

Thus, if one is interested in the exact stress-strain behavior
over the entire load history and not just an end result, a hardening
law which accounts for increaéed strain hardening upon reyield becomes
a necessity.

At temperatures below roughly one-half the melting point for many
metals, a change of loading direction in stress-spaée plays a very im-
portant role.‘ In many hardening rules emphasis is placed on how to
describe tﬁe evolution of the yield surface while little has been done
as to how the plastic modulus is affected by stress réversals in cyclic
loading [31]. Above this temperature-fhe stress-strain behavior is
controlled by rate dependent deformation and experimentally observed
hysteresis loops are relatively 'square". Thus the simulation of the
strain hardening is not as critical.

Many authors mention the "oversquareness' of predicted hyteresis
loops. Among these are Miller [16], Dafalias and‘Popov (31], Walker
(9], and Popov and Peterssom [20,21]. It seems that this phenomenon
is of some interest to the researchers in this field. Miller improves
his unified timé—dépendent constitutive equations by making the
kinematic work-hardening coefficient a function of the back stress and
the sign of the nonelastic strain rate and shows favorable agreement

with that observed in 2024-T4 aluminum alloy. Another approach by
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et

oo

1
e




23

Dafalias and Popov which was extended by Petersson and Popov involves
enclosing the initial yield surface within a larger bounding s;rféce.
Both surfaces are allo@ed to trapslate and deform in streés space,

and the proximity of the two détermines the plastic moduli. Two other
hardening rules which provide for a high straih—hardening rate upon
reyielding are the Mroz and mechanical sublayer modéls [13].

Sincé Miller's theory [16] is microphenomenologically based, he
seeks to make his model consistent with.existing‘microphysical explana-
tions. He states that dislocatiéns moving in a given direction will
form dislocation loops by interaction with precipitate particles, and
when the direction of dislocation motion is reversed a dislocation can
annihilate a nearby loop which was previously left behind. A relative-
ly rapid change of strain in the nature of the stress field encountered
by fhe reversing dislocation would result and lead to a large value
of the slope do/de. As the strain continues to revérse, dislocations
will no longer be encountering such oppositely-signed loops and do/de
will gradually decrease. Miller models this by associating the direc-
tionality of the dislocation debris with the back stress R and the
difection of current dislocation motion with the sign of the difference
o/E-R. A similar argument is given by Polakowski and Ripling [14].

Aithough the combined isotropic-kinematic hardening rule used by
Allen and Haisler [25] cannot represent the high rate of strain har-
dening accompanying stress reversals which causé yielding, it does
account for thermally dependent material properties and the Bauschinger
effect. Thus it was felt that with some modifications, all cyclic

characteristics could be modeled. To summarize, the two important
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shortcomings of their hardening law in representing cyclic behavior
are its failure to account for the high rate of strain hardening upon
reyielding after a stress reversal aﬁd cyclic saturation.

In terms of actual modelling of the two shortcomings discussed
above, several revisions and improvements have been added to the model.
First as discussed in regards to experiméntal data requirements, ad-
ditional stress-strain inbut is required to characterize various strain
hardening rates. Metals like aluminum exhibit a similar strain harden-
ing behavior for reyield after the initial yield. Conversely, stain-
less steel can exhibit two different forms of hardening behavior even
after several loading cycles. A program flag controls which input
stress-strain curve to use to generate hardening parameters depending
on the material being modeled and thg yield (load) history. Secondly,
the hardening ratio was allowed to be a functiom of plastic stréin and
in some cases the direction of loading. This aliows modelling of cy-
clic saturation;

More specifically, the hardening rule revisions can be explained
in two different discussions. The first deals with strain hardening
upon reyiela and the second with cyclic saturation.

Use of theﬁcombined hardening law in Allen and Haisler [ 25],
predicts cyclic behavior like that‘shown in Fig. 3. The hardening
ratio, B is the ratio of isotropic to kinematic hardening. Setting
B=0 constitutes a kinematic hardening law where the yield surface re-
tains it iﬁitial size, shape, and orientation thus simply tramslating
in principal stress space. Isotropic hardenigg, B=1, means that during

plastic flow the yield surface expands uniformly about the origin and

=
B
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never translatés. Using a value for the hardening ratio such as

-0 < B £ 1 constitutes a combined hardening rule where the field surface
is allowed to both expand aﬁd t;aﬁslate. |

Notice in Fig. 3 that the reyielded strain hardening behavior is

- "squared-off" as discussed‘above; The revised model‘has the ability

to reproduce strain hardéning beﬁ&ﬁior that‘is’dependent on direétion

. or history of yielding. ‘This is observed in experiment as the high .
rate-of strain hardening upon stress reversal in a cyclic load test.
In other words, the material demonstrates two distinct forms of beha-
vior as shown in Fig. 4. 1Initial strain hardening character is usual-
ly quite "sharp" in comparison with the rounded shape of the reﬁerse
loading curve. Popov and Petersson [21] found it essential in dealing
with cyclic steel behavior to use two stress-stréin curves as input.
The first is from a monotonic test on virgin material and the second is
from a hysteresis loop which develops after several‘loading cycles.

For a large numbervof common metals, a cyclic load history 1eads

to a limiting périodic response in which the stress~strain curve for
each consecutive cycle is the éame. Tﬁis is termed cyclic saturation
and is illustrated in‘Fig.MS [32]. Capability to portray this pheno-
menon is nét contained in many common hardening laws. With the addi-
tion of a hardeningrrafio that is a function of plastic strain and

in some caseé difeqpipn‘6f>loading into thg existing model, this

‘ipheﬁbmenon can;se_godéied ﬁﬁéh mofe succeséfuiiy than a combined har-

'~ ‘dening rule with a constant-hardening ratio.

S




Fig., 4 Typical experimental results showing difference
in first and second quarter cycle response
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The reader is referred to the sections on experimental data re-
quirements and theoretical examples for more details concerning the

T - above discussion.

~ o Creep Strain Increment
| The creep strain is defined as the uncoupled rate dependent inf
elasticideformation in the present theory. Several methods are avail-
able to characterize this strain component. Traditional characteriza-
L | tion has been based on the use of standard creep tests run at constant
o o stress and temperature."Creep strain (or creep strain rate) is writ-
- ‘ | ten as a function of time, stress, and temperature through the use of
pewer law fnnctions, exponentials, hyperbolic functions, etc. obtained
by appropriate curve fitting techniques. Additional ad hoc creep
hardening rules have been devised to model rate dependent behavior
- ’ during reverse and cyclic loading. Oak Ridge National Laboratory
used such models‘for 304 stainless steel with some success [33]. 1In
many cases it isrmore expedient to use tabulated creep strain data as
opposed to curve‘fitted deta; although this requires numerical inter-
polatinn between a eet‘ot isothermal, constant stress creep curves.

In the preeent research, an alternate approach has‘been taken
}? >it ' : involving nyeteresiehlpeps and etress relaxation tests at various
e ‘ i¥'> R temperetutes; Flgv 6 showe a typlcal set of these tests and details

=‘how the rate dependent deformatlon is extracted from them. ) » ;

A reference temperature hystere51s 1oop 1s deflned at a tempera—

7 Vrate 1ndependent plastlc stralns only ‘ Above this temperature, the'

e TR A
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rate dependent inelastic strain (creep) dominates. Experimentally,

Bradley and Haisler [34,35] have shown for Hastelloy-X that such an
uncoupling appears feasible:
Micromechanical considerations suggest a model for the rate de-

pendent inelastic strain of the form

éC = (UT‘OQ_)H s (35)

where éc represents the rate dependent inelastic strain rate, 2is the
back stress, KO is the drag stress, and n is a constant. The back
stress, drag stress, and exponent n are generally functions of tempera-
ture and strain. However, for some materials a good assumption is
that khe drag stress and n are constant at sufficiently high tempera-
tures.

At the tips of the hysteresis loops, the stress and back stress
have reached maximum values omax and Qmax respectively. If we lét ol
and 9, denote the maximum stress values at two different strain rates

€ and éZ’ then the value of n can be computed as

n = 1n<él/é2)/1n[(ol-amax)/(oz-nmax)] (36)

where Qmax is assumed to be constant between El and €ye Similarly,

the constant Kocan be determined by rewriting (35) in the form

| . _l/ ,
K°= (ol-Qmax)sl n . } (37) }

It should be noted that a number of the unified models reviewed

in Chapter II (for example, Walker's [9]) utilized similar functional




»forms and experimental characﬁerizations of the inelastic strain com-
ponent compared to that used in this reseafch for rate dependent in-
elastic strain. Althbugh the funétional forms used to model the uni-
fied inelastic strain give exéellent agreement at high temperature
(where rate dependence dominates), they give overly square stress-
strain response at low temperature (wﬁere rate independent plasficity
dominates). This is.due ﬁrimarily to the failure of the present uni-
fied models to account properly for rate independent behaviecr. In
the present research, this difficulty is hopefully overcome by model-
ling the rate dependent‘inelastic and rate independent inelastic strain
more accurately with appropriate definition of a temperature range

wheré each is applicable.

Experimentai Data Requirements

One of the requirements for a good constitutive model is that is
have reasonable experimental data requirements. Characterization of
model parameters éhould follow easily from Standard tests.

All experimental data tésts afe performed at sufficient levels of
the primary variables (strain and temperature) in order to bracket
their magnitudes in the particular test of interest. Consideration

is also given to allow accurate linear interpolation between tempera-

tures.
The first set of tests required is uniaxial isothermal single cy-
cle reverse loading tests like those shown in Fig. 7. These tests

are performed at fast enough strain rates so that the rate dependent

component of deformation is negligible. Characterization of both

L2
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initial and subsequent strain hardening behavior is the reason for the

reverse loading tests. Piecewise linear representations of the data
obtained from experiment are input into the model with the number of

linear segments used depending on the accuracy desired.

'

For example as shown in Fig. 7 at T=Tl, the initial elastic-

plastic behavior is characterized by curve ABC. Similarly the subse-

quent elastic-plastic behavior is characterized by curve DE. The
piecwise linear representations become curve ABC and D'E' where D'E'
was obtained by shifting curve DE to the yield pcint B. A similar

procedure is performed for all other temperatures as required. Note

that if the difference in strain hardening behavior is not considered

critical, (the difference between curves ABC and DE is insignificant)

only curves ABC and AFG would be required input.

If the hardening ratio is constant with respect to plastic strain,

it can also be determined from the above tests using the relation

6. - (20 -0 )
z J_© (38)

= )
‘ (200 bcy)

where stress values are defined in Fig. 8 for each temperature. If
B is a function of plastic strain as well as temperature, several
cycles of stress-strain data would be required to characterize this
parameter. Typical input curves for the hardeﬁing ratio are alsp

shown in Fig. 8.

A plecewise linear description of the temperature dependence of

the coefficient of thermal expansion is also required if it varies

significantly for the temperature range of interest.

34
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Experimeptel characterizatien‘of the rate dependent terms is the
‘eame‘ae foeralker's model [9]. Stea&y state hysteresis loops at dif-
ferent strain rates uﬁder fully reversed strain controlled conditions
as shown previously in Fig. 6 (p. 30) are required. These are all per-
formed until saterated values are established. Also required are
stress drop creep and relaxation tests from initial point on a steady
state hysteresis loop. All constants are a function of temperature
and require the above tests to be perfdrmed at all temperatures of in-~
terest unless interpolation is used.

For comparative purposes, a brief description of the experimental
data requirements for several other constitutive models is presented.

*The first tests required by Krieg, et al. [1l] are stress-drop
tests during steady state creep. This means that a fraction of the
applied stress is removed rapidly, and then this reduced stress.is
held constant until the accrued strainris sufficient to permit the
strain rate immediately after the drop to be obtained by extrapolation.
The stress is then increased to its original value to re-establish
steady state creep. This procedure allows the response of a speciman

to drop tests of various magnitudes to be obtained from a single creep
stress. For full characterization, this test procedure must be re-
peated at several nominal creep stress levels and temperatures.
Steady state and‘primary creep data must also be utilized.

Miller [16] states that with a general purpose constitutive
equation a fairly wide variety ef data is required. Calculation of
a complete set of material constants for an alloy on which hysteresis

loop data are available can be a very lengthy task with a substantial

P
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amount of experimentation required for his model.

The characterization of model parameters for the theory of Bodner,
et al. [15] requires two monotomic stress-strain curves at different
steady strain rates. Fof cyeclic loading an additional constant is
required, but determination of that constant is unclear in their pre-

sentation.

Construction of Yield Surface Size and Stress vs. Equivalent Uniaxial
Plastic Strain Diagrams

Calculation of the yield surface size and equivalent uniaxial

. X . = P ..
stress is accomplished by constructing K and ¢ vs. € diagrams and

interpolating on these diagrams at known values of EP and T. From a

T

piecewise linear representation of a "zero time" stress-strain curve,

4

the equivalent uniaxial plastic strain is given by

1 X

F.=¢ -0a /E (39)
i N ,

The yield surface size and equivalent uniaxial stress are given by

~
Il

o, + B(cxi-cy) (40)

LY

o, =g - (41)

where Oy represents the yield stress.
For the revised hardening law, two each of the above diagrams are
required. The first diagrams for each case (K and E) will be labeled

base diagram and are simply the functions calculated from equations

(39) - (41) for the input stress-~strain curves. These change only if




the hardening ratio is a functibn of plastic strain. The second set
- or global diagrams evolve throughouf the solution process. They are
ini;ialized to equal the bése‘diagrams‘but afe mo&ified each time a
load reversal which causes yielding occurs. The modifiqation process-

consists of linking the base curves to the global curves at the values

of EP, K and 3-c§rresponding ﬁo the yield stress of interest. Input-
ting two stress-strain curves at each temperature comes into play as f]
their exists for example two K vs. EP base diagrams at eéch input tem~ -
perature. Factors such as type of material and load history determine J
which base curve is linked to the global diagram. All program inter- i

polation for calculation of model parameters is done on the global ;j

diagrams.

The above procedure is bést explained by a figﬁrative example.
Using Fig. 7 (p. 33) as the inpuﬁ stress-strain curves, the K vs. EP —]
base diagram for a constant hardening ratio is shown at the top of i
Fig. 9. Recall that the "a" curves are the ones that result from re-

verse yielding while the "b" curves are from the virgin stress-strain

U

curves. Note that the Allen and Haisler model uses only the '"b"
o P _ P .
curves. A reverse yielding occurs at ¢ = ¢ , causing the '"b'" curves
to be linked to the global diagram as shown at the bottom of Fig. 9.
’
When another reverse yielding takes place, either the "a'" or "b" curves

are linked to the global diagram at that particular value of EP. A

similar procedure is carried out for the global ¢ vs. EP diagram.

Computational Considerations

For completeness of the theoretical presentation, the gradients, f]

transition step, thermal strain increment, and elastic strain
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increment are all discussed below with regards to computational consi-
derations. They are also presented by Allen [36].
Gradients. Linear interpolation is performed to compute values

between input temperatures. The yield surface temperature gradient

‘can be obtained by

3T —

D KL
T, - T, (42)

where the subscripts H and L denote the values of a particular variable

for the temperatures above and below the current temperature T.

Similarly
o, - o
d0 _ H L :
3T T T, - 1 (43)

. —— __P .
where the stress values are obtained from the ¢ vs. ¢ diagram. The

slope 6f the K vs,. EP diagram can be obtained by

(T, - T)
3K K H
5 = =) - =) ) w7 (44)
e e ;zP . oe L Ty = Tp)
and the slope of the ¢ vs. e diagram by
ooy D |
B' = (H"), - (W), - @) ] ?E;—:-sz . (45)

Transiticn step. Special treatment must be given to the transi-

tion step from elastic to elastic-plastic behavior. The portion of
the assumed elastic stress increment do which will cause yielding

is fdo and the strain increment to bring the total strain to the

et A,
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- yield surface is nde. Thus for the transition step, the stress and

strain status are modified to become

o+ 0+ zdo ' (46)
£ >~ ¢ + nde 47)
where
= -B + BZ-AAC (48)
2A
A = dodo )
B = 2(0-a)do (49)
C = (o-a)(o-a) - (K-TBTy2
t ~  _t+rt EF -
no= g + tdo - E £ (50)
' Et+At dEE

The above equations are presented here for completeness of the theory.

" A full derivation of them is given by Allen [12].

