
 

 
Supervisory Control of Unmanned Vehicles 

 
by Jessie Y. C. Chen, Michael J. Barnes, and Michelle Harper-Sciarini 

 
 

ARL-TR-5136 April 2010 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Approved for public release; distribution is unlimited.  



NOTICES 
 

Disclaimers 
 
The findings in this report are not to be construed as an official Department of the Army position unless 
so designated by other authorized documents. 
 
Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the 
use thereof. 
 
Destroy this report when it is no longer needed.  Do not return it to the originator. 



Army Research Laboratory 
Aberdeen Proving Ground, MD  21005-5425 
 

ARL-TR-5136 April 2010 
 
 
 
 

Supervisory Control of Unmanned Vehicles 

 
Jessie Y. C. Chen and Michael J. Barnes  

Human Research and Engineering Directorate, ARL 
 

Michelle Harper-Sciarini 
University of Central Florida 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Approved for public release; distribution is unlimited. 



ii 

REPORT DOCUMENTATION PAGE Form Approved 
OMB No. 0704-0188 

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering 
and maintaining the data needed, and completing and reviewing the collection information.  Send comments regarding this burden estimate or any other aspect of this collection of information, 
including suggestions for reducing the burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson 
Davis Highway, Suite 1204, Arlington, VA 22202-4302.  Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to 
comply with a collection of information if it does not display a currently valid OMB control number. 
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 

1. REPORT DATE (DD-MM-YYYY) 

April 2010 
2. REPORT TYPE 

Final 
3. DATES COVERED (From - To) 

June 2008–June 2009 
4. TITLE AND SUBTITLE 

Supervisory Control of Unmanned Vehicles 
5a. CONTRACT NUMBER 

 
5b. GRANT NUMBER 

5c. PROGRAM ELEMENT NUMBER 

6. AUTHOR(S) 

Jessie Y. C. Chen, Michael J. Barnes, and Michelle Harper-Sciarini 

5d. PROJECT NUMBER 

622716H70 
5e. TASK NUMBER 

 
5f. WORK UNIT NUMBER 

 
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 

U.S. Army Research Laboratory 
ATTN:  RDRL-HRM-AT 
Aberdeen Proving Ground, MD  21005-5425 

8. PERFORMING ORGANIZATION 
    REPORT NUMBER 

ARL-TR-5136 

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 

 
10. SPONSOR/MONITOR’S ACRONYM(S) 

 

11. SPONSOR/MONITOR'S REPORT 
      NUMBER(S) 

 
12. DISTRIBUTION/AVAILABILITY STATEMENT 

Approved for public release; distribution is unlimited. 

13. SUPPLEMENTARY NOTES 

Institute for Simulation and Training, University of Central Florida, 3280 Progress Dr., Orlando, FL  32826 

14. ABSTRACT 

The purpose of this report is to review research pertaining to the limitations and advantages of supervisory control for 
unmanned vehicle (UV) systems.  We identify and discuss results showing technologies that mitigate observed problems, such 
as specialized interfaces and adaptive systems.  In the report, we first present an overview of definitions and important terms of 
supervisory control and human-agent teaming.  We then discuss human performance issues in supervisory control of UVs with 
regard to operator multitasking performance, trust in automation, situation awareness, and operator workload.  In the following 
sections, we review research findings for specific areas of supervisory control of unmanned air vehicles, unmanned ground 
vehicles, and heterogeneous UVs (i.e., using different types of UVs in the same mission).  In the last section, we review 
innovative techniques and technologies designed to enhance operator performance and reduce potential performance 
degradations identified in the literature. 
15. SUBJECT TERMS 

performance, user interface design, supervisory control, unmanned vehicle, robotics operator 

16. SECURITY CLASSIFICATION OF:   
17. LIMITATION 
OF ABSTRACT 

 
UU 

18. NUMBER 
OF PAGES 

 
60 

19a. NAME OF RESPONSIBLE PERSON 

Jessie Y. C. Chen 
a. REPORT 

Unclassified 
b. ABSTRACT 

Unclassified 
c. THIS PAGE 

Unclassified 
19b. TELEPHONE NUMBER (Include area code) 

407-384-5435 
 Standard Form 298 (Rev. 8/98) 

 Prescribed by ANSI Std. Z39.18 



iii 

Contents 

List of Figures v 

List of Tables vi 

Acknowledgments vii 

1.  Introduction 1 

1.1  Supervisory Control - Overview .....................................................................................1 

1.1.1  Level of Autonomy .............................................................................................2 

1.1.2  Human-Automation Interactions .........................................................................3 

2.  Operator Performance Issues in Supervisory Control of UVs 4 

2.1  Operator Multitasking Performance ................................................................................4 

2.2  Trust in Automation ........................................................................................................5 

2.3  Situation Awareness ........................................................................................................8 

2.3.1  Task Switching ....................................................................................................9 

2.3.2  Error Diagnosis and Recovery ............................................................................9 

2.4  Operator Workload ........................................................................................................10 

3.  Supervisory Control of Unmanned Aerial Vehicles 10 

4.  Supervisory Control of Unmanned Ground Vehicles 13 

5.  Supervisory Control of Heterogeneous Unmanned Vehicles 15 

6.  Interface Designs for Supervisory Control of Unmanned Vehicles 16 

6.1  Multimodal Displays/Controls ......................................................................................18 

6.2  Planning Tools ...............................................................................................................18 

6.2.1  Schedule Management Aid ...............................................................................19 

6.3  Visualization Tools........................................................................................................20 

6.3.1  Augmented Reality ............................................................................................21 

6.3.2  Ecological Interface Design ..............................................................................22 

6.4  Attention Management Tools (Interruption Recovery Aid) ..........................................24 



iv 

6.5  Trust Calibration Tools .................................................................................................26 

6.6  Adaptive Automation ....................................................................................................27 

6.7  Intelligent Agents and Human-Robot Teaming ............................................................31 

7.  Conclusions 32 

8.  References 33 

List of Symbols, Abbreviations, and Acronyms 47 

Distribution List 48



v 

List of Figures 

Figure 1.  Timeline display and configural display (right) (adapted from Cummings et al. 
[2007], with permission). .........................................................................................................20 

Figure 2.  Visualization tool (from left to right):  individual robots, semitransparent, and solid 
(adapted from Humphrey et al. [2006], with permission). ......................................................21 

Figure 3.  Synthetic vision symbology added to simulated UAV gimbal camera video, 
marking threat, landmarks, areas of interest, and runway (symbology generated with 
LandForm SmartCam3D, Rapid Imaging Software, Inc.; adapted from Calhoun and 
Draper [2006], with permission). .............................................................................................22 

Figure 4.  EID display that shows the intention of the automated system (dotted lines indicate 
the automation’s intentions) (adapted from Furukawa et al. [2004], with permission). ..........23 

Figure 5.  EID display (the three panels in the center) for a partially automated process 
control simulation. ...................................................................................................................23 

Figure 6.  Supervisory control of four UAVs—configural display is the center panel with 
three green triangles indicating the costs of planned operations (image adapted from 
Cummings and Bruni [2009], with permission). .....................................................................24 

Figure 7.  Interruption recovery aid—textual event history list (CHEX, upper right) (adapted 
from St. John et al. [2005], with permission). .........................................................................25 

Figure 8.  The interruption assistance interface (adapted from Scott et al. [2006], with 
permission). ..............................................................................................................................25 

 



vi 

List of Tables 

Table 1.  The 10 LOAs of decision and action selection (modified from table 1 in 
Parasuraman et al. [2000]). ........................................................................................................2 

 



vii 

Acknowledgments 

This report was sponsored by the Safe Operations of Unmanned Systems for Reconnaissance in 
Complex Environments Army Technology Objective of the U.S. Army.  The authors wish to 
thank Mr. Bryan Clark for his assistance in preparing the manuscript.  The authors also wish to 
thank the reviewers for their helpful comments.  



viii 

INTENTIONALLY LEFT BLANK. 



1 

1. Introduction 

Unmanned vehicles (UVs), including unmanned air vehicles (UAVs) and unmanned ground 
vehicles (UGVs), are becoming an essential part of the battlefield.  The Armed Forces have large 
programs for developing robotic systems (Barnes, in press) that encompass aerial, sea, ground, 
and subterranean applications.  Future warfare will depend on collaboration among UVs, not 
only within services but also between services, and eventually among allied partners.  Battlefield 
collaborations will involve hundreds of UVs as well as an equal number of manned systems 
requiring novel techniques, such as call center approaches, to monitor the unfolding decision 
environment.  The complexity and sheer number of mixed assets in future operations will require 
increased autonomy and problem-solving capabilities for unmanned systems (Lewis et al., 2006).  
Furthermore, to maximize human resources, it will be desirable to designate a single operator to 
supervise multiple UVs, adding to his or her already heavy task load (Barnes et al., 2006b; Chen 
et al., 2008).  However, having systems with automated behaviors introduces its own set of 
problems, including overreliance on the automated systems, potential situation awareness (SA) 
degradations, and possible loss of skills to perform the tasks manually when automation fails 
(Klein et al., 2004; Parasuraman and Riley, 1997; Parasuraman et al., 2000).  

The purpose of this report is to review research pertaining to the limitations and advantages of 
supervisory control for UV systems.  More importantly, we identify and discuss results showing 
technologies that mitigate observed problems, such as specialized interfaces and adaptive 
systems.  In the following section, we first present an overview of definitions and important 
terms of supervisory control and human-agent teaming.  We then discuss human performance 
issues in supervisory control of UVs with regard to operator multitasking performance, trust in 
automation, SA, and operator workload.  In sections 3–5, we review research findings for 
specific areas of supervisory control of UAVs, UGVs, and heterogeneous UVs (i.e., using 
different types of UVs in the same mission).  Finally, in section 6, we review innovative 
techniques and technologies designed to enhance operator performance and reduce potential 
performance degradations identified in the literature.    

1.1 Supervisory Control - Overview 

Supervisory control of technology may be defined in terms of human information processing and 
the operator’s role in a given task, or from the perspective of the level of automation employed 
and the types of operator interactions with the automated technology.  Humans play a variety of 
roles in supervisory tasks, including planning, teaching, monitoring, intervening, and learning 
(Sheridan, 2002).  These roles typically occur in the temporal order described and may repeat 
throughout a supervisory task.  Sheridan (2002) describes these roles in sequence as (1) planning 
the course of action before the automation is activated, (2) instructing the computerized 
technology to perform a task in a particular manner, (3) monitoring the instructed automation to 
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be sure it goes as planned, (4) intervening, when necessary, to adjust or correct the automation, 
and (5) learning from the performance and outcomes of the automation in order to improve 
planning for future interactions.  As task complexity increases, there is greater need for planning 
and teaching.  In addition, the need for monitoring and intervening depend on the quality of 
planning and instruction.  

1.1.1 Level of Autonomy 

When implementing a supervisory control task, the amount and types of human interaction with 
the automated technology must be considered in order to determine the appropriate level of 
automation to employ.  Parasuraman et al. (2000) have defined human interaction with 
automated technology in terms of 10 “levels of automation of decision and action selection” that 
are based on four stages of human information processing:  (1) information acquisition, (2) 
information analysis, (3) decision and action selection, and (4) action implementation.  The 10 
levels of automation are defined in table 1, which has been modified from the original table 1 
appearing in Parasuraman et al. (2000).  There are risks, benefits, and consequences associated 
with each level of automation in terms of the associated mental workload, reliance on the 
automation (which introduces the issues of trust and reliability of the automation), and the 
human operator’s level of SA (see Parasuraman et al., 2000).  Therefore, it is important to plan 
for a level of automation (LOA) that provides a balance of human workload that is challenging to 
the operator, yet manageable, and that also provides a level of SA sufficient to meet task 
performance goals.  For example, automation level 10 excludes the human operator from making 
decisions and taking actions; thus, the supervisory monitoring role of the human becomes a 
vigilance task, which can lead to operator complacency, resulting in human performance errors. 

Table 1.  The 10 LOAs of decision and action selection (modified from table 1 in Parasuraman et al. [2000]). 

High 10 
Full autonomy:  the computer makes all decisions, acts autonomously, and ignores the human 
operator. 

 

9 The computer informs the human operator, only if it “decides” to. 
8 The computer informs the human operator, only if asked to. 
7 The computer executes automatically, then informs the human operator as necessary. 

6 
Allows the human a limited amount of time to veto an action before it is automatically 
executed. 

5 The computer executes the suggestion with approval from the human operator. 
4 The computer suggests one alternative. 
3 The computer narrows the decision making to a few selections. 
2 The computer offers a complete set of decision/action alternatives. 

Low 1 
Manual operation:  the computer offers no assistance to the human operator, who must make 
all decisions and take all actions. 
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1.1.2 Human-Automation Interactions 

Supervisory control may also be defined in terms of the coordinated interactions that occur 
between the human and the automation, referred to here as human-agent (H-A) teaming.  
Researchers have referred to H-A teaming as team play (Dekker and Woods, 2002; Klein et al., 
2004; Sarter and Woods, 2000).  These researchers argue that the interactions between the 
operator and the automation should be the focus of supervisory task designs.  Researchers have 
empirically investigated how constructs associated with team play (e.g., common ground) may 
be facilitated by the characteristics of the automation during an exploration task.  Stubbs et al. 
(2008), for example, studied how common ground could be facilitated among a (simulated) 
globally distributed team of operators and exploration robots.  More specifically, Stubbs and her 
colleagues investigated how introducing a robot proxy would influence the degree of 
collaboration the operators perceived they were engaged in during the task.  The robot proxy 
assisted the operator with planning and supervised the less autonomous robots.  Results indicated 
that those who were assisted by the robot proxy reported higher perceptions of collaboration than 
those who did not use the robot proxy.  Furthermore, those who used the robot proxy had 
improved performance and more accurate mental models of the robot team’s capabilities, and 
were more efficient at the exploration task.  

Concepts such as common ground and other human-team processes (e.g., coordination and 
communication) may provide a compressive understanding of H-A coordination (Fiore et al., 
2008; Stubbs et al., 2008).  H-A coordination is similar to human-team coordination in that they 
both address interdependency and dynamic interplay among team members.  Given these 
similarities, the processes that occur during human-team coordination may very likely emerge 
during H-A coordination (Cuevas et al., 2007).  For example, communication, a team process, 
emerges from the exchange of information between the operator (who may, for example, request 
information) and the automation (which may provide information about the state of the system 
and the operating environment).  In sum, the team behaviors that occur during a supervisory task 
will illuminate relevant team processes.  Knowing what team processes are necessary and 
understanding how they will affect the outcome of H-A coordination can inform the design of 
supervisory tasks.   

The following section discusses in detail some of the major human performance issues 
associated with supervisory control of multiple UVs.  Particularly, we discuss operator 
multitasking performance, trust in automation, SA (issues associated with tasking switching and 
error diagnosis and recovery), and operator workload.  
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2. Operator Performance Issues in Supervisory Control of UVs 

2.1 Operator Multitasking Performance  

In the future battlefield, Soldiers will very likely be expected to perform other tasks concurrently 
while operating a robot (or multiple robots) (Mitchell and Chen, 2006).  In addition to the 
multitasking requirement, operators’ overall performance may be affected by other factors, such 
as situation understanding, mental workload, trust in the automated systems with less than 
perfect reliability, and tasking environment and stress (e.g., time constraints and fatigue).  For 
example, Manzey et al. (2008) investigated performance consequences of automated aids (for 
fault identification and management) that are occasionally unreliable in a simulated multitasking 
supervisory control task.  The results showed that automation benefits both primary (i.e., fault 
diagnosis) and secondary task (i.e., response to communications) performance.  However, a 
significant automation bias effect was observed.  About half of the participants followed a wrong 
diagnosis generated by the automated system.  Additionally, with the highest LOA, participants 
showed degraded “return-to-manual” performance.  The authors, therefore, recommended that 
medium levels of automation be used if manual skills need to be maintained. 

Recent multitasking studies have investigated combining navigation tasks concurrently with 
targeting and firing (search and destroy) tasks and intermittent communication tasks (Chen and 
Joyner, 2009; Cummings and Guerlain, 2007).  Typical navigation task manipulations have 
included perception (egocentric vs. exocentric), attention (number of robots to control 
simultaneously), and communication with teammates.  To increase task complexity, search and 
destroy tasks have manipulated attentional resources by increasing the number of targets or 
gunner stations to command.  The multitasking study by Chen and Joyner (2009) required an 
operator to perform a gunner task, detecting and firing upon targets, while simultaneously either 
managing a semi-autonomous UGV or teleoperating or monitoring a UGV.  A third intermittent 
task required participants to simulate communication with a gunner crew.  Results showed that 
overloading the operator’s mental capacity with multiple complex tasks simultaneously led to 
performance decrements; however, when (semi-) autonomy was given to robotic entities, the 
operator could focus cognitive resources on complex tasks while simply monitoring (rather than 
controlling) the semi-autonomous robots, intervening only when necessary.  

Cummings and Guerlain (2007) tried to determine the approximate number of autonomous 
vehicles that one operator could efficiently command and control simultaneously, under a low- 
or high-tempo multitask condition.  Their study involved commanding missile launches while 
being distracted by intermittent communication messages.  Participants in this study 
demonstrated that 16 missiles were the limit to control before performance degradation was 
observed.  Cummings and Guerlain cited that their findings corresponded with air traffic control 
(ATC) studies, where 17 managed aircraft were the limit that operators could handle well.  Other 
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studies have concluded that a fewer number of UAVs could be controlled simultaneously 
(Miller, 2004); however, it is important to consider the levels of automation applied to the 
autonomous entities.  In many cases, the more manual operation that was demanded, the fewer 
entities that could effectively be supervised (Ruff et al., 2002).  