Thermal and elastic strain increments. The thermal strain incre-

ment is given by [36]

T t+At t '
de” = o (th - TR) - aT(Ttl - TR), (51)

t+At t s s .
where c and @, are the coefficients of thermal expansion at the

beginning and end of a load step respectively, T¢ and T are the
‘ ' 1 2
temperatures at the beginning and end of a load step respectively,

and TR is the reference temperature for the unstrained state.




The elastic strain increment is calculated by [36] -

1
t t t
deE = Et+At {dc-dE(et—eP —sc —eT )} . ‘ (52)

Extension to Multiaxial Theory

The approach used to derive the uniaxial constitutive equations
makes it very simple to extend them to the multiakial case. For exam-
ple, equation (29) could be simplified comsiderably by, for instance,
dividing out terms‘like dF/30. This is not done, however, to retain
generality and ease of éxtension to the multiaxialvcase. To convert
equation (29) to a three dimensional form simply let uniaxial values
of stress and strain become the respective stress and strain fensors.
-Recﬁil the yield function is stated in‘terms of principal stresses in
equation (33). The general elastic constitutive matrix is then sub-
stituted for the elastic mo&ulus.

Gradients afe still determined from uniaxial input stress-strain
data, in fact the only additional experimental data required is

Poisson's ratio. The equivalent uniaxial plastic strain is

-2 _ 2 P P
de 3 deij dEij | (53)

in tensor notation. In engineering notation this equation can be
written as

—P 2 P P P P2 P P.2
de” = {9[(dex - dey) + (dey - dsz) + (deZ - dsx)

P .2 P .2 P . 2..%
+ 6(dexy) +6(de )" + 6(dayz) 11°. ‘ (54)
A full derivation of the multiaxial theory is comtained in

reference [12].
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_ CHAPTER IV
EVALUATION OF THE MODEL

Evaluation of the constitutive model detailed in this thesis is
now performed. A section on theoretical modél»capabilities is pre~

sented followed by evaluation againét experimentt

Theoretical Model Capabilities

Several examples of the capabilities‘of fhe model proposed by’
Allen and Haisler are given in referénces [36] for the uniaxial case
and [12] for the multiaxial case. The purpoée of the following
examples is to demonstrate the improvements in the revised model by
using theoretical illustrations of experimentally observed behavior.

Example 1 ~ Change of strain hardening with stress reversal. The

revised model has the ability to reproduce strain hardening behavior
that is dependent on direction of‘yielding. Fig. 10 illustrates the
input stress-strain curves for a theoretical single cycle reverse
load test. The input can be taken from eithef first or saturated
cycle data. On the iﬁput diég;am curve B represents the initial strain
hardening behavior while curve A represents the high rate of strain
hardening‘seen upon stress reversal. If a single cycle reverse load
test is performed with thié theoretical data, the results will be
similar to those shown as output in Fig. 10. The revised model using
curves A and B is a much more realistic representation of actually
observed experimental behavior for many metals than the combined

hardening rule of Allen and Haisler. Even the revised model
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‘representation using only curve B is an improvement over existing

hardening rules which "square-off" the behavior upon reyield.

Example 2 - Cyclic saturation. A hypothetical fully reversed .

cyclic strain history of + 0.25% strain was considered using four
different.values‘for the hardening ratio. The values used are shown
in Fig. 11 following the discussion on hardening rules in Chapter III.
An allowance for cyclic saturation is made by letting B be a function
of plastic strain. This corresponds physically to allowing the yield
surface to first translate and expand and then gradually saturate to
a constant size as observed in experiment. Input stress—strain data
is the same as‘the first one-quarter cycle input.

.The results for isotropic and kinematic hardening are shown in
Fig. 12. Kinematic hardening will model the limiting periodic re-
sponse, but there is no cyclic hardening of the material in achieving
the saturated hysteresis loop. Conversely, isotropic hardening pre-
dicts that the material will eventually cycle to a limiting.purely
elastic response as the yield surface expands without bound. This
same behavior is also predicted by a combined hardening law using a
constant hardening ratio. It takes somewhat longer to cycle to the
elastic response because of the component of kiﬁematic hardening
presént. This is shown in Fig. 13.

Successful modelling of cyclic saturation is accomplished by
lefting-the hardening‘ratio in the éombined hardening law be a function
of plastic strain. For this example, the linear relationship shown in
Fig. ll‘was assumed with results as shown in Fig. 13. Both the cyclic

hardening and limiting periodic responses are depicted.
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Example 3 - Cyclic thermomechanical loading. This example is

similar to one in reference [25] but is still applicable here to show
the increased capabilities of the revised model in predicting the
strain hardening behavior and also in reiterating its nonisothermal
aspects. Depicted in Fig. 14 are the input stress-strain curves and
thermomechanical load history for a hypothetical test. Note that
these curves do not include the capacity for variable hardening in
order to maintain clarity of the example. The hardening ratio is
a constant one-half.
Results from the constitutive model are shown in Fig. 15 where
ti in this figure corresponds to ti in Fig. 14. Modulus, strain har-
deniné, and yield surface size changes with temperature are all shown.
It is also inLeresting to look at the resulting yield surface
size vs. plastic strain diagram for this example also shown in Fig. 151
As discussed previously in constructionnof these diagrams, the curves
are modified everytime there is a stress reversal which causes yield.
This physically represents the rounded shape of the stress-strain curve
after reverse yielding seén in experiment. In terms of modelling, this
correspbnds to "linking" the original K vs. EP curves onto the current
global diagram also explained in the section on construction of these
diagrams. The squares in Fig. 15 point out where this process takes

place each time. The curves at each temperature are modified for

linear interpolation purposes.
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Comparison with Experiment

As discussed earlier, characteristiés of metals such as the high
rate of strain hardening upon yield reversal are much more pronounced
at high strain rates and temperatures below one-half the melting point.
Modelling of this phenomenon is less critical at more elevated tem-
peratures where plastic deformation is more fully rate controlled.
More importantly, there is an intermediate temperature range where
the coupling of plasticity and rate effects is the most critical test
of the constitutive model. To evaluate the models capabilities’in all
of these environments, specific areas of testing are: (1) elevated
temperature tests that evaluate the rate independent capabilities of
the .model, (2) cyclic load tests that evaluate the modelling of the
Bauschinger effect, the change in strain hardening upon stress reversal,
yvield surface evolution, and cyclic saturation, (3) transient tempera-
tures tests that evaluate the modelling of thermally dependent material
properties, (4) high temperature tests that evaluate the rate dependent
capabilities of the model, and (5) thermoelastic-plastic-creep tests
that evaluate the capabilities in the intermediate temperature range.

The high temperature materials testing laboratory in the mechani-
cal engineering department of Texas A&M University was used to rumn all
tests. A Mechanical Testing Systems (MTS) machine along with an in-
duction heating coils and generator, optical and thermocouple type
temperature controllers, high temperature tension-compression grips,
a high temperature diametral strain extensometer, and constant stress
creep frames fully outfitted for high temperature testing are the main

components available in this 1lab.

M
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Cyclic thermomechanical load test on 5086 aluminum alloy. The

first experimental evaluation is for a thermomechanical load history
applied to a 5086 aluminum alloy. This test is very similar to Exam-'
ple 3. Fig. 16 shows the results of comparing the Allen and Haisler
model using several different constant hardening ratios to experiment.
One can observe both of the shortcomings of the model discussed earlier.
The theoretical strain hardening behavior upon reyield is much too
flat or square and the cyclic hardening predictions are inadequate.

By inputting a second stress strain curve to characterize the more
rounded strain hardening behavior and making ﬁhe hardening ratio a
function of plastic strain as in the revised model, this experiment
can bé modeled Qery well. The actual function of plastic strain used
for 8 is that B=0.45 (constant) for the first quarter cycle-and since
the isotropic component of the yield surface saturated very quickly

in the observed experimental results, the second quarter cycle was
treated as being kinematic in nature. These results are shown in

Fig. 17.

Cyclic loading of 304 stainless stéel at 1000°F. Several other

model features are demonstrated by this test. As seen in Fig. 18,
the comﬁressive strain hardening behavior in the first cycle is more
rounded in shape than the tensile behavior. It 1is believed that the
same behavior would be seen on the first and second quarter cycles }
1f compression preceded tension. Unlike the previous test on aluminum,
this difference seems to alternate throughout all four cycles pre-
sented in Fig. 18. Thus one must alternate between first quarter and :

second quarter cycle input stress-strain data to model this test well.
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One possible explanation for this altermating strain hardening behavior
could be that the initial yield sets up an asymmetric microstructure.
This phenomenon could also be explained by reasoning that there is

less resistance to grain boundary sliding in tension as compared to

' compression. It is clear that a similar test needs to be performed

with the initial yield in compression and then alternating tension and
compression.

Next, the ability to vary the hardening ratio between alternating
quarter cycles is demonstrated. In addition, Fig. 19 shows the results
of using fourth cycle data as input. Both Fig. 18 and Fig. 19 show
good correlation of the model with experiment. An interesting’obser—
vation is that the elastic modulus during unloading decreases slight-
ly in the experimental results. This is not taken into account by
the constitutive model and is the reason for most bf the discrepancy
between experiment and model predictionms. |

Cyclic saturation of hastelloy-X. 1In Chapter 3, there was a dis-

cussion concerning cyclic saturation. Recall that cyclic saturation
is the limiting periodic responsé in which the stress-strain curve for
each consecutive cycle is the same as shown in Fig. 5‘(p. 28). Al-
though most materials show a gradual hardening during this saturation
process, some materials may cyclically soften. Microphysically this
corresponds to the movement of dislocations from a random orientation
into a cell structure which stabilizes their movement. This results
in the limiting response of the material. At more elevated tempera-
tures, the satufation effect naturally becomes faster as the>mobility

of the dislocation increases with increasing temperature. Hastelloy-X




58

CYCLE NC. 1 . CYCLE NO. 2
L einie [levil
325364 306053
Fimeric B 206003
12290 1CTD0-
5
' :
[ o I o
£ E
& ‘sa'
r 7
p "HEsT 5 100873
H
* %
- 20200 ~ 2100
BYE - 30095
| Exp —— -
-uozned Model ~43630+
-£3m004 -SOU0e
1 - 1 r v r r r v T T
-0, 465 0.%0 2.uns 2.0 -0.008  -3.002  0.091  0.004 0,907 0.010 B8.013
STr&IN TIN/IHE ; STRAIN I8/
CYCLE NO, 3 CYCLE NO. 4
S v 502394
323304
500009
35000
mad ] '
23566
102234
¢ 0034
5
; :
) n H n
!
H ‘
’ [
195294 $ -i0000
1 4
5
H
-20000
207304
20000
=20200
-4G0504
[LLLTE
-SCOOO‘ T T H T T T
£.600 D.003  0.008  3.008 L.z 005 0.018
f ARt STARIN Hnsim

T T 3 T T
-0 032 2,001 0.c34 0.007 g oo .03
STRRIN (IN/INE

Flg. 19 Comparison of model and experiment for 304 stainless
steel at 1000°F using fourth cycle data as input. A hardening
ratio of 0.15 in tension and 0.28 in compression was used




. 59

displays cyclic saturation as shown in Figs. 20-25. These curves are

actual experimental results of load vé. diameter éhange from the MTS
machine. The abrupt drops in stress at various points are not dﬁe to
_ /

machine problems but are rather due to dynamic strain aging of the
material. |

The center diagraﬁ in Fig. 20 shows the cyclic saturation dis-
cussed above. Uﬁiaxial specimens were cycled under strain control
(diametral strain) between equal tension and compression strain ranges
until saturation occurred. In order to observe strain rate effects,
most tests were run at three rates corresponding to test fimes‘of 10,
30, and 300 seconds per‘quarter cycle. During the test the diameter
change rate was constant so that actual axial strain rate was variable
during the ;ycle; however, the above test times correspond to average

3 3,67 x 107%, and 3.67 X 107°

axial strain rates of 1.1 X 10
in/in/sec. These rates were chosen because they are typical‘of.strain
rates seen under normal operating conditions of hot gas turbines. No-
tice that at room temperature, the rate dependent inelastic strain

is negligible as the hysteresis loops do not change with different
diameter change rates. Fig. 21 and Fig. 22 show the results for the
same strain history at 500°F and 900°F, respectively. To define fhe
rate dependent inelastic strain, a reference hysteresis loop is
utlized as was outlined in Chapter 3. Comparing Fiés. 22 and 23,

it is seen that rate dependence of the saturated hysteresis loops is

insignificant below 900°F for the rates comsidered. Consequently,

the reference temperature is chosen as 900°F.
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An interesting phenoﬁenon most clearly evidenf in Fig. 21 is the
discontinuities or serrations seen in the curves. This is known as dy-
namic strain aging and is associated with interactions between moving
dislocations and solute atoms [37].. Dynamic strain aging is both tem-
perature and strain rate dependent.

At 1200°F, thq rate dependent inelastic strain is no longer
negligible. Fig. 23 shows the somewhat faster saturation and more
"square'" shape of the hysteresis loops. These effects are even more
pronounced at 1400°F and 1600°F as depicted in Fig. 24 and Fig. 25.

At these elevated temperatures the rate dependence dominates and can
be modelled very well with an equation like equation (35). ‘The
hysterésis loops are quite square in nafure, and a high rate of strain
hardening upon stress reversal is not seen. A critical test of a
constitutive theory would be in modelling the‘béhavior in Fig. 23
where both rate iﬁdependent plasticity and rate dependent creep are
important.

Theoreticalimodelling of cyclic saturation of hastelloy—X was
performed for the room temperature case. The results are shown in
Fig. 26. Experimental stress-strain data is shown only for the first
on;-half cycle and the last (saturated) cycle. The model results
depict the gradual saturation response as well as the limiting re-
sponse. A hardening ratio of B = —0.3755P + 0.075 was used in tension
and B = -O.SE? + 0.10 was used in compression. Notice that when the
model predictions approach saturation, some fluctuation is seen on the
compression side. This is thought to be due to increasing numerical

error at this point as no equilibrium interations are performed. Most
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of the difference in experiment and theory is due to difficulty in
) modeling of the second quarter cycle, otherwise the model predictions

are quite good.

68

Lol

; . L Loy R C

U P

sty e s e






69

CHAPTER V
CONCLUSIONS

An uncoupled, incremental constitutive model for elastic-plastic
behavior of metals at elevated temperatures has been presented. Revi-
sions to the combined kinematic-isotropic hardening rule allow for
much improved modelling of cyclic phenomenon. Also, an alternative ap-
proach to characterizing the rate dependent inelastic deformation has
been proposed.

Successful evaluation of the constitutive model against experi-
ment has been accomplished for a limited range of tests. The
) Bauschinger effect, changé in strain hardening upon stress reversal,
yield surface evolution, and cyclic saturation are all modeled well
for the isothermal, rate independent case at elevated.temperature.
Unfortunately, no comparison of the theory to experiment have been
performed at this time for the load and temperature ranges where rate
dependence is a significant factor. The need to utilize an improved
model like that presented herein depends on the application. For
example, if the application is to life or fatigue predictions, then
the detailed modelling of saturation and strain hardening observed at
low temperatures may not be of utmost importance. The saturated
hysteresis ioop may be adequate to define long term fatigue response.
Conversely, for low cycle applications, many researchers in this field
are concerned with exact hysteresis loop predictions and the evolution

to saturation. In this case, the improved model has important




.applications. Finally, in regards to the rate dependence
experimental results seem to indicate that the uncoupling
Chapter 3 gives acceptable predictions, but further tests

to verify the model.
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APPENDIX

COMPUTER PROGRAM OUTLINE

The following outline describes a basic flowchart of the uniaxial

constitutive equations for a given total strain increment. Subincre-
mentation (forward integration) with no equilibrium iterations is the
so;ution technique used. Note that in the setup of any problem, the
yield surface size and equivalent uniaxial stress vs. plastic strain
diagrams are initialized using the first set of input stress-strain

curves.

A. Set up subincrementation on strain, temperature, and time incre-
ments.

B. ‘Compute elastic ﬁodulus and the change in the elastic modulus due
to temperature increment. Linearlly interpolate between input
values if necessary.

C. Compute thermal strain increment. Linear interpolation may be

necessary to obtain thermal expansion coefficient. [equation (51)]

D. Compute creep strain increment based on stress at beginning of
step and temperature at end of step. [CHAPTER III - Creep
strain increment]

E. Compute trial stress increment assuming elastic behavior. Add
this to the stress at beginning of step to obtain total stress.

F; Check for yielding
1. Compute yield function. [equation (34)]

2. Compute yield surface size for current value of equivalent
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uniaxial plastic strain at temperatures at start and end of

load step.