Factors that impact supervisory control of decision-making tasks include degrees of coherence 
(comprehensiveness, consistency, and rational soundness) and correspondence (accuracy) of the 
information available for these tasks (Mosier et al., 2007).  Since coherence is a prerequisite to 
correspondence, Mosier et al. (2007) studied the effects of coherence (i.e., information 
congruence) in the context of time pressure and operator confidence. In their study, airplane 
pilots were found to make quicker, less accurate decisions under time pressure, as they did not 
utilize all of the cues available to them.  Instead, they tended to use cognitive heuristics such as 
anchoring the most salient cues to satisfice rather than take the time necessary to make a better-
informed decision.  Satisficing was also observed in the supervisory command and control study 
by Cummings and Guerlain (2007) in which participants, who were under a time constraint, had 
to select one of several missiles to redirect toward a target.  Participants often redirected a 
missile that was suboptimal, yet sufficient, to complete the mission. 

2.2 Trust in Automation 

Trust in automation is probably misleading because trust has the connotation of a prescribed 
behavior.  Calibration is a more fitting term because it suggests that operators intervene only 
when they have reason to believe their own decisions (od) are superior to the automated system’s 
decisions (ad).  In decision theoretic terms, operators choose to use automated systems when the 
probability of a correct decision (Pc) meets the following criterion (Dzindolet et al., 2001a):  

 Intervene if P(c) od > P(c) ad 

However, operators have a difficult time assessing their own accuracy.  In general, humans tend 
to be poorly calibrated, often overestimating their own abilities (Fischhoff et al., 1977).  This 
implies that humans will overvalue their own decisions in comparison to automated solutions.  
However, the opposite tendency for humans to over-rely on automated systems has been shown 
by a number of researchers (Chen and Terrence, 2008, 2009; Dzindolet et al., 2000; Mosier and 
Skitka, 1996; Parasuraman et al., 1993; Thomas and Wickens, 2000; Young and Stanton, 2007).  
The psychological context of the decision determines the tendency of the operator to disuse 
(under-rely on) or misuse (over-rely on) automated systems (Parasuraman and Riley, 1997).  In a 
series of experiments, Dzindolet et al. (2001b) showed that by a simple change in decision order, 
disuse of an automated target recognition device changed to misuse.  If participants made a 
decision before being informed of the automated solution, they tended to rely on their own 
decisions even when they were suboptimal; whereas, in a related experiment using a similar 
paradigm, participants tended to over-rely on the device whenever the automated solution was 
presented at the same time as the target scene.  One explanation is that participants were 
attempting to reduce their cognitive load to maintain reasonable timeliness.  
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However, such a strategy was not useful in the first experiment (automated solutions being 
shown after the participants made their decisions) because considering an alternative would 
increase workload by requiring operators to reconsider their original decisions (Barnes et al., 
2006a).  The workload hypothesis is supported by compliancy research that indicates operators 
misuse automation in a multitasking environment but not in single-task environment 
(Parasuraman et al., 1993).  

Another distinction important to “trust” decisions is the difference between evaluation errors and 
intent errors.  For evaluation errors, the operator misperceives the optimal solution and commits 
a calibration error.  For intent errors, the operator is aware of the aid’s superiority but still 
chooses to “disuse” automation in order to maintain control over the decision environment.  For 
example, intent errors occurred when participants were aware of the superiority of an automated 
target detection aid, but 84% of them still tended to disuse the aid leading to suboptimal targeting 
decisions (Beck et al., 2007). 

The reliability of the automated system also impacts operator calibration.  A number of 
researchers reported that target cueing is ineffective below a certain level of reliability  
(~60%–70%) (Wickens and Dixon, 2005; Wickens et al., 2006).  In their meta-analytic study, 
Wickens and Dixon found that “a reliability of 0.70 was the ‘crossover point’ below which 
unreliable automation was worse than no automation at all.”  Reliable automation enhances 
performance (Rovira et al., 2007); however, even reliable aids tend to be disused if the few 
mistakes the aid makes are obvious, such as failing to detect a target when it is plainly visible 
(Dzindolet et al., 2006).  However, the converse, automation paradox, is also evident; operators 
tend to over-rely more on highly accurate aids when advisories are incorrect.  That is, operators 
are more complacent when they develop trust in automation with high reliability because the 
possibility that the aid will mislead them is perceived as minimal (Parasuraman et al., 2007; 
Rovira et al., 2007).  

The type of unreliability has an important impact on the operator’s perception of and response to 
system alerts.  Cueing systems for the automated systems are often false-alarm prone (FAP) or 
miss-prone (MP), based on the threshold settings of the alert.  Wickens et al. (2005b) showed 
that the operator’s automated task (i.e., system failure monitoring) performance degraded when 
the false alarm (FA) rate of the alerts for the automated task was high.  In other words, high FA 
rate reduced the operator’s compliance with automation (compliance was defined as “the 
tendency to agree with an automated aid when it provides an alert” [Levinthal and Wickens, 
2006]).  Conversely, when the miss rate was high, performance on a concurrent task was affected 
more than the automated task, because operator had to allocate more visual attention to monitor 
the automated task.  In other words, high miss rate reduced the operator’s reliance on automation 
(reliance was defined as “the operator’s assumption that a system is functioning normally while 
the alert is silent” [Levinthal and Wickens, 2006]). Similarly, Dixon and Wickens (2006) showed 
that FAs and misses affected compliance and reliance, respectively, and their effects appeared to 
be relatively independent of each other.  In contrast, Dixon et al. (2007) showed that FAP 
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automation hurt “performance more on the automated task than did miss-prone automation, (e.g., 
the “cry wolf” effect) and hurt performance (both speed and accuracy) at least as much as MP 
automation on the concurrent task.”  FAP automation was found to affect both operator 
compliance and reliance, while MP automation affected only operator reliance.  The authors 
suggested that the FAP automation had a negative impact on reliance because of the operator’s 
overall reduced trust in the automated system.  Similarly, Wickens et al. (2005a) demonstrated a 
greater cost associated with FAP automation (than with MP automation), which affected both the 
automated and concurrent tasks.  

Lees and Lee (2007) showed that “unnecessary alarms” (i.e., alerts that are legitimate but, due to 
the peculiarities of the situation, do not require operator’s compliance) foster the operators’ trust 
in the automated system and actually enhance their compliance with the alerts rather than 
reducing it.  Lees and Lee’s data suggest that the three dimensions of trust (i.e., utility, 
predictability, and intent) need to be considered beside the traditional description of alarms 
according to signal detection theory (i.e., FAP vs. MP).  Additionally, Chen and Terrence (2009) 
showed that there is a strong interaction between the type of automation unreliability and 
participants’ self-assessed attentional control.  Overall, it appears that for high-attentional control 
participants, FAP alerts were more detrimental than MP alerts due to disuse of automation.  For 
low-attentional control participants, conversely, MP automation was more harmful than FAP 
automation due to misuse of (i.e., over-reliance on) automation.  Their results are consistent with 
past research (Lee and Moray, 1992; Lee and See, 2004) that self-confidence is a critical factor 
in mediating the effect of trust (in automation) on reliance (on the automatic system).  Lee and 
Moray found that when self-confidence exceeded trust, operators tended to use manual control. 
When trust exceeded self-confidence, automation was used more.   

Lee and See (2004) characterize human-agent teams in terms of how human teams interact. They 
define trust as the “attitude that an agent will help achieve an individual’s goal in a situation 
characterized by uncertainty and vulnerability,” implying that humans perceive automated 
systems as a team member, and attitudes of misuse or disuse develop as operators become 
familiar with the system.  This implies that trust is an intrinsic quality depending on the attitude 
of humans toward automated systems.  Much of the previously mentioned results suggest that 
trust (or calibration) is an extrinsic factor determined by operators’ perception of the task 
environment.  However, the research on intent errors and false alarms indicates “trust” decisions 
are also based on the operators’ belief in the importance of personally controlling decision 
outcomes (Beck et al., 2007; Chen and Terrence, 2009).  On a positive note, Beck et al. indicate 
that a combination of performance feedback and scenario training can reduce both appraisal and 
intent errors suggesting that different training regimes may be necessary for extrinsic (feedback) 
and intrinsic (scenario training) sources of automation usage errors. 

The intrinsic definition has interesting implications suggesting that humans view automated 
systems anthropomorphically.  This begs the question whether we can design systems not only to 
perform human-like tasks, but to actually act like humans.  For example, if robots can be made to 
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be perceived as human, then teaming relations would not only be more natural but also 
instinctive and synergistic like a well-honed basketball team.  Research to date is sparse but 
suggestive.  Based on their research, Arkin (2007) and his colleagues posit that, in the future, 
robots can be made not only to react to human cues but to do so in a predictable and human-like 
manner—even to the extent of developing ethical behaviors.  This would allow humans and 
robots to share mental models of not only the external environment but also each others’ models 
(Endsley and Riley, 2004).  However, the research in this area is not mature; hominid robots or 
even robots that act like dogs can operate successfully only in constrained laboratory or 
commercial environments.  Currently, humans control or monitor unmanned systems as 
sophisticated equipment rather than as team members, showing more trust in a perceived human 
peer than a machine peer with the same capabilities (Dzindolet et al., 2001a).   

2.3 Situation Awareness 

One of the most critical factors for achieving effective supervisory control of multiple UVs is 
maintaining adequate SA of the overall tasking environment as well as individual UVs.  There 
are three levels of SA as defined by Endsley (1995):  (1) perception of data and environmental 
elements, (2) comprehension of the current situation, and (3) projection of future states and 
events.  Changes in the environment that may affect the plans for the robots need to be detected, 
and the plans need to be modified in a timely fashion.  While information updates are needed, 
recent studies have also shown that interrupting a primary task (i.e., supervisory control of UVs) 
with an intermittent task (e.g., communication messages) can have a negative impact on SA 
(Cummings, 2004; Dorneich et al., 2006).  For example, Cummings (2004) found that instant 
messages diverted participants’ attention from their primary task (i.e., simulated supervisory 
control of Tomahawk missiles), thus reducing their SA when returning their focus to the primary 
task.  Therefore, the challenge is to identify the means by which operators can most effectively 
maintain SA. 

SA may also be affected perceptually as a result of the change blindness phenomenon, which is 
the inability to perceptually attend to a change in one’s environment.  Parasuraman et al. (2009) 
examined change blindness in the context of a supervisory control task, in which participants 
were asked to monitor a UAV and a UGV video feed in a reconnaissance tasking environment.  
Participants performed four tasks in this experiment, including target detection and route-
planning (primary tasks), a communications task to evaluate SA, and a change detection task.  
The routes for the UAV and the UGV were preplanned, and the only time the participant 
controlled the UGV was when it was necessary to navigate around an obstacle in the 
environment.  The primary tasks were interrupted by both the verbal communication task and the 
change detection task.  The latter required participants to indicate each time they noticed that an 
icon of a target they had previously detected had unexpectedly changed position on a map grid.  
Half of these changes occurred during a “transient event,” when the UGV stopped and its status 
bar flashed, while the remaining four changes occurred while participants were focused on the 
UAV monitoring task.  Parasuraman et al. found that participants’ accuracy at detecting changes 
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related to the position of the target icons was very low, especially during the transient events.  
Their results suggest that change blindness occurred most frequently when a distracter (a 
transient event) was present, but it also occurred while participants shifted their attention from 
the UAV monitoring task to the UGV monitoring task.  These results also suggest that task 
switching during a robot supervisory task may incur change blindness, which by its very nature 
affects an operator’s SA (additional information on tasking switching is provided in the next 
paragraph).  According to Norman’s (1986) seven stages of user activity, interruptions incur the 
greatest cognitive costs during the planning phases (i.e., intention forming and action planning) 
as well as the evaluation phases (i.e., outcome interpretation and assessment).  Thus, interface 
designers should account for this, so that primary tasks are only interrupted during emergency 
situations or during moments of low workload (e.g., after evaluation is completed or before 
initiating a new plan).  However, alerts should be provided to the operator indicating the changes 
to the interface and the degree of importance of the changes (Sarter et al., 2007).   

2.3.1 Task Switching 

Simultaneous control of multiple UVs may require the operator to switch attention/control 
among the vehicles from time to time.  Basic research on the costs of task switching consistently 
shows that people’s responses tend to be substantially slower and more error-prone after task 
switching (Monsell, 2003; Rubinstein et al., 2001).  There is some evidence that this cost may be 
reduced if the participants have a chance to prepare for the switch or receive task-switching cues 
(Monsell, 2003; Rubinstein et al., 2001).  In the context of human-robot interaction (HRI), 
research has been conducted to investigate the effects of task switching on SA and operator 
performance (Crandall et al., 2005; Squire et al., 2006; Wang and Lewis, 2007).  Squire et al. 
(2006) studied operators’ response time as it related to interface type (options available to the 
user) and task switching, as well as strategy switching (offensive vs. defensive, in the context of 
a RoboFlag simulated game).  Task switching was shown to slow response time by several 
seconds, especially when automation was involved.  Likewise, Squire et al. found that response 
time increased by several seconds when participants switched between offensive and defensive 
strategies.  When participants were provided an interface that allowed the flexibility to choose 
between a fixed sequence of automated actions or selectable waypoint-to-waypoint movement, 
mission time was reduced in spite of task or strategy switching.  Crandall et al. (2005) examined 
the amount of interaction time vs. noninteraction time, or “neglect tolerance,” to develop a 
predictive model to determine the number of robots (heterogeneous or homogeneous) that may 
be effectively monitored simultaneously by a single operator, given the requirements of a 
particular interactive task.  Crandall et al. suggested that a predictive analysis such as theirs 
might be useful in the context of task switching.  

2.3.2 Error Diagnosis and Recovery 

Frequently, changes in the environment may require the operator to modify his/her plans for the 
UVs.  Muthard and Wickens (2002) evaluated the effects of automation on pilot’s performance 
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in plan monitoring and revision.  They found that pilots only detected about 30% of the 
experimenter-induced changes, which should have resulted in flight plan revisions.  Mumaw et 
al. (2001) showed an even more alarming inadequacy in monitoring performance.  In their study, 
pilots only detected about 3% (1 of 32 total cases) of unexpected changes to the mode of an 
automation aid.  Indeed, it has been well documented that operators are frequently unaware of 
mode changes when interacting with automation systems and, therefore, are confused about the 
systems’ behaviors (Sarter and Woods, 1995).  In fact, data show that even if changes in the 
environment are detected, operators may have difficulty interpreting the relevance of the changes 
and their effects on the existing plans (Endsley, 1995).  According to the National Transportation 
Safety Board (1994, as cited in Muthard and Wickens, 2002), nearly two-thirds of aviation 
accidents caused by faulty human decision making can be attributed to pilots’ failure to revise 
their flight plans.  In Muthard and Wickens (2002), pilots failed to modify their plans based on 
environmental changes on nearly one-third of the trials.  Plan continuation errors were especially 
pronounced when there was an unreliable automation aid as compared with no aid present. 

2.4 Operator Workload 

Perceived workload can impact operator performance in an UV supervisory task relative to the 
level of automation assigned to the robotic entities being supervised.  The level of automation of 
a robotic entity further influences operator compliance and reliance on the automated robots. 
Ruff et al. (2002) examined perceived workload and found that when given complex tasks, 
operators tended to prefer autonomy that provided a LOA exhibiting “management-by-
exception” (~level 6 in table 1).  Although this LOA produced performance decrements, it 
lowered perceived workload as participants demonstrated satisficing.  In contrast to 
“management-by-exception,” Ruff et al. found that perceived workload increased when 
participants were subjected to automation that was less than perfectly accurate.  Their lack of 
trust in the automation led participants to take extra time to double-check the system’s accuracy 
in a “management-by-consent” condition (~LOA 3, 4, or 5 in table 1).  There are also individual 
differences associated with perceived workload.  For example, Mogford et al. (1995) found that 
individual operator differences were a mediating factor of perceived mental workload, along 
with equipment quality and ATC operator strategies, in a model of ATC.  

The following sections review research findings in specific areas of supervisory control of 
UAVs, UGVs, and heterogeneous UVs (i.e., using different types of UVs in the same mission).  

3. Supervisory Control of Unmanned Aerial Vehicles 

Two often-used methods of supervisory control of UAVs are management by consent (MBC) 
and management by exception (MBE), which have been researched extensively in the manned 
aviation environment (Olson and Sarter, 2001).  MBC requires the automation to ask for explicit 
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consent from the human operator before taking any actions; MBE, on the other hand, allows the 
automation to initiate/perform actions unless overruled by the human operator.  In their survey of 
airline pilots, Olson and Sarter (1998) found that MBC was preferred by most pilots under 
normal circumstances, as it gave them more control over the automated systems.  However, 
MBE was preferred when the pilots were under time pressure and higher workload, or when the 
task was highly complex or of low criticality.  Olson and Sarter (2001) conducted a simulation 
experiment to further examine pilot performance when interacting with MBC systems.  The 
results showed that, under time constraints, pilots often had difficulty detecting conflicts before 
giving consent to the automation, especially when the automation did more than expected by the 
pilots.  