Compare yield function value with current yield surface size.

a. If elastic, go to step N'.

b. If yielded and last step was elastic-plastic go to step J.

c. If yielded and last step was elastic, go to step G.

Update stress and strain to yielded portion for tramsition step.

[equations (46) and (47)]

1.

Subtract assumed elastic stress increment from total since this

step is elastic-plastic.
Compute 7 and n factors. [equations (48) and (50)]
Update total strain, elastic strain, and creep strain to yield

surface.

Compute creep strain increment based on yield stress and tempera-.

ture at end of step.

Modify global K and O vs. ¢ diagrams. [CHAPTER III - Construc-

tion of K and G vs. & diagrams]

1.

If the hardening ratio is a function of plastic strain, re-
compute the base K and T vs. EP diagrams. [equations (39) -
(41)] |

If this is the initial yield or yield has occurred without

a stress reversal, no modification is ﬁecessary. Go to

step J.
If reverse yielding has occurred, modify the global diagrams.
The particular material of interest determines whether the

first or second base curves are used.
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Experiencing elastic-plastic behavior.

1. Compute 3F/30 and the gradients H', 30/dT, 3K/3e., 3K/3T
for the current value of plastic strain and temperature.—
[equations (42) - (45)]

Compute stress increment. [equation f29)]

In transition step from e;astic to elastic-plastic behavior, only

the leading term of equation (16) is used.

Compute strains and update totals.

1. Elastic strain. [equation (51)]

2, Plastic strain increﬁent is the total minus the elastic,
thermal, and creep increments.

3. Equivalent uniaxial plastic strain is the absolute value of
the plastic strain increment for the uniaxial case.

Update yield surface center. In transition step the yield surface

translation scalar is calculated assuming isothermal behavior for

temperature at end of step.

1. Compute translation scalar. [equation (32)]

2. Compute change in yield surface center. [equation (6)]

3. Update yield surface center.

Update values to end of subincrement.

1. Stress.

2. Total strain.

3. Creep strain.

4. Thermal strain.

Update values to eﬁd of load step for elastic case.

1. Stress.
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2. Total strain.
3. Elastic strain.
4, Creep strain.
5. Thermal strain.

0. Repeat above procedure for each

subincrement.
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ABSTRACT

Development of an Uncoupled, Viscoplastic
Constitutive Model for Cyclic Plasticity

of Hastelloy-X at High Temperature. (May 1983)
Shik Hung Yﬁen, B.S., Texas A&M University

Chairman of Advisory Committee: Dr. Walter L. Bradley

An uncoupled viscoplastic model is presented based on the assump=-
tion that inelastic strain can be partitioned into rate insensitive
and rate sensitive components. Unlike earlier uncoupled theories,
this model recognizes that some of the inelastic strain which occurs
during a load change is rate sensitive (or thermally activated). The
rate iﬁsensitive, inelastic strain is defined in terms cf a strain
hardening function which is determined.empirically from saturated
hysteresis loops at room temperature. The rate sensitive inelastic
strain is characterized using a standard viscoplastic model. The
physical basis for the model and’the experiments required to evaluate

the material constants are also presented. Evaluation of the

model is performed by comparing predicted hysteresis loops and stress

relaxation behavior with experimental observation. The question of
inelastic strain-rate continuity is addressed in terms of the

uncoupled viscoplastic model as well as models developed by other




researchers.

Finally, suggestions are made

RS S R B N

“iv

for further investigation.
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CHAPTER I
INTRODUCTION

- —With the™increasing demand‘for“materiais to function at elevated
temperatures, an. understanding of material behavior under such condi-
tions is essential. Structural coﬁponents in the hot section of a
turbine engiﬁe experience a complex thermal-mechanical history, often
leéding to p?émature failure. Similar ﬁroblems‘are encountered in
nuclear reactors. Components in critical areas are subjected ﬁo cyclie
loading conditions and possible damage due to creep-fatigue interaction.
To obtain design parameters under actual service conditions is inprac-~
tical in most cases due to the cost and time inveolved. Therefore,
viscoplastic models must be developed to simﬁlate materiai behévior
under such conditioms.

Historiﬁally, the first experimental study on 'viscoplasticity"”
was conducted by Vicat [l]yin 1834. He found that at room temperature,
iron wires loaded with a stress equal to one half the breaking stresé
exhibited a gradual increase in length. This is the first indication
of the existence of rate dependent inelastic deformation in metals,
which is now referred.to as creep. '
Despite the fact that the first study of rate dependent inelastic

deformation was performed more than a century ago, early plasticity

theories were mainly concerned with rate independent inelastic

This thesis follows the style and format of the Journal of
Applied Mechanics.




deformation. (For a historical review of plasticity theories one is
referred to books by Hill [2] and Martin [3]).

In recent years, the need to apply materials at elevated tempera-
tures necessltates the inclusien of rate effects in plasticity studies.
Considerable research efforts have been undertaken to extend classical
plasticity theories to model both rate and temperature dependent
phenomena [4;9]. These modifications are accomplished by introducing
an uncoupled rate dependent inelastic strain‘component as well as
temperature dependence of material properties. Constitutive models of
this nature are often referred to as uncoupled theories.

More recently, there has been increasing attention toward the
development of viscoplastic models which are consistent with micro-
physical observation. Research efforts in this area are reflected by
the proﬁosal of'é number of unified theories [10-22], many of which
are still undergoing active development. The major feature of these
theories is -that all inelastic strain is considered to be rate depen-
dent. Although physically appealing, many unified models fail to
accurately predict cyc}ic behavior at lower temperatures.

This ﬁhesis will proceed in the following manner. First, a
review of the existing theories will Be presented along with a com-
parison of the uncoupled and unified theories. This will be followed
by a presentation of the uncoupled viscoplastic model and the physical
basis for this new model. A deséription of the various experiments used
to evaluate the required material constants will be provided. Experi-

mental results will be compared with theoretical predictions and the




question of inelastic strain-rate continuity will be discussed.

Finally, suggestions for future work will be outlined.







CHAPTER I1
REVIEW OF EXISTING THEORIES
Present Status

As discussed in the previous chapter, the value of a constitutive
model lies in its capability to predict complex thermomechanical
histories. To satisfy such requirement, a model has to account for
various thermally induced elastic and inelastic strains for cyclie
loading as well as creep and stress relaxation responses at constant
loads or strains. Furthermore, time and temperature dependent micro-
;tructural changes such as precipitation, grain growth, recrystalliza-
tion, segregation, etc. have to be considered. Given the complexity of
the problem, a general comstitutive law which can fuliy describe all cf
the above phenomena is simply not feasible. In thig research effort,
we will specifically deal with cyclic plasticity and stress relaxation
behavior of Hastelloy-X at various strain-rate and temperature ranges.

Three common approaches utilized in constitutive modelling
include: (1) micromechanistic theories; (2) nonlinear viscoelastic
theories; (3) classical incremental plasticity theories. The first
approach has generally been favored by material scientists who attempt
to characterize materiai behavior through microstructural considera-
tiomns. The other two approéches are widely used in the mechanics
~community. Constituti&e models are usually developed on Eﬁe basis

of continuum mechanics. Existing constitutive theories can also be

classified as being "uncoupled" or "unified" depending on the way the




inelastic strain is modelled.
In the following section, the three different approaches in con-
stitutive modelling will be discussed along with a comparison of

uncoupled and unified theories.
Available Constitutive Theories

Micromechanistic theories. The thrust of the micromechanistic

:

-theories is to create a model which relates macroscopic parameters
such as stress, strain-rate and temperature to undeflying micromechan-
isms. It 1is generally accepted that inelastic deformation is a
result of dislocation movements and interactions within a crystalline
material. Constitutive laws are therefore based on various models of
dislocation kinetics. For example, strain hardening is associated
with the intera;tions of the long range stresé fields of~dislocations
[23]. On the other hand, recovery can be explained in terms of ther-
mally activated dislocation climb and cross-slip [24].

An example of a micromechanistic ﬁodel is provided by Kreig, et
ﬁl. [11].‘ The constitutive model takes the form of a power law
function. The current microstructure is reflected by a kinematic
state variable and an isotropic internal variable, which allows the
model tO'predictvcombined isotropic/kinematic response. Evolutionary
laws are develoéed for the intérnal variables to account for strain

'hardEniné ana feco§eri. Since recovery is assumed to be governed by
 idi§1océti§ﬁ-c1imb, tﬁe éonstiﬁuﬁive model is limited to relatively
; high h&moioéo;s ﬁeﬁﬁeratqreé. ‘As poiﬁted out by the‘authors, a short

coming,offthe model is that predictions of stress-strain behavior are




too "square' compared with experimental observation.

Another example is found in a unified model developed by Hart
[12].‘ An important feature of the theory is that the inelastic
strain is-separated intO'recoverable (anelastic) and unrecoveraoie
(plastic) components. The anelastic strain component is considered
to be a state variable. The plastic strain; on the other hand, is
'governed by a number of internal variables. One state variable is
called the "hardness" and represents isotropic strain hardening.
Thermal recoveryrat high temperature is accounted for by modifying
the "hardness" term with another function. A second state variable
is used to represent the direction as well as magnitude‘of‘prior
stress history and accounts for kinematic hardening. The model is
based on the assumption of an isotropic material and since the
internal variables are not functions of temperature, it can only be
used under isotropic conditions.

Other examples of micromechanistic theories are given by Bodner
and Partom [13], and Miller [14, 15].

Monlinear viscoelastic theories. Nonlinear viscoelastic

theories are generally constructed within“a thermodynamic framework
[25, 26] .based on the First and Second Laws of Thermodynamics. These
theories have been reported in both Single integral and multlple‘
integral form as well as differential equation form In addition to

thermodynamics, phy51cal constraints must be applied to obtain a’

‘meaningful constitutive model

One example is a v1scoplast1c model credlted to Walker [16] It

W

;'is developed in an integral form by modifying the constitutive
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relation for a standard three parameter viscoelastic solid. The
model employs two state variables, the equilibrium stress and the
drag stress. Tﬁe equilibrium stress represents kinematic hardening
and is governed bﬁ a growth iaw-which contains both static and thermal
recovery terms. The drag stress, on the other hand, represents
isotropic hardening. In the original formulation, the drag étress was
assumed to bé conétant and cyclic hardening and softening behavior was
described iﬁ>terms of changesrin the back stress term. The drag
stress term has recently been modified [17]'to include a dynamic
recovery term so that both internal variables can be used to describe
c&clic hardening response. The evolutionary law for the back stress
contains a term which allows the back stress to change with tempera-
lCure during nonisothermal elastic excursions. The shortcomings of
the model include its failure to accurately predict stress-strain
behavior at relatively high strain-rates and the "over squareﬁess” of
its predictions in the case of cyclic response at small strain-rates.
Another example is found in a model proposed originally by
Schapery [27] and later amplified by Valanis [18]. It is an endochronic
theory and does not require a yield surface. The current state of stress is
expressed as a‘function of the strain history defined with respect to
a "time scale" which is itself a material property. The model has
been shown to be capable of describing a number of elastic-plastic
phénoména {19]. The endochronic theory has recently been modified by
introducing ﬁhe concept of "internmal barriers" [20]. It is proposed

that an internal variable will not become activated until an

activation barrier is overcome. Each internal variable is




"autonomous' in the sense that-it is governéd by its own time écéle
which is defined by the'intern#l variablé itself. This version Sf
ghe endochronic theory is termed an autochronic theéry. The theory
is used mainly in a rate iﬁdependent form under isstherﬁal coﬂditions
and has not been shown to be adequate in modelling material behavior
under cyclic load conditions. Efforts have been made by Wu and Chén
[28] to inclﬁde strain-rate effects in the model.

Other examples are présented by CernockyznuiKrempl [21], Lui and
Krempl [29), and Schapery [27]. A more detailed discussion of non-
linear viscoelastic theories is provided by Allen [30].

Classical plasticity theories. Classical plasticity theories are

based on the concept of a yield surface. Varibus plastic strain
histories can be described in terms of thevexpansion, translation and
rotation of the yield surface. These theories are macrophenomenolégi-
cal in the sense that state variables are Aerived from experimental
data without reference to the micromechanisms involved.

Incremental plasticity theories are genérally characterized by |
the following features: (1) a yield function distinguishing elastic
and plaétic deformation, (2) a relationship between the stress incre-
ment tensor and the strain increment tensor, (3) a description of
therrate independent plastic strain increment and (4) a hardening
rule which describes the evolution of the yield surface during plas- f
tic flow.

There has been an enormous amount of research in this category.

A majority of the work is related to the development of various

hardening rules to describe different loading histories [31]. Rate




independent plasticity theories are well established and recent efforts
involve the extension of these theories to include rate and thermal
effects. Recent research efforts in this area have been reviewed by
Allen [32, 33]. Of tge classical plasticity theories discussed in
reference {32], a more promising onme belongs to Yamada and Sakurai
[34, 35]. 1t includes temperature dependence of material properties,
an uncoupled’rate dependent inelastic strain component, and a com=-
bined hardening rule to account for the Bauchinger effect. However,
the mathématical consistency of the model is questiomed [32]. Another
example is given by Snyder and Bathe [5]. The model is an extension
6f classical plasticity and has been shown to be quite accurate in
modelling monotonic loadings. Since the medel is a single state
variable theory, it is inadequate to model combined isotropic—
kinematic hardening under cyclic loading conditions. One other
example is a model proposed by Sharifi and Yates [7], which accounts
for creep, but does not include temperature dependence of material
properties. .

One of the most comprehensive models is presented by Allen and
Haisler [6]. Their theory is an uncoupled, increéental, nonisother-
mal constitutive model based on the classicél theory of plasticity.
The theory is capable of modelling rate ané thermal effects, thg
Bauchinger effeét and can be extended to medel multiaxial loading
conditions. Recent addition of a revised hardening rule [36]
results in’improved capability of the theory to model cyclic

behavior under various thermomechanical histories.

i
s
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Uncoupled vs. Unified Theories

As discussed in the opening chapter, two distinct approaches

exist in constitutive modeiling with respect to the treatment of the
inelastic strain component. This results in the development of the so
called "uncoupled” and "unified" theories. The unified approach is
relatively new but has gained considerable support in the past few
--years. -It.is therefore worthwhile at.this point to discussvsome of
the advantages as welllas drawbacks of the two approaches.
The uncoupled approach separates the tctai inelastic strain into a
rate independent component and a rate dependent component; An example
of an uncoupled theory is one proposed by Strauss [37, 38] to model -
I "ereep' and "plasticity“ effects in viscoplastic materials. The medel
is termed a bilinear functional theor§ since the functional is linear
in the rate depéndent part as well as the rate independent part of .
the model. Other examples can be found in the preceding section under
the categoryqof classical plasticity theories. The uncoupled theories
are widely used today in finite element structural analysis. In a
recent review, Krempl [39] questioned the concept of "time indepen-
dence" as a valid approach to describe material behavior at low homo-
logous temperature since rate sensitivity is observable even at room
temperature. ﬁesearchers like Walker [16], Miller [15] and Hart [12]

criticized the uncoupled approach on the basis that creep and plas-

ticity are controlled by the same physical processes. The uncoupled

approach is further criticized for not taking into consideration the

interaction between creep and plasticity. It is pointed out by

B T
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Krempl [40] that uncoupled models obtain their time dependent part
from constant load creep tests and therefore are inadequate in
modelling variable loading conditions.

#,_Reébgnizing the above shortcomings, a number of unified models
[16—22] havé recently been proposed which consider all inelastic
strain aé rate dependent. Alﬁhough physically satisfying, the uni-
fied>approach is not without drawbacks. In modelling cyclic response,
for example, predictions made by the unified models are often too
"square' compared withlexperimental observation [11, 15, 17]. 1In
many cases, the evolution of the state variables is difficult to
model or experimentally characterize. ‘Furﬁhermore, unified models
produce "sﬁiff",differential equations which often result in computa-
tibnai difficulties.