Comparisons of the effectiveness of MBC and MBE were also conducted in the unmanned 
aviation environment (Cummings and Mitchell, 2006; Ruff et al., 2002, 2004).  Ruff et al. (2002) 
evaluated the effects of LOA, decision-aid reliability, and number of UAVs under control (one, 
two, or four) on the human operator’s target acquisition task performance.  They found that, 
overall, an MBC-type decision aid provided the highest mission efficiency (i.e., total number of 
targets destroyed divided by the total number of missiles fired) and resulted in the best 
survivability performance (i.e., number of UAV hit points sustained).  However, the authors 
reported that automation level interacted with number of UAVs controlled and reliability of 
decision aid for the other measures such as SA, perceived workload, and trust in the automation 
system.  They found that SA was highest in the MBC condition, followed by manual operation, 
and finally the MBE condition.  As the number of controlled UAVs increased, SA degraded for 
all three LOA conditions, with the manual condition having the most severe degradation.  
Furthermore, the higher the LOA, the more benefit of vigilance and workload relief it provided 
during complex tasks (when the number of UAVs increased and/or when reliability decreased).  
For example, in the MBC condition at 95% reliability, participants experienced higher workload 
(compared with the MBE condition) as a result of double-checking to be sure the automation was 
accurate.  In the context of trust in the system, researchers found that it increased in both the 
MBC and the manual conditions as the number of UAVs increased when reliability was perfect, 
with the MBC providing the most trust.  However, when the reliability was not perfect (i.e., 95% 
reliable), both MBC and MBE resulted in lower trust ratings as the number of UAVs increased. 

Ruff et al. (2004) conducted another study to compare the effectiveness of MBC and MBE 
systems in a UAV control setting (two or four UAVs).  In this study, the MBC system proposed 
route replans and target identifications.  The MBE system, on the other hand, automatically 
implemented proposed actions after a predetermined time period, unless the operator overruled.  
Overall, regardless of experimental condition, participants did not utilize the automation aiding 
system much at all.  When under greater time constraints, they utilized it more often but still 
rarely.  As contrary to the Ruff et al. (2002) study, MBC did not result in significantly better 
performance than MBE.  However, with MBE, participants’ perceived workload increased as 
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time pressure increased.  With MBC, in contrast, perceived workload remained at a similar level 
with an increased time constraint.  In other words, although MBE was hypothesized to reduce 
workload under high time pressure, the opposite was found.  

Cummings and Mitchell (2006) investigated LOA in the context of controlling four UAVs for 
target acquisition tasks.  The LOAs employed in the study roughly corresponded to levels 1, 2, 4, 
and 6 in Parasuraman et al. (2000).  The level of replanning required in reaction to unexpected 
events was also manipulated (high vs. low).  They found that under the high replanning 
condition, operators performed the worst with the “active” level automation (corresponding most 
closely to MBC).  The authors described this performance decrement as “cognitive saturation” 
and observed that operators were unable to correctly assimilate data from various sources, weigh 
uncertainty in the solution space, and prioritize their tasks.  Operators had the highest level of 
level-1 SA (i.e., perception) and level-2 SA (i.e., comprehension) with the “super-active” level 
automation (i.e., MBE) but not the level-3 SA (i.e., future projection).  In fact, operators 
exhibited automation complacency and erroneously destroyed more targets than they did when 
using automation with lower LOAs.  This finding of complacency is consistent with what has 
been reported in the literature and is an important issue that user interface designers of 
automation systems need to consider (Chen and Joyner, 2009; Parasuraman et al., 1993; Thomas 
and Wickens, 2000; Young and Stanton, 2007). 

Levinthal and Wickens (2006) also investigated the effects of imperfect automation on robotics 
operator’s target detection performance when controlling multiple (two or four) UAVs.  This 
study compared Meyer’s (2001) independence hypothesis (which posited that FAP and MP 
automations have qualitatively different effects on operator dependence on the automated 
systems) to the model that FAP automation hurts more than MP automation.  Their results were 
in favor of the independence hypothesis as participants in an MP condition (i.e., 60% reliability 
with 3:1 likelihood of misses over FAs) showed an increase in compliance and a decrease in 
reliance whereas participants in an FAP condition (i.e., 60% reliability with 3:1 likelihood of 
false alarms over misses) showed a decrease in compliance and an increase in reliance.  
However, it was found that FAP aids resulted in delayed response times compared to the MP 
aids and 90% reliability aids.  The authors, therefore, concluded that FAP aids, overall, were 
more disruptive to operator performance than were MP aids. 

Some researchers examined operator performance and workload in control of large numbers of 
UAVs (Galster et al., 2006).  For example, Miller (2004) modeled the operator workload whose 
task is to authorize weapon release for targets identified by UAVs.  His model shows that, under 
anticipated target densities, the operator would become overloaded when controlling 13 UAVs, 
even if the weapon release authorization is the only task the operator has to perform.  In an 
empirical study, Galster et al. (2006) examined operator performance in a supervisory control 
task of four, six, or eight UAVs.  Overall, participants performed well on their primary task 
(selecting the correct targets and the highest-priority targets to process).  Results suggested that 
although the increase in number of UAVs slightly impacted performance (negatively), the 
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number of targets (not the number of UAVs) had a higher impact on perceived workload.  
Secondary (monitoring) task performance, on the other hand, was significantly worse for the 
eight UAV conditions than for the four and six UAV conditions.  

 

4. Supervisory Control of Unmanned Ground Vehicles 

Supervisory control of multiple UGVs has been examined in contexts of search and rescue tasks 
(Wang and Lewis, 2006; Wang et al., 2009) and other exploration and reconnaissance tasks 
(Trouvain et al., 2003; Trouvain and Wolf, 2002).  Olsen and Wood (2004) proposed an equation 
to calculate fan-out (FO:  the number of robots a human operator can control simultaneously 
[i.e., span of control]) based on activity time (AT:  the time that a robot is active) and interaction 
time (IT:  the time that it takes for a human operator to interact with a robot).  The authors also 
conducted four simulated experiments to test the equation.  Results showed that when 18 robots 
were available for a target search task, FO for the type of robots with the highest autonomy was 
as high as 9 for the less cluttered tasking environment (compared to 5 in the more cluttered 
environment).  Olsen and Wood concluded that their FO equation could accurately model 
operator span of control in many cases; however, FO might change due to other task 
characteristics and complexities in the environment.  

Riley and Strater (2006) investigated navigating two UGVs through a maze while manipulating 
the control mode (serial, parallel, and two parallel conditions involving manual control of one 
robot and a varying LOA in the second, supervised robot).  SA, workload, and performance 
navigating the robots as well as monitoring performance were assessed.  Monitoring 
performance was positively correlated with SA scores, and participants in the serial control 
condition exhibited slightly higher SA scores than the parallel conditions.  However, the parallel 
control condition resulted in the best navigation performance and the lowest perceived workload. 

Participants in Chadwick’s (2006) study were responsible for controlling one, two, or four semi-
autonomous UGVs simultaneously.  Operators were assessed on monitoring, responding to cued 
decision requests, and detecting contextual errors, the latter of which occurred when the robot 
was performing correctly but inappropriately, given contextual or environmental factors.  In the 
case of a contextual error, the robot cannot recognize such a malfunction, so the operator must 
take notice of it; one example may be failed navigation, in which the robot would need to be 
redirected to a more optimal path.  Participants were required to monitor and recharge robots’ 
batteries, attend to targets, and detect and redirect navigation errors.  Operator performance 
varied depending upon the cognitive demands of the various tasks.  Degradation was found to 
come from “event time-line conflicts” and attentional limitations, the latter of which were most 
prevalent in the contextual error identification and redirecting task. 
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In Trouvain and Wolf (2002), participants used either two, four, or eight simulated UGVs to 
perform inspection tasks at the predesignated inspection locations.  Results showed that 
participants’ overall task performance (i.e., number of inspections completed) improved from the 
two- to four-robot condition but not from the four- to eight-robot condition.  However, their data 
also showed that when the number of robots increased from two to four, the average inspection 
delay (i.e., amount of time robots spent on waiting for human inspection after reaching the 
inspection locations) also more than doubled.  In fact, it was found that participants had 
difficulties keeping more than two robots active at the same time.  The subjective workload data 
also showed that participants experienced slightly higher workload when the number of robots 
increased from two to four; however, they experienced significantly higher workload when the 
number of robots was eight. 

Wang and Lewis (2006) explored operator demands of autonomous robot teams vs. manually 
controlled robot teams in a building search task.  In this within-subjects experiment, three robots 
were controlled serially, so only the selected robot would accept commands.  Participants 
controlled waypoint movements, manually teleoperated the robots, and operated a camera 
(panning and tilting it to achieve an optimal view).  Waypoint and teleoperation control 
improved in the autonomous condition, but camera control did not differ.  Participants also 
switched control between the three robots more frequently in the autonomous mode than in the 
manual control mode.  Results further showed that autonomous cooperation between robots 
aided operator performance.  Wang and Lewis believed that this was because their search task 
consisted of several subtasks, which participants had to interact with during the windows of their 
“neglect time” (see Crandall et al., 2005).  Switching control between the robots more frequently 
(as in the autonomous mode) gave participants more time to finish the subtasks involved (Wang 
and Lewis, 2006).  