To sﬁmmarize, neither the uncoupled nor the unified approach has

shown clear advantage over the other. Since many unified models are

still in a developing stage, it 1s possible that some of the problems .

discussed above will be overcome eventually. For the near future,
however, it appears to be more advantageous to rely on an uncoupled

theory whose form is consistent with known micromechanistic models.
Objectives

" The objective of this research is to present an uncoupled
viscoplastic model to characterize cyclic behavior of Hastelloy-X
under different strain-rate and temperature ccnditions. The rate

insensitive inelastic strain component is defined using hysteresis

loops at room temperature. The rate sensitive inelastic strain

-
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component will be characterized using a standard viscoplastic model.
Special‘emphasis is placed on the modelling of saturated hysteresis
loops and stress relaxation behavior at various strain-rates and
temperature ranges. Evaluation of the model is performed b§ compari-

son with experimental results.
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CHAPTER III
CONSTITUTIVE MODEL DEVELOQOPMENT

-fn this chapter; the physical.basis and the experimental data
requirements for the uncoupled viscoplastic model will be described
in detail. As pointed out earlier, plasticity and creep are gener-
ally considefed indistinguishable since both involve thermally assis-~
ted overcoming of various dislocation barriers. 1In the discussion
that follows, justification for the uncoupled approach will be given
in terms of the nature of dislocation barriers and the role of thermal
assistance in circumventing the obstacles under various temperature
and strain-rate conditions. It is the author's belief that if

uncoupling is performed properly, meaningful results can be obtained.

Physical Basis

Inelastic deformation of crystallise materials occurs by
dislocation movemeht and various forms of disiocation—obstacle inter-
actions.

In the low temperature regions (0-0.2 Tm), the yield strength
and flow stress are found to vary significantly with temperature.
This is particularly true for body center cubic materials since the
number of slip systemé available decreases dramatically as the tem-
perature falls. In this témperéture range, plastic deformation is
dominated by dislocation glide. The fairly small activation energy
for thermally assisted dislocation movement is usually associated

with the overcoming of lattice friction (i.e. Peierls stress) and
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the cutting of dislocation intersecticns [41].
Between 0.2 - 0.4 Tm’ the thermal enérgy available is more than

adequate to overcome such barriers, allowing dislocation glide to

occur equally easily at various temperatures and strain-rates. While
- short range barriers such as forest dislocations and Peierls stress
are easily overcome with thermal assistance at these temperatures, the
;hermal energy is relatively small and generally ineffective in over-
coming long range barriers spch as grain boundaries, cell walls and
large incoherent second phase particles. The high strain hardening
rate in this temperature range is generally believed to be the result
‘bf dislocation pileups against long range obstacles. Recovery in
this temperature range is controlled mainly by dislocation cross-slip i
[241, which depends on the stacking fault energy of the material,
temperature, as well as stress. The activation barriers for disloca-
tion cross-slip is relatively large éompared to the thermal energy
available, making this process quite sluggish. In this case, the
flow stress depends more on the long range inﬁefnal stress and the
‘resultant strain hardening it produces than the strain-rate. In
summary, between 0.2 and 0.4 Tm, thermally activated processes are
either so rapid (e.g. overcoming Peierls stress) or so slow (e.g.
dislocation cross-slié) that very little rate sensitivity is observed.

Deformation behavior in this temperature range can be very well

described as rate insensitive and over a finite range of strain-rates
will be essentially rate independent. It will be shown Ilater that l
é Hastelloy-X specimens tested under fully reversed strain controlled ’

conditions over a temperature range of 298 K to 533 K (0.2 - 0.35 Tm)'
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5 -1

and over a 30 X strain-rate range (3.3 X 10 °s to 1 X 10-35-l

)

- have essentially identical hysteresis loops. At 755 K (0.49 Tm), the
hysteresis loops change slightly, though rate dependence over the same
strain-rate range is still not significant.

As the temperature is raised above 0.5 Tm, rate effects on
inelastic deformation becomes apparent. Numerous dislocation models
have beeﬁ prbposed to explain thermally activated deformation in this
temperature range. One example is provided by Barrett and Nix [42]
based on the‘assumption that diffusion controlled motion of jogged
screw dislocations is the rate limiting deformation process at higher
temperatures., Climb‘and annihilation of edge dislocations have also
been suggested as dominant creep mechanisms {43]. Another example is
given by Nabarro [44] and Herring [45] who independently proposed two
similar models describing high temperature creep in terms of stress
driven atomic diffusion from one grain boundary to another. Coble
[46] suggested an alternative model involving atomic diffusion along
grain boundaries. Additionai deformation is.éenerally provided by‘
grain boundary sliding. Despite the large number of theories propo-
sed, they all recognize the importance of thermal assistaﬁce to defor-
mation at high temperatureg. It will be shown later that the stress-~
strain behavior of Haételloy-x is a sensitive function of temperature
and strain-rate over this temperature range.

In‘the following section, the rate insensitive, inelastic strain
will be described in terms of dislocation pileups against long range
barriers. The rate sensitive, inelastic strain will be associated

with the additional increments of plastic deformation made possible
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" by the thermally assisted overcoming of these long range barriers to

deformation. Dislocatien cross—slip and climb are generally regerded
as the dominant recovery processes at high temperatures.‘ Nonetheless,_ 'L d ‘ -¢?
thermally activated deformation resulting fromrother mechanisms wiil
be implicitly included as part of‘the rate sensitive strain component.
As discussed above, the rate semsitivity is seen principally in the
circumventing of various barriers by cross-slip or climb rather then
in the subsequent glide to the next barrier. Nevertheless, all of
the inelastic strain that results from the combined cross-slip (or
climb) and subsequent glide will be included in the rate sensitive
fnelastic strain. |

The inelastic strain has been implicitly divided into a compo-
'nent which results in strain hardening and one which is associated
with thermal recovery or softening. Even during the poption of the
hysteresis loop where strain hardening is occurring, the inelastic
strain may contain rate insensitive (strain hardening) as well as
rate sensitive (thermal recovery) components.' It should be noted that
net strain hardening continues until the back stress reaches a level
where recovery and strain hardening are balanced. This is anologous
to the familiar description of high eemperature creep as resulting
‘from a balﬁnce betneen the proeeSSes of work hardening and recovery.
It ﬁilldbershown iater‘that a‘constant‘oack stress does imply steady
‘state creep Ideelly;Athe seressyis dependent on the rate‘insensi-‘
mftive, 1ne1ast1c straln andvthe rate sen31t1ve, inelastic strein—rate.‘

‘A tran51ent dependence of stress on the rate sen31t1ve, 1nelast1c

o

_st-aln (as well as straln—rate) is sometlmes observed and is
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equivalent to primary creep. Such transients are believed to be asso-

"

ciated with the initial 'shakedown' where dislocations are gradually
being rearranged into more stable cell structures.
In the next section the constitutive model will be defined in

mathematical terms and the experimental requirements to characterize

the various material constants will be described.
Description of Constitutive Model

It is general practice in constitutive modelling to separate the
total strain into elastiec, inelastic and thermal components, i.e.
. = + +

Et Ee €i €th ()

where €,> Ee’ &y and sth denote the total strain, elastic strain,
inelastic strain and thermal strain respectively. Uncoupled theories
further partition the inelastic strain into rate independent and rate

dependent components, which can be expressed as

=g 4 +e.  + 2
T TE €ip T E (2)

ii ir th

where Eii and eir represent the rate independent (or rate insensitive)
inelastic strain and the rate dependent (or rate sensitive) inelastic

strain respectively. Under isothermal conditions, equation (2) can be

expressed as

g, =&, +e.,+¢ (3)

where Et’ se, Eii’ Eir represent the total strain, elastic strain, rate

insensitive inelastic strain and rate sensitive inelastic strain

e
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respectively. Equation (3) can be rewritten in rate form as follows:

{Me

(4)

€. . :
t e 11 ir

where ét’ g , &

o' %11’ éir denote the total strain-rate, elastic strain-

rate, rate insensitive inelastic strain-rate and rate sensitive
inelastic strain-rate respectively. It is assumed that at any point
along the deformation path, the elastic strain-rate component can be

described by the Hooke's Law as follows:
¢ = 4/E (3
e :

wherg § is the stress-rate and E is the modulus of elasticity of the
specimen. As will be discussed later, all the eﬁperiments in this
research program were conducted on a servohydraulic‘tésting system
(MTS) in the strain control ﬁode. The rate insensitive, inelastic
strain is modelled with an empirically determined strain hardening

function as follows:

. =f(g, 0 )& (6)
11 max

where f£(0, Umax) denotes the hardening function which depends on the
current state of stress as well as the maximum stress before load

reversal. It is given by

de

ii
f£(o, cmax) I0 (7N

The function is measured from saturated hysteresis loops in a
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tremperature range where rate sensitivity is not significant, i.e.,
esséntially all inelastic strain is rate independent (or rate insen-
sitive). It should be noted that the hysteresis loops even at these
lower temperatures are slightly asymmetric so the sign of the cmax
value before the stress reversal as well as its magnitude must be
specified to define the particular f value for a given value of stress

in a load reversal. The rate sensitive, inelastic strain-rate is

modelled by a power law function which can be expressed as

n

€. = sgn(c‘ - ) |°_‘Q
1ir I

3 (8

whéré n, 2 and K represent the stress exponent, back stress and drag
stress respectively;‘ A constitutive law of the form stated above is
commonly used in unified theories'to model inelastic deformation
behavior of crystalline materials (11, 14, 16]. It should be noted
that unified theories assume all inelastic strain is rate sensitive
and the comstitutive law is used to model the ''total' inelastic
strain-rate rather than the rate sensitive inelastic strain-rate as
described here. The stress exponent n is a mathematical constant

which is generally a function of témperature. The back stress and

drag stress represent two evolutionary parameters which are micro-

structure dependent. Equation (8) represents an "evolutionary

. y . .
material law'". It is assumed that the current state of a material
can be described by a number of "hidden" microstructural parameters

known as internal state variables. Ideally, adequate specification

of the internal state variables allows prediction of material
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response without explicit knowledge of previous thermal-mechanical

history. 1In this case, twd internal state variables (i.e., § and K)
are utilized to model microstructural changes associated with cyclic
deformation. 1In classical plasticity theory, the drag stress reflects
isotropic strain hardening and is equivalent to the expansion of the
yield surface. The back stress, on the other hand, correlates with
kinematic hardening and is equivalent to the translation of the yield
surface. Microscopically, the back stress is associated with dis-
location pileups in pure metals and/or multiple loop formation around
incoherent second phase particles in alloys. The drag stress rep-
resents short range barriers to deformation, in contrast to back
stress, which represents long range resistance to dislocation glide.
An alternate though not contradictory interpretation of the drag stress
and back stress is that they represent the respective effects of dis-
location density and dislocation distribution. Equations (5), (6) and

(8) can be recombined to yield the following relatiom:

n t

g -9 (9)

K

£ =
t

=1| Qe

+ f(g, 0 )Y &+ sgn(o - Q)
max

The uncoupled model can be represented by a single Maxwell element as
shown in Fig. 1. The spring represents the elastic strain which has
an indi?ect temperature dependence through the Young's Modulus. The
slider block represents the rate insensitive inelastic strain which
is a function of the applied stréess but is independentvof time (or
temperature). fhe rate independent nature of the slides block can

: be further demonstrated by rewriting equation (6) in the following
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L

e =0/E

U eii=f(a,et)

PR — eir=f(c’et’T’t)

*ig. 1 Single nonlinear Maxwell element

© ey e e ¢y A = w4 s g e < e e i
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‘form:
ii ii : :
T T
ref
do -1 .
where |— = [f(c, o__ )] and represents the strain hardening
dsii max ‘
Tref
| 1 dg
rate at the reference temperature (T )" and |=——| denotes the
, ref deii T

strain hafdening rate for the rate insensitive inelastic strain com-
ponent at a higher temperaﬁure.' Equation (10) merely states that the
rate insensitive inelastic strain corresponding to a given stress (or
strain) remains the same regardless of the temperature (or strain-
rate). At low temperatures, the "viscosity" of dashpot prevents any
significant contribution from the rate sensitive inelastic component
to the total deformation and the inelastic strain is essentially all
rate independent. At highér temperatures and/or lower strain-rates,
the dashéot becomes less Qiscous so that rate.dependent deformation
or thermal recovery occurs which results in "softening" of the
material.

In summary, it is propqsed that the total strain can be separa-
ted into an elastic component as well as‘an iﬁelastic component which
consis;s of-rate sénsitive and raté insensitive terms. Thé rate insen-

sitive inelastic component results in strain hardening whereas the

rate sensitive inelastic component occurs as a consequence of thermal

T in our case is taken to be room temperature.

- ‘ref
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recovery. ‘It is important to recognize that regardless of the defor-
nation history, tHe sum of the three components at any stage must
equal the total strain.

In the next section, the experimental data requirements for the

uncoupled model will be described.
Experimental Data Requirements

The value of a constitutive model lies mainly in its capability
to predict complex thermo-mechanical hiétories.- However, the effec-
tiveness of a2 model can be severely hampered if it requires a large
number of material parameters which have to bé extracted from complex
and lengthy experiments. A useful constitutive model should require
a minimum number of material constants which can be determined by
relatively simple testing procedures.

The material parameters necessary to characterize the constitu-
tive model previously discussed includes f (g, cmax)’ Qo, T, W),

‘K(c, T, N), n(T) and E(T) where N and T refer-to the number of cycles
and temperature respectively. For the initial phase of this program
only saturated hysteresis loop behavior will be evaluated, eliminating
for the time being N as a variable. It is further assumed that for a
séturated hysteresis loop, K will have a constant value around the
loop whereas  will be allowed to vary as a function of stress. The
rational for the assumption is that the drag stress is physically
associated with the dislocation cell structure, which will achieve a
stable configuration upon saturaticn. The back stress, on the other

hand, is associated with metastable dislocation arrangements such as




pileups, multiple loops around parcicies, etc. Oﬁce § staEle cell
structure is formed (i.e., at saturation), it is réasonable to assume
that it.does not change appreciably during strain’cycling;

The experiments required to evélﬁate the méterial ccﬁé&ants éré:
(1) fully reversed, strain cycling experiments {(i.e., hysteresis loopﬁ)
at various temperatures and strain~rates; (2) stress relaxation tests
at. various pbints on the hysteresis loops; (3) strain drop, stress
transient tests; (4) strain-rate cycling tests,

The strain hardening functiom £(0, Gmax) is defined by saturated
hysteresis loops taken at a sufficiently low temperature (0.2 - 0.3 Tm)
where rate sensitivity is not significant. Hysteresis loops at higher
temperatures show a reduction in flow stress due to dynamic recovery
(Fig. 2). The additiconal inelastic strain resulting from the recovery
process can be obtained by simple subtraction as shown schematically
in Fig. 3.

At relatively low temperatures, the back stress can be determined
by stress relaxation tests performed at Varioﬁs points around the
hysteresis loop., It is assumed that thermal recovery is negligible and
the back stress is taken to be the asymtotic value approached at the
end of the stress relaxation test. In our experiments, each test was
carried out to the point where the stress-rate (i.e., the slope of
the stress relaxation curve) appfoached zero. Thermal recovery becomeé
significaht at higher temperatures and the assumption of constant back
stréss is no longer valid. 1In this case, the strain drop, stress
transient test is used to evaluate the back stress. This approach is

based on the observation of a "stress transient” which occcurs during
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Fig. 2 Schematic of stress-strain behavior at three
temperatures
Fig. 3 Experimental characterization of the three
strain components for the uncoupled viscoplastic
model
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load reversal when the strain is held constant momentarily. The back
stress is given by the point where no transient is observed.

Other techniques have been developed for measuring internal
stress and'a few examplés will be given here for comparative purposes.
One example is an "incremental unloading technique' developed by
MacEwen, et al. [47]. The test is performed by incrementally unload-
ing the stresé and observing the subsequent relaxation behavior.

- Positive stress relaxation will occur initially and unloading will be
continued to the point where no stress relaxation is observed. The
stress where this occurs is defined as the internal stress. Two
alternate approaches have been summarized by Ahlquist and Nix [48].
The first one is the '"stress transient dip test'" which is based on
the same concept as the previous technique. During>a constant stress
creep‘test, the applied stress 1s reduced at the point of interést
and the stress transient is observed while the strain is held cons-
tant. The internal stress is..given--by the point where no transient
is observed. The second method is referred Eo as the '"strain
transient dip test". 1In this case, the applied stress is reduced and
held constant while the strain transient is monitored.’ The internal
stress is indicated by the point where zero strain transient is
observed. One last example is provided by Walker [17], which is
based on the same concept as the strain transient dip test. In his
study of cyclic behavior of Hastelloy-X specimens, the back stress
was determined by holding the stress constant at various points along
the unloading branch of the hysteresis loop and observe the creep

rate. The back stress is defined as the pocint where the creep rate
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goes to zero. As pointed out by Walker, the major disadvantage of
this approach is that the creep strain observed in the region is very
small, making an accurate assessment of the back stress difficult.
He>recommended the "strain drop, stress transient test" as an alter-
né;ive since it is moresensitive'ana will allow a better estimation
of the internal stress.

At lowef temperatures, the\étress exponent n can be obtained by
plotting 1n éir vs. In (0 - ) from the stress relxation tests. At
higher temperatures, n 1s obtained from strain-rate cycling tests
performed at the plateaus of the saturated hysteresis loops.

" . Finally, the drag stress K can be determined by substituting
the known values of the back stress and the stress exponent into
equation (8).

‘The purpose of the above discussion is to provide a general
description of the experimental parameters required for the uncoupled
visccplastic constitutive model apd the necessary tests for their

evaluation. A more detailed discussion of the experimental procedures

will be presented in the following chapter.
"Numerical Scheme for Thecretical Prediction

Before a coﬁétitutive model can be used to predict complex thermo-
-meéhanical hisfcries, it must be able to reproduce experimental
results. To first see if the uncoupled model is self consistent in
being able to predict the original hysteresis lcops, a numerical
schemé has been devised.

The uncoupled comnstitutive model is represented by equation (9)
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which can be rearranged in the following form:

n
e - sgn(o - Q)‘ELi%jz
g = T (1)
i + f(o, cmax) :
or in incremental form as
' o =a®
A = A €t sgn(c - Q) X At (12)
1
E + f(o, omax)

The evaluation of A €

¢ is given by égAt where the total strain-rate

(from experimental measurements) is given by

ULL

dD
dt
do

de_

Q

(13)

1 - (1-2v) . 7 f

|~

where Do’ It and v represent the initial diameter, the diametral

strain—fate and the Poisson's ratio respectivgly. It should be noted
that the total sfrain-ratéhdoes not remain constant during the course
of deformation but insteéd will change with the strain hardening rate.
The point on the hysteresis loop where loﬁding begins will be
chosen as a freference state" from which the simulation process will
start. The purpose of the incremental scheme is to predict changes in
material response frém éhg»preéeding known state over a time interval
Aﬁ. At the reference state; fhe required méterial parameters ﬁill be
specified together with thé value for the initial strain hardening
:aﬁe from-which thé iﬁi;iél strain—rate is determiﬁed. Next, the

- strain increment over the designated time interval will be computed.
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The corre;ponding stress increment from the preceding reference state
can then be calculated using equation (12). With the stress and
straih increments now known, the new strain hardening rate can be
cbﬁputed-which allows the determination of a new strain-rate value
from equation (13). This will in turn enable the value of the second
strain increment to be calculated. Values of the internal state
variables are uédated accordingly to reflect the current "micro-
structural state" of the material. With the new values of internal
variables and strain increment determined, the corresponding stress
igcrement can again be computed. The procedure is then repeated for
the ﬁext‘time increment. A program outline-for this incremental
procedure is presented in Appendix A.

A second numerical scheme has been designed to predict stress
reléxation behavior. The '"reference state" is taken to be the point
on the hysteresis loop where stress relaxation commences. Once the
initial conditions (i.e., initial values of the stress and internal
variables) are specified, the initial rate seﬁsitive inelastic strain-

rate can be computed using equation (8), as shown below:

g - ql®

g, = sgn(g - Q)l——E—— (8)

ir

The stress relaxation tests in this research program were run under
" constant diameter conditions. The corresponding relation between

the rate sensitive inelastic strain-rate and the stress-rate is given

(14)




Knowledge of the rate sensitive inelastic strain-rate will enable the
stress-rate to be determined from equation (l4). This will in turn
allow the stress reduction over a time interval At to be evaluated.

The -same -procedure is-repeated by substituting the new stress value

into gquation (8) and assuming the back stress and drag stress remain
constant. As wili be discussed later, this assumption is not valid
at higher températures and will inevitably.lead to erroneous predic-
tion. A program outline for this numerical procedure can be found in

Appendix B.
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CHAPTER IV
EXPERIMENTAL PROCEDURE
Material Description

The material selected for this research program is Hastelloy-
alloy X. It has been a successful high temperature structural
materiél which is widel§ used in applications such as turbine blades
in jet engines. Considerable experimental effort has been made
recently to evaluate the high temperature properties of the alloy
for critical applications in nuclear reactors [49] ana"nuclear powered
roéket engines‘[SO].

Hastelloy-X is an austenitic nickel-base superalloy that possesses
good strength and oxidation resistence up to 1470 K. The alloy is
solid~solution strengthened, basically by the elements Cr, Mo and W.
The chemical composition of Hastelloy-X is given in Table I. The
.alloy used in this study was supplied in the form of 19 mm (0.75 in.)
diameter bar stock in the solution heat treated condition. The
standard heat treatment is performed at a temperature of 1450 K

followed by rapid cooling.
Specimen Preparation

Specimens were machined from 19 mm (0.75 in.) diameter bar stock
to the configuration shown in Fig. 4. Each specimen was annealed at
1200 K for 30 minutes followed by air cooling prior to testing. The

annealing process serves two purposes: (l) it will prcduce a more




Table I. Chemical Composition‘of Hastelloy-X

Alloying Element Weight % Alloy .
e ' Cobalt  0.50 = 2.50 -
Chromium 20.50 - 23.00
’ Molybdenum 8.00 - 10.00 _
J;? i ;'i . Tungsten - 0.20 - 1.00
”1i P -Iron 17.00 - 20.06
'agf ::{ Carbon ' 0.05 - 0.15
o | ‘i Silicon 1.00%
‘é T Manganese 1.00%* )
Boron 0.010%
% Phosphorus 0.040%*
‘% Sulfur 0.030*
) .% Nickel Balance ‘
I

*Maximum : N
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"isotropic'" microstructure, since this is an assumption made in the

theoretical analysis; (2) it will provide a fully oxidized surface

condition for the specimen. As will be discussed below, a stable
oxidized surface condition is essential for accurate temperature
measurement. The average hardness of the specimens is 54 RA

(Rockwell hardness number) before annealing and 52 RA after anneal-

ing. Measurements were made at the gage section of the specimens.
Experimental Set Up

The experimental equipment utilized in this research program
consists of four major components: (1) a 100 kip MTS Series 810
materials test system; (2) a 2.5 kW Lapel induction heating generator;
(3) an LFE Series 230 temperature controller; (4) an Ircon Modline
Series 6000 radiationlﬁhermometer (optical pyrometer). Picture of
the experimental set up is given in Fig. 5 and a schematic is depicted
in Fig. 6.

The MTS testing system is servohydraulicélly controlled and has
considerable flexibility. It is equipped with a function generator
capable of simulating complex mechanical histories under one of three
control modes (load, strain or stroke). To perform high temperature
experiments the MIS-is equipped with special water cooled grips and a
diametral extensometer utilizing quartz rods which can be used for
high temperature strain measurement up to 1255 X.

The Lapel induction heater is designed to deliver to an induc-
tively coﬁpled load a maximum of 2.5 kW of high frequepcy energy in

.? the range of 250 kHz to 800 kHz. 1Induction heating offers the
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advantage of a rapid energy input into the specimen and is widely used
for thermal or low cyclé fatigue testing.

;"m Fbr‘tempefature control below 700 K an LFE controller is used. It
is é proportional controller which utilizes a Type J (iron-contantan)
thermocouple for temperature measurement. Power output of the induc-
tion heater is adjusted by the controller in proportion to the differ-
ence between‘the measured and tHe set poiﬁt temperatures. For tempera-
ture control above 700 K, an Ircon optiéal pyrometer is employed. It
is a "noncontact" type controller which measures the temperature of

an object by sensing the infrared radiation emitted from its surface.
Temperaturé control is based on the same pfinciple as the LFE control-
ler. An output current is developed in the controller proportional

to ;he'deviatioﬁ'of the‘specimen temperature from the set poiqt tem-
peréture, which govermns the power output‘generated by the power con-
troller inside the induction heater.

Good facilities are a necessary but not sufficient condition to
producé satisfactory results. Additional steﬁs have to be taken to
minimize experimental error which might occur as a result of the limi-
tations imposed by the testing equipment itself. In the case of high
temﬁerature materials testing under cyclic loading conditions, the most
important factors to be considered include: (1) measurement and
control of temperature; (2) axiality of testing machine.

In strain contfolled low cycle‘fatigue testing, it is considered
that the temperature should be controlled to within * 2 K for reprodu-
cible results; In this research program, temperature variation at

1144 K was no more than * 1.1 K and better temperature control was




attained at lower temperatures. The accuracy of temperature measure-
ment by optical pyrometry depends on the emissivity of the material
which 1is a function of both surfaceconditionand temperature. For
example, a nickel speeimen with a smooth‘polished surface has an
emittance value of 0.15 which increases dramatically to 0.90 when it
becomes oxidized. Roughening of the specimen surface due to oxidation‘
has a significant impact on the resulting emissivity value and thus
poses a severe temperature control problem. To overcome this diffi-
culty,all specimens‘were annealed at 1200 K for 30 minutes prior to
testing to produce a stable oxidized surface condition. The emissi-
vity has also been found to vary with temperature, which necessitates
readjustment to the emittance setting on the optical controller every
time the set point temperature is changed. This disadvantage is
overcome by calibrating,the optical pyrometer against a high precision,
factory calibrated Type K (chromel-alumel) thermocouple which has an
absolute accuracy of * 3 K.‘ Calibration was performed in a conven-
tional futnace using a small Hastelloy-X sampie cut from the gaée
section of one ot the originai specimens. Additional thermocouples
were attached to the samole to verify the absence of significant "‘ B g
thermal gradient. The thermocouples were protected with Inconel
overbraid and ceramic fiber insulation against oxidation and possible
contamination by the furnace atmosphere. |

Inductlon heatlng offers the advantage of fast thermal response
and relatively 51mp1e experlmental set up. | The thermal gradlent at

the middle of the spec1men was mlnlmlzed by concentratlng the c01l

e

turns near the ends of‘the specimen at the expense of heating
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efficiency.

For fully réversed low-cycle fatigue testing, it is recommended
by ASTM-E606 that bending strain should not exceed 5% of the minimum
axial strain range. A trial specimen equipped with three equally
spaced straiﬁ gauges around the circumference was used to check the
axiality of the MTS. Special alignment procedure were employed to
reduce an initia% variation in axial strain measurements by the strain

gauges from 307 to 5% maximum.
Description of Experiments.

In this section, the various experiments necessary to determine
the material constants are described. The required tests are:
(1) fully reversed, strain cycling experiments (hysteresis loops);
(2) stress relaxation tests; (3) strain drop, stress transient tests;
(4) strain-rate cycling tests. |

Fully reversed, strain cycling experiments (hysteresis loops).

In this research program, saturated hysteresis loops are used to
characterize the behavior of Hastelloy-X under cyclic loading con-
ditions. The experiments cover temperature range from 294 K to

1144 K (0.2 - 0.75 Tm) and a strain-rate range from 3.3 X 10_55_l

to 1 X 10-35-1. It is important that the range of temperatures and
strain-rates selected for the experimental study can adequately
represent the conditions encountered in actual service. Generally
speaking, turbine operations typically take place between 700 K and

950 K and the strain-rate range covered in this study is consistent

with those considered by other researchers {17, 50]. A triangular




0

waveform is used as the input function for strain cycling as recommen-

ded by ASTM-E606 since it provides a more uniform rate of strainingt

The waveform selected is important to therreSuitant stressfstrain'
response especially at high temperaturés, where inelastic defermatisn
is extremely rate sensitive. All experiments in this research program
were performed in the strain-control mode. In this control mode, a
servohydraulic machine (MIS in this case) has essentially infinite
stiffness, thus avoiding the complications introduced by the elastic
modulus of the testing system.

Experiments were conducted at ten different temperatures and
three different strain~rates. Below 0.5 Tm, rate sensitivty is not
important and hysteresislloops‘were run at selected temperatures
(294 K, 533 K and 755 K). Above 0.5 Tm? the material becomes- more
rate sensitive and experiments were conducted at 55 K intervals
from 811 K to 1144 K to determine the required material constants.

At each temperature, strain-cycling was performed at three different

strain-rates (1 X 1073571, 3.3 x 107%s7L, 3.3 x 107°s7}

) with a strain
range of * 1%.'
As discussed previoesly,'room temperatures hysteresis loops were
used ts sefine the‘rate—insensitive, inelastic strain eomponent, which
has a cmax dependence. Therefore hysteresis loops were obtained at i Z
tdlfferent straln amplltudes (0 057, O.iZ, O.ZZ; 0.3%, 0.42,70.62, 0.8% ‘E

and l 2) whlch correspond to dlfferent o nax values. . R o : |

Stress relaxatlon tests. The stress relaxatlon test lS a tech-

.nique commonly used for back stress determlnatlon. It is usually
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and monitor the stress variation with time while holding the strain
constant. Initially, the total strain consists of an elastic component
as well as an inelastic component. Additioﬁal rate dependent inelastic
strain (i.e. cfeep strain) occurs at the expense of the eiastic strain
component. Since the el;stic strain is a function of the applied
stress, a stress reduction is necessary to maintain the total strain
constant. AQ indicated by equation (8), the creep rate is governed
by the stress (or effective stress) which‘decreases steadily during the
course of stress relaxation. Ideally, creep is terminated as the
effective stress drops to zero; i.e., when the applied stress equals
the back stress. Thus, ﬁhe back stress can simply be defined as the
asymtotic value reached at the end of a stress relaxation test where
the stress relaxation rate is approaching zero. The stress relaxation
test offers a convenient way of determining the internal stress
provided that it remains constant during the test. This condition
cannot be satisfied at high temperatures where thermal recovery becomes
important and can cause a substantial reductibn of the inﬁernal stress.
An early attempt has been made to analyze experimental stress relaxa-
tion data for Hastelloy-X using an indirect approach suggested by
Gupta and Li [51]. The method failed to produce meaningful results
fdr the back stress and stress exponent at 978 K and above, indica-
ting the significance of recovery during stress relaxation at these
elevated teﬁperatures.

In this research program, stress relaxation tests were only
used in the temperature range of 755 K to 922 K (0.49 - 0.60 Tm) at

different points around the saturated hysteresis loops to determine
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various values for the back stress. Due to the experimental set up,
diametral strain rather than axial strain is held constant during
stress relaxation and the resulting relation between the creep rate

and the stress-rate is given by equation (l4), repeated as below:

e, =—2G ' _ (14) \

The value of the stress exponent n can be obtained by plotting

1n éir vs. In(o - Q). The least square curve fitting technique can be
used to give the best estimation for n. With the values for the back
stress and stress exponent determined, the drag stress can be computed

by rewriting equation (8) as follows:

-1

— - - n '
K = |o-alle | (15)

Strain drop, stress transient tests. As discussed above, the

stress relaxation test is unsuitable for back stress determination at
high temperature due to thermal recovery. The strain drop, stress
transient test is employed as an alternative in the temperature range
of 978 K to 1144 K (0.64 - 0.75 Tm)' A schematic of this approach is
shown in Fig. 7, which is based on the same principle as the '"incre-
mental unloading technique“ [47] and the "stress transient dip test"
(48] described in the previous chapter. During strain cycling, thé
unloading strain-rate is temporarily interrupted and while the strain i
is held constant, the stress transient is monitored. Referring to
Fig. 7 (p. 43), if.strain cycling is stopped at point A, positive

stress relaxation will occur, indicating that the applied stress is
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Fig. 7 Schematic for the strain drop, stress transient

test
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larger than the back stress. On the other hand, if the strain is held
constant at point C, negative stress relaxation will occur since the
back stress is now greater than the applied stress. The internal
stress 1s given by point B where no stress transient is observed.
Therefore, by introducing a series of load interruption on successive
cycles at va;ious points on the tension/compression stress reversal
portion of the hysteresis loop, the internal stress value for the
peak stress on the hysteresis loop can then be determined. The load
transient during the first quarter second immediately after the
interruption is in part due to machine characteristics -and thus
;hould be disregarded. The tramnsient after this time is due princi-

pally to real material behavior.