In a follow-on study, Lewis and his colleagues (Wang et al., 2009) investigated operators’ 
performance when they controlled 4, 8, or 12 robots (within-subject variable) for a victim-search 
task.  The results showed that in the full-task control condition (participants implemented 
waypoints for the robots and controlled the cameras), operators performed better (i.e., found 
more victims) with 8 robots compared with 4 and 12 robots.  Operators’ perceived workload, 
however, increased monotonically with the number of robots.  Wang et al. (2009), therefore, 
concluded that somewhere between 8–12 robots seemed to be the limit for direct human control.  
The authors also suggested that automation of navigation-related tasks (e.g., path-planning) 
seemed to be more important than “efforts to improve automation for target recognition and 
cueing” in the context of controlling a large team of robots.
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5. Supervisory Control of Heterogeneous Unmanned Vehicles 

Future warfare employing the Future Combat System (FCS) may need to integrate information 
from multiple platforms, potentially from both aerial and ground sources.  UAVs generally 
provide exocentric views of the problem space (i.e., the battlefield), while UGVs present 
viewpoints that are egocentric and immersed in the environment.  The ideal view depends on the 
task; overall awareness and pattern recognition are optimized by exocentric views, whereas the 
immediate environment is often viewed better egocentrically.  Displays for integrating 
information from different frames of reference (e.g., exocentric and egocentric) present potential 
human performance issues that need to be carefully evaluated (Thomas and Wickens, 2000).  
Research has shown that integrating information across egocentric and exocentric views can be 
challenging for the operator (Olmos et al., 2000; Thomas and Wickens, 2001).  Essentially, dual 
displays with both frames of reference require effective scanning of the displays and integrating 
information from two different perspectives to form an accurate assessment of the situation.  
Furthermore, operators may be susceptible to a saliency effect and anchoring heuristic/bias 
(Thomas and Wickens, 2000).  In other words, salient information on one display may catch 
most of the operator’s attention, and the operator may form an inaccurate judgment because 
information from the other sources are not properly attended to and integrated.  In Thomas and 
Wickens (2000), participants were found to tunnel their attention into the egocentric view to the 
exclusion of information from the exocentric view.  

Chen et al. (2008) simulated an FCS-like command vehicle environment and had the participants 
perform a target designation task with a semi-autonomous UAV and a semi-autonomous UGV, 
teleoperate a UGV, or, in the mixed condition, control all three assets.  They found that when the 
operator could use all three assets, they tended to ignore the equally efficacious UGV and relied 
on the UAV.  This agreed with other U.S. Army–sponsored research using gaming technology 
showing the counterintuitive result that even when participants performed better with UGVs, 
they still preferred UAVs (Luck et al., 2006).  This may indicate a generalized preference for the 
god’s-eye exocentric view afforded by the UAVs in comparison to the egocentric views obtained 
from the UGVs.   

Billman and Steinberg (2007) described a set of HRI performance metrics for the evaluation of 
mixed-initiative heterogeneous robots (i.e., 5–10 air, sea, and undersea UVs).  They found that 
these metrics were useful in understanding collaboration between human operators and 
heterogeneous robots.  The metrics included planning time, task time, SA, operator workload, 
operator assessment of the usability of the systems, and mental model mapping (between reality 
and the operator’s temporal and spatial mental model of the system state).  Lessons learned from 
a series of human-in-the-loop experiments were documented, and recommended modifications of 
the metrics were also presented. 
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In the following section, we review innovative techniques and technologies designed to enhance 
operator performance of supervisory control of UVs. 

 

6. Interface Designs for Supervisory Control of Unmanned Vehicles 

When conducting supervisory control research, the interface design must support effective 
interactions and provide good usability, or the design itself may affect perceived workload and 
overall performance.  For instance, Cummings (2004) found that intermittent messages from a 
chat communication tool interrupted primary task performance.  This finding demonstrates how 
the presentation of alerts and alarms can be important in both experimental and “real world” 
system interfaces, as alerts and alarms may impact overall operator performance in unexpected 
and negative ways if they are designed as independent features of the system.  Some 
methodologies for interface design have been investigated in the context of complex supervisory 
control tasks, including abstraction hierarchy and cognitive task analysis (Linegang et al., 2006; 
Nehme et al., 2006).  For example, Linegang et al. (2006) applied the abstraction hierarchy 
approach to design a novel system.  This approach allows an interface designer to decompose a 
system into subcomponents that may each be analyzed in terms of how to best apply automation 
to best aid the user.  Additionally, Nehme et al. (2006) examined how cognitive task analysis 
could be mixed with SA criteria to determine a list of requirements for interfaces of future 
technologies.  

Olson and Wuennenberg (2001) presented a list of recommended user interface design guidelines 
for supervisory control of UAVs.  The recommendations included the following: 

1. Automation behavior (e.g., system status/mode, system goals, and flight control 
functions) should be highly visible to the operator.  (Rationale:  operators tend to be “out 
of the loop” when systems are highly automated, and they often find it difficult to 
understand system behavior due to system complexity, coupling, and autonomy.) 

2. It should be easy for the operator to extract meaning from the display quickly—minimize 
information access costs by highlighting relevant information, integrating dimensions, 
and displaying information in appropriate formats.  (Rationale:  operators often find it 
difficult to understand system behavior due to system complexity, coupling, and 
autonomy.) 

3. Display/highlight projected changes and predicted information based on operator inputs, 
and direct operator attention to the relevant areas.  (Rationale:  changes to system 
behavior may be difficult for the operator to visualize or detect.)
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4. Provide a quick and easy way to reinstruct automated systems.  (Rationale:  highly 
automated systems tend to be difficult to reprogram, and manual control may not be an 
option.) 

In a recent study, Nam et al. (2009) applied human-computer interaction principles to the design 
of a multiagent system interface.  When a user-centered design approach was used, three 
interface types were designed and tested.  Each interface satisfied a set of design goals, including  
(1) one window display of relevant information, (2) user-friendly layout, (3) displaying only 
essential information for decision making, (4) providing rapid user interaction, (5) providing 
necessary and essential information for dynamic role changing, and (6) providing feedback.  
Nam et al. concluded that interfaces for multiagent systems are efficient when they are compact 
and when they accentuate information that aids in the decision-making process.  Based on the 
results, guidelines for multiagent interface design were proposed.    

Adaptive automation can be a very useful tool to aid operators with supervisory control tasks as 
it can “leverage the strengths of humans and computers to improve overall system performance 
while mitigating the negative aspects of both” (Cummings, 2004).  More information on adaptive 
automation and other potential user interface designs for supervisory control of unmanned 
vehicles will be discussed in section 5.6. 

Finally, within the context of H-A teaming, interface design techniques should focus on 
supporting team processes between the human supervisor and the UVs.  As mentioned 
previously, team processes can be supported by identifying team behaviors that will occur during 
the task.  For interface design, the goal would be to identify characteristics of the interface that 
could support the team processes that emerge from the H-A team’s behaviors.  For example, if 
shared awareness emerges, then the interface should support communication methods that will 
facilitate a shared understanding among the team.  This approach to interface design could be 
referred to as a team-centered interface design approach.  Designing an interface using a team-
centered approach may enhance the robustness of the interface and facilitate the management of 
workload through a balance between task and interaction workload (Saget et al., 2008).   

It is important to note that designing an agent’s interface that supports team processes will not 
alone lead to effective team interactions; both the human and the agent are jointly responsible for 
developing team play (Endsley, 1995; Fan et al., 2008).  In Fan et al.’s (2008) collaboration 
model of an H-A team, agents can work autonomously until they run into a problem, at which 
time they could query the human.  The active role of the human within the H-A team, therefore, 
requires attributes that allow the human to accept/exploit an agent’s capabilities.  For example, 
an agent may support coordination among team members, yet whether the human accepts the 
agent’s attempt to coordinate may depend on the human’s trust in the agent.  Trust may be 
established through an understanding of the agent’s abilities and reliability (Lee and See, 2004; 
also see section 2.2).  Therefore, developing team play within H-A teams requires consideration 
of not only the agent’s capabilities and attributes, but also the human’s knowledge, skills, 
abilities, and attitudes.
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6.1 Multimodal Displays/Controls 