Strain-rate cycling tests. The strain-rate cycling test is
designed to determine the stress exponent in the temperature range of
978 K to 1144 K (0.64 - 0.75 Tm). The test is performed at the
"plateau”" of the hysteresis loop where the stress has saturated to a
constant vélue. At the point of interest, thé strain-rate is abruptly
changed and the new flow stress is noted before returning to the
original strain-rate. A schematic of the test is depicted in Fig. 8.
It is assumed that the drag stress remains relatively constant during
the strain-rate change and the reduction in flow stress is mainly a
result of a decrease in the back stress. The physical basis for this
assumption is that the drag stress is associated with the formation
of a stable cell structure which is not expected to change appreciably
during cthe strain-rate change. It will be shown later that the strain

drop, stress transient test does indicate a decrease in back stress as
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the strain-rate is reduced. The fact that the stress remains constant

at the plateau region indicates a balance between strain hardening and

dynamic recovery and is equivalent to steady state creep. This implies
that the total strain—raﬁe in this region equals the rate sensitive
inelastic strain-rate as described by equation (8). Referring to Fig.
8 (p. &43), if Gl and 02 denote the flow stress at two different strain-
rates él and éz’ then the value of the stress exponent n can be com-~
puted as

n = 1n(¢ /€ )/ln[(o - Q)/(o - Q)] (16)
12 1 1 2 2

assuming K remains constant (during the period when ¢ drops to ¢ ),
. 1 2

Q2 and Q being determined previously by the strain drop, stress
1 2

transient test. With the value of n now known, the drag stress can

be calculated from equation (15).







O N P SN 3 B G R T T

46

CHAPTER V
EXPERIMENTAL RESULTS, ANALYSIS AND DISCUSSION

The results of the experimental work for this research project
will be described here in detail. The equations required for data
analysis will be presented first, followed by the discussion of
hysteresis léop and stress relaxation results. The various material

constants and their physical significance will alsoc be considered.
Data Reduction

Since diametral extensometer is employed in the experimental
work, data reduction is performed in terms of diameter change.
Engineering stress and engineering strain are employed ip data analy-
sis. Since the strain range in our experiments is limited to * 1%,
it would maké little difference if true stress and true strain are
used instead. Diameter measurements can be converted into axial

strain using the following relationship:

=3 (1-2v) - 2 42
e, =3 (1-2v) 2D° | (17)

. where 0 is the applied stress, E and vare the Young's Modulus and

the Poisson's ratio, dD and D° represent the diameter increment and
the initial diameter respectively. The axial inelastic strain is
calculated as the difference between the total strain and the elastic

strain, or

(18)
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The total strain-rate is represented by equation (13) which is

repeated as follows:

z2 4D
. D
2 = o dt (13
t o149 oy
E de
t
The inelastic strain-rate is given by
L= % dg
g =22 dD : (19)
i Do t 1 _(1-2v) do
E de
where %% is the programmed diametral strain-rate and dc/det is the
strain hardening rate which is expressed as
do  _ 1
de, " (=2w)_ 2_db (20)
E D do

o]

where dD/do is the diameter change réte with respect to stress. A

complete derivation of the above equations is given in Appendix C.
Once the strain hardening function £ (G,'Gmax) is defined, the

rate insensitive, inelastic strain-rate can be separated from the

total inelastic strain-rate using equation (6).
Hysteresis Loop Results

The rate insensitive, inelastic strain is defined by the strain
hardening function which is Gmax dependent. Hysteresis loops were
run at room temperature for various strain ranges which'correspond to

‘ 1
different Gmax values. The experimental results are shown in Fig. 9

1 . . .
Strain-rates shown in figures represent average values.
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Fig. 9 Saturated hysteresis loops for Hastelloy-X
at room temperature with strain amplitudes of 0.05%,
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with values of the strain hardening function taBulated in Appendix D.
The effect of the maximum stress on the stress-strain response is
apparent by comparing the values of the strain hardening function
at different strain amplitudes. It can be seen that for a given
stress, the value of the strain hardening function decreases as a
function of Omax' In other words, the strain hardening rate at a
given stress ievel decreases as Gmax increases. As discussed in
Chapter III, strain hardening is physically associated with the
building up of lo;g range internal stress, the magnitude of which
depends on the total strain (or applied stress). Upon load reversal,
dislocations initially stopped by dislocation barriers become
mobilized, making inelastic deformation easier in the opposite
direction. A higher cmax value correspoﬁds to a higher back stress
which results in a lower strain hardening rate upon load reversal,
since inelastic deformation can occur easily. On the other hand, a
small back streés (or Gmax) will not offer much assistance upon load
reversal, which accounts for the higher straiﬁ hardening rate observed.
The effect of the back stress results in a lower yield strength in
reverse loading. This phenomenon is referred to as the Bauchinger
effect which results in "kinemétic hardening" in crystalline materials.
The strain-rate dependence of Hastelloy-X at room temperature
is studied by strain-cycling tests at three different straiq—rates as
shown in Fig. 10. The_hysteresi§ loops at the higher strain-rates
are identical while a slight reduction in the peak stress of the
hysteresis loop is observed at the lower strain-rate. Nevertheless,

the difference is small and the material can be considered rate
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"insensitive'". Hysteresis loop results at 533 K (Fig. l1) are almost
identical with those at room temperature, indicating the alloy is
basically rate insensitive over these temperature and strain-rate

ranges. At 755 K (0.49 Tm), the hysteresis loops change slightly

(Fig. 12a), though the difference observed is still not significant.
The higher strain hardening rate at these low temperatures are charac-
terized by tﬁe roundéd corners of the hysteresis loops, which is a
good indication that inelastic deformation is mostly rate insensitive.
The absence of significant dynamic recovery at 755 K is evidenced by
the sméll amount of rate sensitive inelastic strain observed at this
temperature (Fig. 12b). The rate sensitive inelastic strain component
is obtained by subtracting the rate insensitive inelastic strain
(defined by room temperature hysteresis loops) from the total inelastic
strain. Over this temperature range, the shape of the loading portion
of the hysteresis'loop is similar to that of the unloading portion.
This ié expected to be the case if the overall deformation process
'i::, remains the same during loading and unloading; At these relatively ‘ C
low temperatures, deformation occurs almost exclusively in the grain
matrix via dislocation glide and limited recovery through dislocation |
cross-slip. Upon load reversal the direction of dislocation motion
changés, but the relative significance of the deformatién mechanisms
remains the same. As will be discussed later, directionality of the
loading pa;h can affect the resulting stress-strain behavio; when
grain boundary sliding becomes iﬁportant.v

At 533 K and. 755 K, Hastelloy-X has been found Eo exhibit

AN

inverse strain-rate sensitivity; i.e., the strain hardening rate of
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the hysteresis loop increases at reduced strain-rate, contrary to
normal behavior. This phenomenon is believed to be resulted from
dynamic strain aging, which is associated with the formation of
solute atom atmospheres around disleccations. Dynamic strain aging
involves solute diffusion to dislocation sites., This can only occur
when the diffusion rate of solute atoms is similar fo the dislocation
velocity. Since atomic diffusion is temperature dependént and dis~
location velocity is stress-rate controlled, dynamic strain aging
can take place only at a suitable combination of temperature and
strain-rate. At low temperatures, atomic mobility is low due to
limited thermal assistance, and dynamic strain aging does not occur
in general. As the temperature is raised, sufficient thermal energy
will enable solute atoms to catch up with moving dislocations and the
drag stress exerted by the dislocation atmospheres cause the material
to strain harden. At higher temper#tures, the dislocation atmospheres
become dispersed as a result of an increased entropy driving force and
dynamic strain aging is again unimportant. Since dynamic strain aging
is possible only when the solute diffusion rate is compatible with
the dislocation velocity, it will occur at different strain-rate
ranges for different temperatures. The higher the temperature, the
higher the strain;rate rénge in which dynamic strain aging will take
place.

Experiments conducted on Hastelloy-X specimens reveal that
inverse strain-rate sensitivity takes place in the temperature range
from 533 K to 755 K (0.35 ~ 0.49 Tn)for the strain-rates used in this

study. Another phenomenon associated with dynamic strain aging is the
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so called Portevin-LeChatelier effect . This is manifested by
irregularities in the stress-strain curve which is often accompanied

by sharp load drops. This effect is observed from 533 K up to 922 K
(0.35 - 0.60 Tm) for Hastelloy-X specimens but becomeé negligible

above 811 K (0.53 Tm). It has also been found that at a given tempera-
ture the Portevin~-LeChatelier effect is more pronounced at higher
strain—rates'for the strain-rate range considered in this research.

The effects of dynamic strain aging have also been reported by other
investigators [17, 50].

As the temperature is ;aised above 0.5 Tm, rate effects become
apparent. At 811 K and 866 K,‘the size of the hysteresis loops become
smaller due to dynamic recovery (Fig. 13a and léa). However, the
hysteresis loops remain similar in shape to those at lower tempera=-

tures, indicating that a substantial portion of the inelastic strain

'is still rate insensitive. As shown by Fig. 13b and 14b, the rate

sensitive inelastic strain represents about only half of the total
strain. At 922 K, the more intense thermal activity is reflected by
the relatively '"square' appearance of the hysteresis loops (Fig. 15).
At 978 K and above (Fig. 16 - 19), dynamic recovery represents a .
dominant deformation process and the inelastic strain is essentially
all rate sensitive.

It has been pbserved that hysteresis loops are asymmetric; i.e.
the material appears to be étronger in compression than in tensioﬁ.
This phenémenon can be explained in two ways: (1) material deformation
is histor& dependent, i.e. thé‘ﬁaterial has a memory of past events;

(2) at high températurgs”whefe history depéndence is not.significant,
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the apparent asymmetry is caused by grain boundary sliding. 1In this
research program, all specimens were initially loaded in tension

followed by compression. It is expected that if loading starts in

 compression, history effects will be manifested in the form of a

higher peak stress in tension than in compression. Hysteresis loop
tests at low temperatures reveal a considerable amount of asymmetry
during the first cycle. Experimental results show that below 978 X
(0.64 Tm), initial asymmetry may reach a maximum of about 17%. As
strain cycling continues, the difference becomes progressively smaller
and upon saturation, asymmetry is reduced to a minimum, though the
alloy still maintains a higher peak stress in compression. The higher
strain hardening rate in compression is the result of an increase in
dislocationrdensity during initial loading and their motual inter-
ference with eaeh other upon load reversal. As strain cycling con-
tinues, a stabilized cell structure oegins to form which 1s equally
effective against dislocation motion in either direction. As a result,

the hysteresis loop becomes more symmetric upon saturation. Experi-

mental results indicate that below 978 K (0.64 Tm)’ the degree of

asymmetry of saturated hysteresis loops does not exceed 2%. At higher
temperatures, the initial asymmetry is about 5% and remains reiatively
constant until saturations Recall that cyclie hardening is insigni-
ficant at high temperatues and saturation can occur in as few as two

cycles. It can be seen from the above discussion that saturated

‘hysteresis loops are more symmetric at lower temperatures despite

the more 51gn1ficant asymmetry observed in the flrst cycle. The

greater degree of asymmetry for saturated hysteresis loops at higher
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temperatures is ascribed to grain ﬁoundary sliding, which OCCufs more
readily for temsile than for compressive loading. For example, at
temperatures above 978 K a "plateau" region is generally observed at
the top of the hysteresis loop while the material seldom attains a
constant stress in compression. Since the amount of asymmetry is
relatively small, even at these higher temperatures, grain boundary
sliding is not expected to play a majdr role in the overall defor-
mation process. However, triple point cracking may 6ccur as a result

which can drastically reduce the fatigue life of the material.

Stress Relaxation Behavior

Stress relaxation tests for Hastelloy-X at various temperatures
and_strain—rates are shown in Fig. 20 - 28. Stress relaxaéion tests
are utilized for back stress determination from 755.K to 922 K (0.49
- 0.60 Tm) where thermal recovery is not significant. At higher
temperatures, stress relaxation response provides a good indication
of the degree of rate sensitivity the materiai experiences.

As discussed earlier, stress relaxation is a result of rate
dependent inelastic deformation or creep that occurs at constant
strain. The rate sensitive inelastic strain-rate is a function of
both the effective stress and the strain-rate prior to the start of
the stress relaxation test. Room temperature stress relaxation
tests wére conducted to evaluate the relative significance of rate
sensitive inelastic strain at this temperature. As shownvin Fig. 20
(p. 65), the relaxation rate is small initially and becomes insigni-

ficant after a few minutes. The low relaxation rate is a result of
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the high back stress (or small effective stress) due to the absence
of significant‘thermal effects. When one of the teets was extended
for another_nine hours, the stress was found to decrease by an addi-
tional 5%. At 755 K, the relaxation rate is slightly higher but not
significant. The observation compares favorably with hysteresis

loop data over this temperature range. The internal stress at this
temperature has a magnitude equal to about 807 of the applied stress.
Above 811 K the stress relaxation rate increases steadily as a result
of a lower back stress due to more intenae thermal aetiﬁity. As the
temperature rises above 978 K the significance-of thermal recovery is
indicated by a sharp reduction in stress during the first several
minutes of stress relaxation. Experimental results ehow that in this
temperature range, the stress can drop by 507 or‘more for the first
30 8 of stress relaxation. In this temperature range, a plot of ip‘éir
vs. 1n (0 -~ ) often reveals a gradual reduction of the stress expo-
nent "n" as indicated by the slope of the plot (Fig. 29). This
observation indicates a possible reouction of.the back stress and/or
drag stress during relaxation as a>resu1t of thermal recovery. The
decrease ia the stress exponent may also signal a possible change of
the mode of recovery during stress relaxation. The stress exponent
at the beginning of the etressrrelaxation test usually has a value of
about 4, a tyﬁical number for power law ereep or dynamic recovery.
Toward the end of the test; ﬁﬁe stress exponent drops to a value of
2 or less, which is similarvto values obtained for diffusional creep

or static recovery. In other words, the recovery process has changed

from one dominated by dislocation climb and cross-slip to one which
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involves atomic diffusion across grain boundaries (or subgrain boun-
daries). -

It is observed thét the alloy experiences negative stress relaxa-
tion on the compressive side of the hysteresis loop. As shown in
equation (l4), negative creep occurs in compression whiﬁh can only be
compensated bf a "positive" stress-rate. An alternative explanation
can be given by the fact that the back stress is less negative than
the compressive applied stress thus fesulting in negative stress
relaxatibn.

It has been found that the inelastic strain-rate at thé beginning‘
of the stress relaxation test is often less than that measured just
prior to the start of the test. The "discontinuity" is more signifi-
cant at lower temperatureé and gradually diminishes as the temperature
increases. Whether this phenomenon is real material behavior or
merely the result of inaccurate measurements is a subject of much
controversy. In the next chapter, arguments offered by other inves-
tigators will be discussed and an attempt will be made to explain the

phenomenon in terms of the uncoupled constitutive model.
Material Constants and Their Physical Significance

The various materal constants required for the characterization
of the rate sensitive inelastic strain component are summarized in
Table II. The elastic constants tabulated in Table III are Eaken from
ref. [52]. The Poisson's ratio given in Table III (p. 78) is based on
‘room temperature data and is assumed to be constant. In practice, it

hds a weak temperature dependence. For example, the Poisson's ratio

= e e e <



Table II. Values for Back Stess () (for o = Umax)’ n, Drag Stress (K) and K".

n

Q K1 K 4
Temp. (MPa) (MPasD) (MPash)
(K) ] Stra}E—E?te n Strg%n:{ate Stra}E—E?te

(107 "'s™7) (107 's™ ) (10 's )
10 3.3 10 3.3 0.33 3.3 0.
755 | 468 468 5.50 390 513 1045 8.05 x 10" 4.03
811 | 252 265 4.96 1186 1260 1704 2.39 x 10'°  1.07
866 | 255 226 5.57 905 978 1274 4.53 x 10'¢  1.98
922 | 161 164 4.31 1690 1829 2597 1.15 x 10" 5,20
978 | 141 136 5.57 - 800 800 800 1.48 x 10*°  1.48
1033 | 118 111 4.75 672 672 672 2.69 x 10"  2.69
1089 76 66 4.70 488 488 488 4.32 x 10'  4.32
1144 41 38 3.63 532 532 532 7.85 x 10° 7.85

755- 922 K: 2, n & K obtained from stress relaxation tests.

978-1144 K:

n obtained from strain-rate change tests.
? obtained from strain drop, stress transient tests.
K assumed to be constant for all strain-rates.
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Table III. Values for Young's Modulus and Poisson's Ratio at
Different Temperatures.

Temperature K T/T * Young's

(K) o . ‘ Modulus
‘ - (GPa)
294 0.19 197
533 0.35 182
755 0.49 166
811 0.53 162
866 0.57 158
922 0.60 154
978 0.64 150
1033 0.67 146
1089 0.71 142
1144 0.75 137

v = 0.32 (assumed constant for all temperatures)

*Melting range is 1533 - 1628 K
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for Hastelloy-X has a value of 0.34 at 1255 K [53]. Since the change
is rather small, it will have a negligible effect on the resulting
straih calculations. With the strain hardening functien given in
Appendix D and the material constants defined in fable II (p. 77),
the total strain at each temperature and strain-rate can be uncoupled
into different components.

It is noted in Table II (p. 77) that the stress exponent varies
from 3.63 to 5.57. The value for n does not seem to be a sensitive
fungtion of temperature although slightly higher values are generally
obtained at lower temperatures. This is in contrast to unified
models where the n values at loéer temperatures may be as high as
60-100. Strain-rate cycling tesﬁs conducted at lower temperatures do
- result in higher n valﬁes if analysis is made assuming all inelastic‘
strain as being‘rate sensitive (or rate depéndent) as>the unified
theory does.

Values of the back stressrmeasured at the peak of the hysteresis
loops are shown in Table II (p. 77). At lower temperatures, the
internal stress values are also evaluated at zero strain. Based on
exper;mental data, back stress at other points can then be calculated
using equatibn (8). The results are plotted in Fig. 30-37. At 755 K,
the higher strain hardening rate observed can be seen as a result of
a high internal stress due to.limited thermal recovery (Fig. 30)

(p. 80). The back stress at this temperature is relatively indepen-
degt of strain-rate (Table II) (pf 77), which explains the rate
insensitive nature of the hysteresis loops. Between 811 K and 922 K,

the internal stress declines steadily as a function of temperature.
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The effect of increased thermal assistance is reflected by an increas-
ing effective stress as well as a decreasing strain hardening rate
(Fig. 31-33) (p.81-83). At each temperature, however, the internal
stress remains relatively constant, indicating that rate effects are
still ﬁot very significant. At 978 K and above, therma; effects are
important and the back stress usually saturates to a constant value,
accounting fbr the ;ppearance of a '"'plateau" region at the top of the
hysteresis loop. A constant back stress indicates a balance between
strain hardening and dynamic recovery and is equivalent to steady
state creep. It should be noted, however, that strain cycling and
creep tests involve different deformation histories. Strain cycling
tests are strain controlled, i.e., they are carried out at constant
strain-rate while the stress is monitored. .Creep tests, on the other
hand, are conducﬁed at cénstantlétress while the ?esulting strain-
rate (or creep rate) is monitored. A recentAstudy on a nickél-base
superalloy shows that at steady state, a tensile test (conducted at
constant strain-rate) and a creep test will produce equivalent results
provided the strain-rates are equal [54]. This requires that the ten-
sile test be performed at a strain-rate equivalent to the steady-state
creep rate for a given stress at a given temperature.

It can be seen that in this temperature range, slower strain-

rates result in lower back stresses. At reduced strain-rate, more

time will be available for dynamic recovery such as dislocation climb
and cross-slip to proceed.

The values of the drag stress K are tabulated in Table II (p. 77).

Despite some scattefing of the data, the drag stress is found in
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general'to decrease with iﬁcreasing temperature. This indicates an
increasing mobile dislocation density, possibly resulting ffom an
increased cell size which is both the source of mobile dislogations
and é‘place where‘they may be entrapped. At lower temperatures,

the drag stress increases with decreasing strain-rate, again indica-
ting the expected lower mobile dislocation density at loﬁer strain-
races. At higﬁer temperatures (978 - 1144 K), it is assumed that

K rehains-constant over the stréin—rate range considered. Strain-
rate cycling tests performed at these temperatures suggest that the
reduction in flow stress at lower strain-ratelis a result of changes
in the back stress rather than the drag stress. It was subsequently
confirmed by strain drop, stress tramnsient tests that the internal
stress décfeases with decreasing strain-rate in this temperature
‘range. From a physical standpoint, the abundance of thermal energy
available at these temperatures justifies the assumption that the
mobile>dislocation density does not vary appreciably over the strain-
rate range studied. The physical significance of the mobile dis—_
location density as well as the drag stréss can. be better understocd

in terms of the Orowan equation as shown below:

o
[}

AN (21)

where ¢ is a geometrical constant, P is the mobile dislocation
density, b is the Burgers vector and v is the average dislocatien

~velocity. v can be expressed as a function of the effective stress

as fbllows:

v=8c->F T - (22)
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where B8 is the average dislocation velocity at unit effective stress,
2 is the internal stress and n is the stress exponent. Substituting

equation (22) in equation (21) yields the following relationship:

. _ o0
g~ ¢ P, P BlO-D) | (23)

A comparison of equation (23) with equation (8) shows that the mobile

dislocation density‘is inversely propotional to the drag stress, i.e.,
o a K" (24)

Values for K at various temperatures and strain;rates are‘tabulated in
Table II (p. 77). The results ihdicated that at lower temperatures, K"
is relatively insensitive to temperature changes but increases as the
strain-rate decreases. In other words, the mobile.dislocation density
increases with strain-rate but not a sensitive function of temperature
(in the low temperature range). At higher temperatures, however, Kﬁ

is found to decrease steadily with temperature while remaining cons-
tant at various straiua-rates (over the strain-rate range considered).
This iﬁ turn indicates that mobile dislocation density increases with
temperature’but is insensitive to strain-rate change in the high tem-
perature range. Experimental data indicates that the rate sensitive
inelastic strain-rate increases both as a function of temperature and
strain~-rate. This observatiop can be explained by referring to
equation (21), which iﬁplies that the rate sgnsitive inelastic strain-
rate is controlled by the mobile dislocation density as well as the
average dislocation velocity. Aﬁ ldwer,temperatures, the back stress

is rate insensitive and equation (22) indicates that the average

R
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- dislocation velocity remains relatively constant, and therefore, has

limited effect on the rate sensitive inelastic strain-rate. Thus,

the increase in the rate sensitive inelastic strain-rate (at low

'temperatures) is mainly the result of higher mobile dislocsation

density at higher strain-rates. At high temperatures, however, the
mobile dislocation density as well as the drag stress is rate

insensitive and therefore has no significant impact on the rate

"sensitive inelastic strain-rate. In this temperature range, both

the back stress and the effective stress are found to be an increas-
ing function of strain-rate (Figs. 34-37) (p. 84 ~87), which results
ih a higher dislocation velocity and therefore a higher rate sensi-
tive inelastic strain-rate.

To summarize, the rate sensitive inelastic strain-rate is con-
trolled by the mobile dislocation density (or'drag stress) at lower
temperatures; whereas at higher temperatures, the average dislocation
velocity becomes the controlling factor. It should be noted that
despite an increase in the "magnitude” of the rate sensitive inelas-
tic strain with increasing strain-rate, it represents a smaller
"sercentage' of the total inelastic strain. This i§ consistent with

the general observation that a material is more rate insensitive at

higher strain-rates.




CHAPTER VI
EVALUATION OF THE MODEL
Justifying the Uncoupled Inelastic Strain Model

It is generally accepted that iﬁelastic deformation in crystal-
line materials. is a result of &islocation movement on various slip
planes. However, the physical processes involved afe still not fully
lunderstood despite considerable experimental effort. An area still
open to discussion is the role éf thermal activation in dislocation
dynamics under various temperature and strain-rate conditions. The
question of inelastic strain-rate coﬁtinuity (Qr discontinuity)
during a change in total strain-rate has received much attention
recently since it provides some important imnsight into the effect of
thermal assistance on material deformation.

A commdn approach to the study of inelastic strain-rate contin-
uity 1s by means of the stress relaxation test. It is performed by
interfup;ing a constant strain-rate test, holding the st;ain constant
while the stress is monitored as a function of time. Measurement of
the inelastic strain-rate immediately before and after the start of
stress relaxation should provide an aﬁswer aé to whether inelaétic

strain-rate continuity exists. While attractive in principle, the

‘test i$ difficult to conduct experimentally. In the following dis-

cussioh, arguments provided by other investigators will be presented

and an attempt will be made to describe the phenomenon in terms of

the uncoupled constitutive model.
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In a recent study, Alden [55] verified the existence of inelastic
strain-rate discontinuities in aluminum single crystals over a tem-
perature range of 77 K - 593>K. The existence of strain-rate discon-
tinuity at the start of a stress relaxation test can also be deduced
theoretically from the time-independent deformation theory (recovery-
rearrangement theory) developed by the same author [56]. In the time-
independent aeformation theory, inelastic deformation is considered
rate independent. It is assumed that stress alone is sufficient to
produce strain without the direct aid of thermal activation. Thermal
effect (or recovery) influences the deformation behavior indirectly
through the loss and rearrangement of obstacle dislocations. The

expression for the inelastic strain-rate is given in the theory as

. g+r .

Ei = -5 Ar (G > 0) (25a)
y .

] - r - A

Ei = -—@y Ar (¢ < 0) (25b)

where @y is the strain hardening rate in the absence of recovery

(assumed to be at 0 K), r is a generalized recovery parameter
associated with both loss and rearrangement of obstacle dislocations,
Ar is a free area function characﬁerizing local slip behavior.

During a tensile test & > O and the inelastic strain-rate is given
by equation (25a). During strgss relaxation, however, & < 0 and
équation (25b) is utilized. It can be seen from equation (25) that
the inelastic strain-rate ratio (i.e., ratio of the inelastic strain-

rate immediately after and before the start of stress relaxation) is

"given by
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where R is the inelastic strain-rate ratio and & denotes the stress-

rate prior to stress relaxation. R will be less‘théd uﬁi;y except
for the case where ¢ is equal to zero. Therefore, inelésﬁic strain-
rate discontinuity will always occur prior to saturation. It was
found that R is small initially and increases with increasing stress.
Most recently, a study by Holbrook, et al. [57] on aluminum,
iron and 304 stainless steel confirmed the existence of inelastic
strain-rate continuity. This observatiqn is in agreement with the
thermally-activated deformation theory (reaction-rate theory) suppor-
ted'by the authors. Iﬁ this theory, it is postulated that inelastic
deformation results from the thermally assisted ovércoming of local
obstacles. The '"thermal activation barrier'" (i.e. activation energy)
increases with dislocation density and decreases with stress. The

expression for the inelastic strain-rate is given by
, AG | |
Ei éo exp( kT] 27)

where AG is the activation energy for dislocation motion past
obstacles, k is the Boltzmann's coﬁstant, T is the absolute tempera-
ture and éo is dependent on stress, temperéture and the current
microstructure. It can be seen frgm equation (27) that inelastic
deformation is controlled primarily by the activation energy AG and : . ;
is therefore rate dependenﬁ.

It is assumed that all inelastic defarmation is rate dependent

and the inelastic strain-rate can be represented by equation (8) as
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follows:

g - Q‘n

K

éir = sgn(c - Q)

None of the parameters on the right side of the equation are expec-

ted to change immediately before and after the start of stress

relaxation. Although the total strain-rate experiences a sudden
change from positive (or negative) to zero as the crosshead is stop-
ped, the inelastic strain-rate will be continuous. The authors state
that inelastic strain-~rate discontinutiy is merely the result of

inaccurate measurements and continuity can be verified with improved

time and load resolution provided by microprocessor digital data

acquisition. Inelastic strain-rate continuities were confirmed for
aluminum, iron and 304 stainless steel at low strain-rates. The
apparent discontinuity at higher stréin—rates was believed to be the
result of experimental limitations posed by the testing system. A
small number of experiments were also performed on polycrystalline
nickel and 304 L stﬁinless steel utilizing a strip chart recorder
for data collecting purposes. Experimental results for nickel
indicated inelastic strain-rate discontinuity, which was also con-
sidered to be a resolution problem rather than real material beha-
vior.

In this research program, the uncoupled constitutive model can

be expressed in the following form:

3 s+ € f(o, 0__ ) & + s‘n(c ”)'O - of”
= ; = -3
&1 €ii ir ' “max 8 | K

(28)
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Since & goes from positive to negative as the constant strain-rate is
-interrupted for stress relaxation and since f{(g, cmax) is essentially
zero just after a load reversal, the rate insensitive inelastic strain-
rate experiences a change from a positive value to zero. Since the
stress is continucus at this point, the raﬁe sensitive inelastic
strain-rate would be expected to be continucus. Thus, a large decrease
in inelasticistrain—rate as one interrﬁpts the strain cycling indicates .
that the inelastic strain;rate prior to stress relaxation is priﬁci—
pally rate insensitive. If the inelastic strain-rate before and after
the interruption is essentially the same, this indicates that the
inelastic strain during strain cycling is mainly rate sensitive. The
subject of strain-rate continuity has been studied for Hastelloy-X at
three different strain-rates for a temperarure range from 755 K to

1144 K. The results are sﬁmmarizé& in Table IV. It can be seen that
for a given strain-rate, the strain-rate ratic (given by éi+/éi-) is

an increasing function of temperature. For a given temperature, the
‘strain-rate ratio is found to decrease with iﬁcreasing strain-rate.

At 755 K, the inelastic strain-rate after the start of stress relaxa-
tion is considerably lower than that prior to stress relaxation.
Althouéh adequate thermal assistance is available to overcome local
obgtacles, long range barrieré such as grain boundaries and cell

walls have to be overcome by dislocation climb or cross-slip, which

are quite sluggish at this relatively low temperature. Thus, the
inelastic strain is mostly rate insensitive which accounts for the
rather significant discontinuity observed at this tempefature. The

rate sensitive inelastic strain-rate is increased considerably at
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Table IV. Inelastic Strain-rate Continuity at Various Temperatures.

A & =1x 10767
t .
. - + . +,. -
Temp. Stress 62 ) éi i €y /Ei
(K) (MPa) (10" %s™ 1 (1074s™ ) (%)
755 434 8.76 .21 2
: : 558 9.57 .10 1
811 492 9.51 1.22 13
866 386 9.18 2.12 23
455 9.57 1.01 11
922 405 9.34 2.34 25
458 9.59 1.95 20
978 330 9.40 9.01 96
1033 277 9.80 9.80 100
1089 185 9.61 9.61 100
1144 119 9.83 9.83 100

plastic strain rate before the beginning of stress relaxation
test

me
1]

Me
]

plastic strain rate after the beginning of stress relaxation
test
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Table IV. (Continued)
B) & =3.3x 10 *s7t
Temp. Stress éi - éi * & Yre.
(K) (MPa) (107%™ (107%s™ 1) (%)
755 450 2.95 .41 14
568 - 3.19 .24 8
811 394 2.98 .40 13
471 3.16 .69 22
866 376 3.10 .68 22
439 3.20 .54 17
922 381 3.14 1.21 39
431 3.22 1.38 43
978 327 3.19 3.09 97
1033 236 3.27 3.27 100
1089 154 3.21 3.21 100
1144 96 3.29 3.29 100

e




v’fable Iv. tContinued)
0 g =3.3x 10 °s !
Temp. Stress éi - z-':i * éi +/é.
(X) (MPa) (107%™h) (107%s™h) A
755 592 3.19 | .82 ‘ 26
81l 373. 2.97 .80 27
866 354 3.05 1.84 60
922 352 3.15 2.38 76
978 246 3.20 3.19 100
1033 163 3.27 3.27 100
1089 100 3.22 3.22 100
1144 | 59 3.29 3.29 100
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lqwer strain-rates although it still represents a small fraction of
the total ineléstic strain-rﬁte. The rounded corners‘of the hystere-~
sis loops and the high strain hardening rates at this temperature

are further evidence of the absence of significant tHermally assisted
flow. The rate sensitijive inélastic strain-rate increases steadily
with temperature, indicating the growing influence of thermal effects.
At higher stréin—rates, rate effects do not become important until
the temperature is raised above 922 K. At the lowest straiﬁ-rate,
however, the rate sensitive inelastic strain-rate componenﬁ becomes
dominant at temperatures above 866 K. 1In all cases, the inelastic
strain-rate is essentially all rate sensitive ét 978 K and above.

The high atomic diffusion rate in this temperature range implies that
dislocation climb is the dominan; recovery procesé. Inelastic strain-
'rate éontinuity'isgenerally observed in this temperature range due to
the lack of rate insensitive inelastic strain.