Remote perception is essential for effective teleoperation.  In teleoperating environments, human 
perception is compromised because the natural perceptual processing is decoupled from the 
physical environment.  This decoupling affects people’s perception of affordances in the remote 
scene and can have a detrimental effect on situational awareness and, therefore, the overall 
effectiveness of the robotic’s task performance (Woods et al., 2004).  The performance 
degradations can be further exacerbated due to less-than-ideal video quality (Chen et al., 2007; 
Chen and Thropp, 2007).  Simpson et al. (2004) proposed using a spatial audio display to 
augment UAV operator’s SA and discussed its utility for each of the three SA levels.  They 
recommended that both visual and spatial audio information should be presented concurrently.  
They also suggested that presenting the audio information spatially may enhance UAV 
operator’s sense of presence (i.e., telepresence).  However, the link between presence and task 
performance has yet to be established.  Additionally, spatial audio displays can be ineffective in 
a noisy environment, and the user may experience front-back confusion.  Tactile displays, 
therefore, present a viable alternative to audio displays.  Haas et al. (2009) designed a Soldier-
swarm display (the swarm consisted of 40 ducted fan aircraft) and compared its effectiveness 
when information was displayed using visual, auditory, and tactile combinations.  The 
multimodal displays (compared with the visual display baseline) significantly improved Marine 
participants’ detection performance (i.e., reduction in response times) and decreased their 
perceived workload.  In another study, Gunn et al. (2005) compared the effectiveness of a 
sensory display and a cognitive display for presenting warning information in a UAV control 
task.  They found that the sensory display (which presented the information by changing the 
physical attributes of stimuli) resulted in more threat detections, fewer false alarms, faster 
response time, and a lower perceived workload than did the cognitive display (which required 
symbolic manipulations to define critical signals).  Gunn et al. also compared the utility of 
different types of directional cueing interfaces (visual, spatial audio, and haptic) and found no 
differences in their effectiveness.  For a comprehensive review of multimodal displays and 
controls for robotics control, please see Chen et al. (2007). 

6.2 Planning Tools  

Planning (e.g., route-planning task) is a vital part of human-robot interaction.  It is increasingly 
common for plans to be generated by automated/intelligent systems in mixed-initiative 
operations.  However, lessons learned from a U.S. Naval Intelligent Autonomy program 
indicated that human operators sometimes questioned the accuracy and effectiveness of 
automated plans (Linegang et al., 2006).  Specifically, some human operators indicated that they 
had difficulties understanding the rationales for some plans and how the plans were generated 
(Linegang et al., 2006).  Additionally, some operators reported that they had difficulties trying to 
specify mission parameters (e.g., goals and constraints) in the way required by the automated 
planning system (Linegang et al., 2006).  Furthermore, real-time development on the battlefield 
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may require the human operator to change the plan for the robot team and/or for the individual 
robots.  Therefore, effective communication between the human operator and the robots is 
critical in ensuring planning effectiveness and mission successes. 

Research has been conducted on ways to enhance human-robot communication (Stubbs et al., 
2008).  For example, Stubbs et al. demonstrated the effectiveness of a robot proxy to enhance 
shared understanding between the human operator and the robot in an exploration task.  The 
communication mechanism was based on a common ground collaboration model and was able to 
improve the human operator performance in the following areas:  more accurate plans, more 
efficient planning (fewer times of replanning), more efficient and faster task performance, and 
better mental model of the robots’ capabilities.  The U.S. Navy has also sponsored a research and 
development program to design a mission-planning tool for human operators controlling a 
heterogeneous group of robots (Linegang et al., 2006).  The tool, Mission Displays for 
Autonomous Systems (MiDAS), uses an ecological approach to reduce conflicts between human 
operators and the automated planning system. 

6.2.1 Schedule Management Aid 

When controlling multiple semi-autonomous UVs, each executing its own predetermined plan, 
the operator may experience high workload when more than one UV needs his/her attention at 
the same time.  It is therefore beneficial to let the operator know when potential processing 
bottlenecks may occur so that they can make arrangements to mitigate the bottleneck if 
necessary.  Cummings et al. (2007) designed an intelligent schedule management aid and tested 
its effectiveness in a simulated suppression of enemy air defenses mission environment with four 
UAVs.  The aid incorporated timeline displays that show potential bottlenecks, and it also 
presented potential scheduling conflicts using configurable displays (figure 1).  Overall, both the 
timeline and the configural displays were effective.  However, the authors cautioned that in order 
for the displays to be effective, the user interface designers need to ensure the following:   

1. The information’s importance matches its representation salience.  (Rationale:  overly 
salient representations may cause the operator to fixate on something not important while 
overlooking more serious issues.)  

2. The aid presents useful solutions to emerging problems rather than simply providing 
visualizations of potential problems.  (Rationale:  Cummings et al. showed that only 
presenting visualizations without solutions was not more effective than no 
visualizations.)  

Dorneich et al. (2006) took a different approach and used neurophysiological sensors 
(electroencephalography [EEG]) to detect cognitive workload in a navigation task (i.e., walking 
along a familiar route) with an intermittent communication task and mathematical interruption
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Figure 1.  Timeline display and configural display (right) (adapted from Cummings et al. [2007], with 
permission). 

 
task.  Throughout the experiment, EEG sensors accurately evaluated cognitive workload about 
70% of the time, and a communication scheduler adapted task scheduling information by 
informing the participant what to focus on next.  The communication scheduler positively 
impacted participants’ performance by rescheduling their priorities, resulting in only a temporary 
loss of SA for low-priority messages (Dorneich et al., 2006). 

6.3 Visualization Tools 

Humphrey et al. (2006) examined the use of visualizations as an aid for operators responsible for 
controlling a team of robots.  Previous studies examined color-coding robot status and team 
associations; this study added shapes to represent an individual robot (condition 1), or teams of 
robots (condition 2 [semitransparent] and condition 3 [solid]) (figure 2).  Participants were 
tasked with selecting specific robots relative to other robots or environmental characteristics, and 
to verbally confirm or deny accuracy of statements regarding a robot’s status.  Investigators were 
interested in the level of operator engagement, as indicated by the frequency with which 
participants utilized the visualizations.  Results indicated that the semitransparent and solid 
visualizations were preferred and utilized significantly more than the individual visualization.  
Participants slightly preferred (in a posttrial questionnaire) the presentation of both an individual 
and semitransparent visualization (in the same trial).  The authors plan to continue this research 
with the hypothesis that an operator’s SA will increase when visualization techniques are applied 
to managing teams of robots; this technique may also help an operator supervise a larger team of 
robots. 
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Figure 2.  Visualization tool (from left to right):  individual robots, 
semitransparent, and solid (adapted from Humphrey et al. 
[2006], with permission).  

6.3.1 Augmented Reality 

Augmented reality (AR; also known as synthetic vision) has been found to be an effective means 
to enhance pilot/UAV operator SA by portraying a more veridical view of the combat 
environment (Calhoun and Draper, 2006; Calhoun et al., 2006; Draper et al., 2006; Kramer et al., 
2005).  For example, the U.S. Air Force has identified several candidate synthetic vision overlay 
concepts for UAV applications (Calhoun and Draper, 2006) (figure 3).  The following 
information (potentially) can be overlaid graphically on the streaming video:  maps and other 
synthetically generated symbology, photoimagery, terrain elevation, laser range scans, past and 
potential future robot paths, updates via networked communication with other sources, and other 
vital statistical data (Baker et al., 2004; Calhoun and Draper, 2006; Collett and MacDonald, 
2006; Daily et al., 2003; Keskinpala and Adams, 2004).  However, large amounts of information, 
although helpful in reducing the operator’s scanning effort by providing more data in a 
centralized area (i.e., the video), can create visual clutter and degrade operator’s information 
processing (Calhoun et al., 2005).  Thus, it is important that a declutter capability be provided so 
the operator can customize the overlaid information presentation according to the situation and 
tasks.  

More research is needed to determine the optimal approach to decluttering (i.e., global approach 
by deselecting classes of information or local approach by deselecting individual symbology 
[Calhoun et al., 2005]).  Additionally, overlaying information on a video feed can potentially 
lead to cognitive tunneling, as the operator’s attention can be captured by the overlaid data while 
important elements/developments in the video might be overlooked (Kramer et al., 2005; 
Tufano, 1997; Wickens, 2005).  However, a more recent study by Iani and Wickens (2007) 
indicated that the attentional tunneling effect of the AR displays may not be as pronounced as 
previously suggested.  The tradeoff between adding information to the video feed and cognitive 
tunneling needs to be more systematically evaluated.  A list of human factors issues with UAV 
AR systems and their potential solutions can be found in Calhoun et al. (2005).  
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Figure 3.  Synthetic vision symbology added to simulated UAV 
gimbal camera video, marking threat, landmarks, areas 
of interest, and runway (symbology generated with 
LandForm SmartCam3D, Rapid Imaging Software, Inc.; 
adapted from Calhoun and Draper [2006], with 
permission). 