It should be noted that the information provided in Table IV

(p. 97) is subjected to modification for two reasons: (1) time
resolution achievable by our recording system is not so good as that
attained by some other investigators; (2) the effect of machine tran-~
sient has not been studied in detﬁil. To correct the first sﬁort-
coming, a high speed digitél computer has been iﬁstailed which can
provide gréatly improved time and ioad resolution. Before aﬁy test
can be peffofmed to coﬁfirﬁ thg existence of inglasiic strain-rate
>continﬁi£y (or‘dis;ontinutiy), the campliéations introdu;edvby'
machiﬁé éh#raéte;iéticé‘have tb bejfully undérstood.- S;§cé éontin—

dity‘haé;CO'be studied at the point where thé crosshead is stopped
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"instantaneously", machine transient which lasts for even a small frac-
tion of a second can effectively nullify any attempt to obtain a
meaningful result. Until further experiments are conducted, however,

-~our discussienwill be based on the data tabulated in Table IV (p. 97).
Comparison of Experiments with Theoretical Predictioms

The uncoupled constitutive model as described in Chapter III may be
used to predict strain cycling, stress relaxation,creep or other
phenomena if used with‘the proper material constants. To first see
if the model is self consistent in being able to reproduce the experi-

l mental hysteresis loops, all of the input strain cycling curves were
'L | simulated using a‘numerical scheme discussed earlier. Stress relaxa-
tion simulations are also presented and comparisons are made with
observed relaxation behavior.

Saturated hysteresis loops. Saturated hysteresis loops are simu-

lated using equations (l1) - (13) and the numerical scheme presented
- . in Appendix Af The strain hardening function-and other material
constants are obtained from Appendlx D, Table II (p. 77) and Table
. " B 4 (p. 78). The experimental and simulated hysteresis loops at
various temperatures;and strain-rates areypresented in Figures 38 -
45. Generally speaklng,-the experlmental hystere51s loops and the
31mu1ated curves are in good‘agreement over the temperature and
- straln-rate ranges studled ' Rounded corners are well simulated at
the lower temperatures nhere 1nelast1c straln is mostly rate 1nsen-

"Sitive; The unlfled theory w1th 1ts high 'n" values always gives -

.

. -square corners at lower temperatures. At hlgh temperatures inelastic
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strain is mostly rate sensitive and reSults‘obtained by the uncoupled
model is the same as those obtained by the unified mddels. At high.
temperatures and low strain-rates, predicted hyéteresis-loops may

. .appear .£o..be too square compared to experimental results (Fig. 45)
(p. 109). This "squareness'" at low strain-rates is common among
unified models. Walker [17] suggested that the "square" hysteresis
loops are a result of the fact that the back stress reaches the
saturated values more rapidly at low strain-rates.

Stress relaxation behavior. Theoretical stress relaxation’

behavior is simulated using equations (8) and (l4) and the numerical
scheme shown in Appendix B. Material constants utilized are tabula-
ted in Tables II and III (p. 77 and 79). Values for the back stress
"Q" and the drag stress "K" are assumed to remain constant during
the course of stress relaxatiomn. Theoretical‘predictions as well as
experiméntal results are shown in Figs. 46~53. At lower tempera-
tures, thermal recovery is less significant and $ and K are not
expected to change appreciably during stress relaxation. Predicted
relaxation behavior at the lower températures is reasonably close to
experimental observation (Figs. 46-49) (p. 111 - 114),rindicating
the above assumptions are valid. At higher temperaturés, however,
;ctual asymtotic stress values are much lower than predicted values
(Fig. 50 - 53) (p. 115 = ilS)J At these higher temperatures,
recovery ﬁakes place during the course of stress relaxation which
results in lower ﬁalues for @ and K. If the specimen is reloaded

at the end of the relaxation test, a reduction in flow stress is

generally observed. The raw data shown in Fig. 54 indicate the
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points along the saturated hystéresis loops where stress relaxation
tests have been conducted. In each case, the reloading path after
stress relaxation always stayé below the original loading path. At
point A, for example, the flow stress has a value of 349 MPa, which
is reduced to 122 MPa (point ﬁ) after 16 minutes of stress relaxa-
ti;n. Upon reloading, the flow stress reaches a value of 328 MPa
(Point C); a reductidn of 21 MPa from the initial value of the flow
stress. This provides direct experimental evidence that thermal
recovery has taken place during stress relaxation. From a micro-
structural standpoint, the reduction in flow stress is mainly assoc-
iated with the coarsening of‘the cell structure. The initial micro-

structural state prior to relaxation can usually be re-established

after several cycles.
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CHAPTER VII
CONCLUSIONS

An uncoupled viscoplastic. constitutive model has been presented
tc describe‘;lastic-plastic behavior of metals under a variety of
temperature and strain-rate conditiomns. The uncoupling of the total
inelastic strain into rate sensitive and rate insensitive components
allows modelling of cyclic deformation behavior over a wide range of
temperatures. The model is capable of describing strain cycling,
stress relaxation and creep under isothermal conaitions.

This model recognizes that the inelastic strain produced by a
load change consists of both rate sensitive and rate insensitive
components. In this regard, it is different from the models des-
cribed in the preceding chapter which either assume inelastic strain
is all rate independent as in the time-independent deformation theory
or all rate dependent as in the thermally-activated deformation
theory. Although the uncoupled approach may seem somewhat "arti-
ficial", some physical justifications are given in Chapter IILI. As
discussed previously, the role of thermal activation at low tempera-
tures is seen mainly in the overcoming of short range obstacles and
therefore has no major effect on the overall deformation process.

On the other hand, thermally activated processes such as dislocation
cross—-slip and dislocation climb dominate at high temperatures. A %
major difficulty encountered by the unified models is that at lower 4
temperatures they often predict hysteresis loops which are too

"square'. The ''squareness' is due to the assumption that all
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inelastic strain is thermally activated. The rate sensitive inelastic

:

strain component of the uncoupled model is described by a power law
formulation which is standard to many unified models. Therefore, the
two approaches are nearly the same at high temperatures where inelas-
tic strain is essentially all rate sensitive while at lower tempera-
tures, the uncoupled model provides more satisfactory predictions.

At present, only saturated hysteresis loops have been considered.
While saturated hysteresis loops may be useful for long term predic-
tions, low cycle fatigue applications may require the modelling of
cyclic response prior to saturation. Two internal variables = the back
stress and the drag stress, are employed to describe the current
microstructural state of the material. Growth laws have to be
developed for the internal variables before cyclic hardening (or
softening) can be modelled. Comparison between experimental and
simulated hysteresis loops shows good agreement in general. More
experiments are necessary, hewever, to verify the predictive capa-
bility of the model for a complex thermomechanical loading history.
Stress relaxation predictions at lower temperatures are reasonable
while high tempefature predictions indicate signifitanf thermal
effects. Recovery terms have to be incorporated into the growth

laws for the state variables if the model is to be useful for high

temperature stress relaxation predictions.
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CHAPTER VIII
RECOMMENDATION FOR FUTURE WORK

- .-The uncoupled constitutive model described earlier has been shown
to satisfactorily model saturated hysteresis loops under isothermal
conditions over a wide range of temperatures. In this chapter,

experiments hecessary for further development of the model will be

’0utlined,

As mentioned in the previous chapter, modelling of cyclic harden-
ing prior to saturation is necessary to predict short term response
such as low cycle fatigue. This will require the de;elopment of
growth laws for the two internal state variables utilized in the
model. Since cyclic saturation is basically associated with the
formation of a stabilized cell structure, it will be reasonable to
assume as a first approximation that the drag stress is mainly res-
ponsible for cyclic hardening while the back stress reacﬁes a satura-
ted value after the first cycle. To verify the above assumptions,
tests should be conducted to measure the back stress at suitable
intervals prior to saturation. It has been shown in the previous
chapter that discrepancies exist between experimental and predicted
stress relaxation behavior at high temperatures, indicating the
need to incorporate thermal recovery into the growth laws for 1 and
K. The contribution of grain boundafy effects to the overall defor-
mation process has not been considered due to insufficient informa-
tion at this time. It will be interesting to consider the introduc-

tion of an additional statevariable to model grain boundary sliding

e e s m e s e e T gAEe— e s e ey o -
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as suggested by some investigators. Constant stress creep experi-

ments should also be conducted at various points along the hystere-

sis loop and compared to predictiogs made by the model. Finally,
_.tests have to be performed under nonisothermal loading conditions

to study the capability of the model to predict more complex thermal-

mechanical histories.
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APPENDIX A

COMPUTER PROGRAM OUTLINE FOR HYSTERESIS LOOP SIMULATION

*

The following outline describes the numerical scheme used to
simulate saturated hysteresis loops. Simulation always starts at
the point where loading begins (i.e., the point corresponding to

- maximum compressive stress).

A. Enter required material constants. These include Young's
Modulus, Poisson’s ratio, initial diameter, programmed diamet-
ral strain-rate (dD/dt), stress exponent and drag stress.

B. Enter initial conditons. These include initial values for
-dD/4P, straip hardening function, stress,.total strain and back
stress.

C. Enter required time step.

D. Calculgte strain hardening rate [equation (20)].

E. Calculate total strain-rate corresponding. to strain hafdening
rate in step D. [equation (13)].

F. Calculate strain increment based on strain-rate in step E and
time step in step C.

G. ,Calculate corresponding stress increment [equétion (12)].

H. Update stress and strain values.

1. Add stres; iﬁcrément to stress.

2. Add strain increment to strain.

I. Check to see if total strain range is exceeded. If exceeded go

SR to step M to start unloading.
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Update values for back stress and strain hardening function.
Linearly interpolate between input values if necessary.
Calculate new value for dD/dP.

Repeat steps D through K.

Modify initial conditions corresponding to the point where
unloading starts.

Repeat sfep L. If total strain range is exceeded in step I, stop.
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APPENDIX B

COMPUTER PROGRAM OUTLINE FOR STRESS RELAXATION PREDICTION

The.following outline describes the numerical scheme. used to
predict stress relaxation behavior. Small time step is used initially
to better simulate the initial portion of the stress relaxation curve.
For computational efficiency, the time step is increased progressively

as the stress approaches the asymtotic .value.

A. Enter material constants. These include Young's Modulus, tack
stress, drag stress and stress exponent.

B. Enter initial values for stress and time limit.

C. Calculate inelastic strain-rate {equation (8)].

D. Calculate stress-rate corresponding to inelastic strain-rate
given in step C.[equation (14)].

E. Calculéte new stress value by subtracting stress decrement (or
increment) from previous stress.

G. Check to see if increase in time step vis necessary.

H. Check to see if time limit has been exceeded. If time limit
exceeded, stop.

I. Repeat steps C through H.
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APPENDIX C
DERIVATION OF EQUATIONS USED FOR DATA REDUCTION

In this appendix the equations used for data reduction will be
derived. Since diametral extensometer is employéd in our testing,
diametral strain is measured and converted into axial strain. The
equations are summarized in Chapter V.

Total diametral strain can be separated into elastic and inelas-
tic components as follows:

(e)

D = (ee)D + (ei)D | (c)

£
t
The diametral elastic strain can be converted into axial strain as

shown below:

(e ). ==ve = -v% - (C2)

where v is the elastic Poisson's ratio. Similarly, the diametral

inelastic strain can be expressed in terms of the axial strain as

= - ~ 1
(€y)p = -V &5 % gy BN

where vy is the inelastic Poisson's ratio. Equation (C3) can be

rearranged as follows:

_ @, .3 ,
Ei = -ZEEt)D - (z—:e)D] = ZE)O +vP] (C4)

The total axial strain can be given in terms of its. components as

e =g +¢g, , (€5)

|
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(1 - 2v) -2 EQ (C6)

O

m
i
mla

which is the same as equation (l17). The inelastic strain can be
obtained by subtracting the elastic strain from the total strain,

i.e.

- - pfwe 4
ei- Z[E +DOJ (c?hH

which is also given by equation (18). The strain hardening rate can

be expressed as follows:

do do 1 |
det (1 _2v) - (1 2v)_ 2_ dD ‘(CS)
o E Do do

Equation (C8) is identical with equation (20). Differentiation of

equation (C6) gives

c oL
t E

ala
Q
N
[a
&
—
[a W
Q
"
[y8)
[a %
o

T (1-2v) - e T -3 (C9)

Substituting equation (C8) into equation (C9) results in

;2@
ét = 1 dodt 7 - (C10)
l-Ed—E-(l 2v)

which is the same as equation (13). The inelastic strain-rate can

be obtained from equation (C7) as

A

de
D} = _Z[V do_ "t (Cl1)

: =_22_O -l—__ —_— —
€ E dt © D, E de_ dt

1l dD
dt D

dt
)

Substituting equations (C8) and (Cl0) into equation (Cll) yields




= : L e et
e o b s o= b et

which is given by equation (19).
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VALUES FOR RATE INSENSITIVE, INELASTIC STRAIN FUNCTION

= 149 MPa

= 286 MPa

Stress f(o, Gv )
max
(MPa) (MPa" 1)
Loading
-149 0
=106 0
106 0
149 0
- Unloading
149 0
106 0
-106 0
-149 0
Stress f(o, o__)
. max
(MPa) (MPa 1)
Loading
-286 0
0 0
106 0.187E~-6
212 0.406E-6
286 0.161E-5 :
Unloading
286 0 ;
0 0
-106 0.275E-6 3
=212 0.580E-6 [
-286 0.148E-5 ;




[ —

g

o]

max

max

= 392 MPa

= 435 MPa

Stress f(o, o )
max
(MPa) (MPa™ 1)
- Loading
=403 0
0 0.319E-6
106 0.165E-5
212 0.259E-5
318 0.435E-5
392 0.124E-4
Unloading
392 0
0 0.232E-6
-106 0.186E-5
-212 0.270E-5
-318 0.417E-5
=403 0.107E-4
Stress f(o, @ x)
(MPa) (MPa 1)
Loading
=446 0
0 0.652E-6
106 0.258E-5
212 0.432E-5
318 0.620E-5
392 0.126E-4
424 0.246E-4
435 0.680E-4
Unloading
435 0
0 0.551E-6
-106 0.214E=-5
=212 0.441E=5
-318 0.694E~5
-392 0.108E=-4
=424 0.184E=4
0.

-446
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g
max

= 467 MPa

Stress f(g, o__)
max
(MPa) (MPa™?)
Loading
=477 . 0
-106 0.145E-6
.0 0.113E-5
106 0.255E-5
212 0.559E-5
318 0.880E-5
424 0.187E-4
461 0.455E-4
467 0.134E-3
Unloading
467 0]
106 0.145E-7
0 0.104E-5
-106 0.294E-5
=212 0.546E-5
~-318 0.890E-5
=424 0.165E-4
=459 0.329E-4
=477 0.913E-4
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= 520 MPa
X

Stress f(o, Gmax)
(MPa) (MPa™ 1)
Loading
-530 0
-106 0.681E-6
0 0.164E-5
106 0.330E-5
212 0.732E-5
318 0.114E-4,
424 0.197E-4
477 0.333E-4
509 0.754E-4
520 0.196E-3
Unloading
520 0
106 0.127E-6
0 0.135E-5
-106 0.383E-5
-212 0.723E-5
-318 0.110E-4
=424 0.177E-4
=477 0.310E-4
-509 0.541E-4
-530 0.157E-3
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g = 562 MPa
X

Stress £(o, Gmax)
(MPa) (MPa~ 1)
Loading
=567 0
-106 .0.986E-6
0 0.225E~5
106 0.394E-5
212 0.658E=5
265 0.862E-5
318 0.126E-4
371 0.164E~4
424 0.220E-4
477 0.328E-4
509 0.461E-4
530 0.600E-4
‘ . 552 0.111E-3
.y 562 0.291E-3
Unloading
562 0
106 0.783E-6
0 0.174E-5
~-106 0.388E-5
-212 0.677E-5
~318 0.120E-4 -
-371 0.164E~4 %
-424 0.217E-4 ;
=477 0.314E-4
S -509 0.403E=4
T | ~530 0.565E~4
o =546 0.796E-4
=557 0.132E-3
=567 - 0.388E-3
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ag ‘= 610 MPa
max

Stress f(c, @ )
max
(MPa) - (MPa’ 1)
Loading .
-615 0]
-106 0.141E=5
0 0.288E~>5
106 0.429E=-5
212 0.723E-5
318 0.126E-4
371 0.175E-4
424 0.232E~4
477 0.307E-4
© 530 0.448E-4
562 0.629E-4
583 0.868E~-4
605 0.162E-3
610 0.229E-3
Unloading
610 0
106 0.681E-6
0 0.188E-5
-106 0.367E-5
-212 0.630E-5
-318 0.103E-4
-371 0.159E-4
=424 0 194E-4
=477 . 0.274E-4
=530 0.416E-4
-562 0.572E~4
-583 0.894E-4
-605 0.186E-3
-615 0.372E-3
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