6.3.2 Ecological Interface Design  

Ecological interface design (EID) is a user interface design technique that conveys the 
constraints in the tasking environment, usually visually via emergent patterns, so the operator 
can intuitively perceive and solve the problem (Vincente and Rasmussen, 1992).  Furukawa and 
Parasuraman (2003) demonstrated that EID was beneficial for enhancing human operators’ 
detection of automation errors as well as their comprehension of system states.  In their first 
experiment, Furukawa and Parasuraman showed that human operators, using an EID display 
showing an emergent perceptual feature, were able to detect significantly more system errors 
than when they used a nonintegrated display (i.e., they showed significantly less automation-
induced complacency).  More strikingly, the operators were able to achieve better performance 
even though their visual attention to the EID display was significantly less, according to an eye 
movement analysis, indicating that their monitoring was more efficient.  In the second 
experiment, Furukawa and Parasuraman (2003) showed the effectiveness of an EID display that 
portrays graphically the intention of the automated system.  Their results showed that this 
visualization tool helped the human operators to achieve a better mental model of the system, 
which enabled them to make better decisions.  In yet another study, Furukawa et al. (2004) 
integrated the intention-represented EID display in a partially automated process control 
simulation (figure 4) and compared its effectiveness with that of an EID display without 
intention indicators of the automated system (figure 5).  Results showed that the intention-
represented EID display was able to enhance the operators’ predictions of the actions and 
behaviors of the automated system and therefore was able to improve the operator’s action 
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Figure 4.  EID display that shows the intention of 
the automated system (dotted lines 
indicate the automation’s intentions) 
(adapted from Furukawa et al. [2004], 
with permission). 

 

Figure 5.  EID display (the three panels in the center) for a partially automated 
process control simulation. 

 
planning and decision making.  Additionally, the benefits were demonstrated in novel scenarios, 
suggesting that the operators had a better mental model of the automated system with the 
intention-represented EID display than with the EID display without the intention indicators.  

Cummings and Bruni (2009) designed a user interface that supports a single operator’s ability to 
control four UAVs simultaneously.  They utilized visualization techniques in designing a tool 
that helps the operator replan the mission.  For example, they used a configural display to depict 
the overall cost of the revised plan (figure 6).  Furukawa (2008) also incorporated an EID display 
into a RoboFlag simulation program.  The results showed that the EID display enhanced the 
human operator’s performance of supervising a team of robots by portraying essential functional 
information (i.e., graphical representation of the offensive and defensive functions for the 
RoboFlag simulated game).  A detailed review of the EID—the empirical evidence of the 
efficacy of EID, why EID improves operator performance, how EID can be leveraged, and 
challenges of implementing EID—can be found in Vincente (2002). 
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Figure 6.  Supervisory control of four UAVs—configural display is 
the center panel with three green triangles indicating the 
costs of planned operations (image adapted from 
Cummings and Bruni [2009], with permission). 

6.4 Attention Management Tools (Interruption Recovery Aid)  

When controlling multiple robots at the same time, it is inevitable that the operator will tend to 
some aspects of the environment (e.g., one of the robots) before resuming his/her monitoring of 
all the robots.  Techniques that facilitate task resumption have been proposed and tested in 
various tasking environments (Ratwani et al., 2007; Scott et al., 2006; St. John et al., 2005).  
Some techniques focus on reminding the operator where he or she was before the interruption 
(Ratwani et al., 2007), while others present aids for the operator to quickly review what 
happened during the interruption (Scott et al., 2006; St. John et al., 2005).  Ratwani et al. 
demonstrated that by simply reducing the size (by about 75%) of the window for the interrupting 
task (i.e., reducing the occlusion of the primary task screen by the interrupting task window), 
participants were able to resume their primary task significantly faster.  Eye-tracking data also 
showed that participants were more accurate at returning to where they left off.  Other more 
sophisticated techniques to facilitate recovery from interruptions have also been developed.  For 
example, St. John et al. discussed the utility of an SA recovery tool (named CHEX, figure 7) that 
displayed a textual event history list in a naval air warfare environment (i.e., monitoring a 
geoplot of an airspace that contained ownship and ~50 other aircraft).  St. John et al. found that 
CHEX was more effective in helping the operator resume his or her task after interruptions (i.e., 
blank screen lasting either 30 or 120 s) than a video replay tool, which was worse than the 
baseline condition (i.e., no aid).  CHEX presented changes in a table and linked them to the map 
when the operator selected a change from the table.  However, Scott et al. argued that the 
ineffectiveness of the video replay tool shown in St. John et al. might be improved if a better 
design had been adopted.  
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Figure 7.  Interruption recovery aid—textual event history list 

(CHEX, upper right) (adapted from St. John et al. 
[2005], with permission). 

Scott et al. presented two types of replay tools—one replayed the events at a 10 × real-time 
speed, and the other presented bookmarks on the event timelines and the operator could view the 
replay by selecting the bookmarks (figure 8).  Results showed that both replay techniques were 
effective, especially when the tasking environment was challenging.  Based on the results, the 
authors recommended the following design guidelines for interruption assistance interfaces:  

1. Enable user control of event replay.  

2. Provide visual summary of critical events.  

3. Limit visual summary to goal-related events. 

4. Clearly indicate relationships between past and current system state.  

 
Figure 8.  The interruption assistance interface (adapted 

from Scott et al. [2006], with permission). 
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6.5 Trust Calibration Tools  

Lee and See (2004) recommended that the capabilities and limitations of the automated systems 
be conveyed to the operator, when feasible, in order for the operator to develop appropriate trust 
and reliance.  Bagheri and Jamieson (2004) demonstrated that when operators were aware of the 
context-related nature of automation reliability, their detection rate of automation failures 
increased significantly without affecting their concurrent tracking and system management tasks.  
The authors attributed this improvement in performance to a more effective attentional allocation 
strategy.  Rovira et al. (2007) investigated the differential effect of automation reliability and 
different types of automation (i.e., decision support and information support) on performance 
during a command and control task.  Their results confirmed a differential cost of automation 
unreliability for three forms of decision automation, as compared with information automation 
when the overall automation reliability was at 80%.  At 60% overall automation reliability, 
however, there was a reduction in performance for both information and decision automation 
during unreliable trials.  This finding suggests that the type of automation employed is irrelevant 
when automation reliability is below a certain threshold.  Based on their findings on the different 
types of automation, Rovira et al. suggested that decrements in decision-making performance 
will be lower when operators can query the automation, inspect raw information sources, and 
verify or negate the automated advice. 

In another study, Seppelt and Lee (2007) designed a display based on EID that portrayed 
graphically the capabilities and limitations of the adaptive cruise control of a vehicle for a 
driving task in different traffic and weather conditions.  They found that drivers’ reliance on the 
automation (i.e., cruise control) was more appropriate when the display was present than when it 
was not.  Lee and See (2004) developed the following guidelines on designing systems that 
promote appropriate trust in the automation: 

1. Design for appropriate trust, not greater trust. 

2. Show the past performance of the automation. 

3. Show the process and algorithms of the automation by revealing intermediate results in a 
way that is comprehensible to the operators. 

4. Simplify the algorithms and operation of the automation to make it more understandable. 

5. Show the purpose of the automation, design basis, and range of applications in a way that 
relates to the user’s goals. 

6. Train operators regarding its expected reliability, the mechanisms governing its behavior, 
and its intended use. 

7. Carefully evaluate any anthropomorphizing of the automation, such as using speech to 
create a synthetic conversational partner, to ensure appropriate trust.
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6.6 Adaptive Automation 

Adaptive systems were developed more than 50 years ago to aid the operator by keeping 
performance constant as a function of task difficulty (Kelley, 1968).  One of the early paradigms 
used queuing theory as an allocation system to service aviation tasks on which the operator was 
performing poorly during high workload situations.  More recently, adaptive automation has 
been proposed as a technique to keep operators engaged in a multitasking situation without 
overwhelming them during peak workload situations (Barnes et al., 2006a; Rouse, 1988; 
Parasuraman et al., 1992).  These systems, a middle ground between fully automated and manual 
control, provide a means of keeping operators in the loop.  The basic concept consists of 
decisions rules for the computer invoking automation during high workload and for reinvoking 
manual control during lower workload mission segments.  The purpose of the adaptive 
automation is to keep operator performance within acceptable levels while maintaining 
attentional focus on important tasks.  Decision tasks, in particular, should be completely 
automated with extreme care because even with perfectly automated tasks, the operator may lose 
SA if the environment changes or unexpected emergencies occur (Barnes et al., 2006a; 
Parasuraman et al., 2007; Rovira et al., 2007).  For imperfect automation, the situation is worse.  
Even for highly accurate automated aids, operators tend to over-rely on the automated solution, 
which can cause even obvious errors to be missed (i.e., automation paradox [Rovira et al., 
2007]).  Consequently, with less accurate aids, automation itself can be a detriment (Wickens et 
al., 2006).  Therefore, important issues with adaptive systems such as type of invocation process, 
switching rate, and engagement time must be taken into account in the design of these systems. 

Invocation rules (i.e., when to invoke automated or manual control) can be based on models, 
performance levels, physiological changes, or some mixture of them (Parasuraman et al., 2007).  
A number of physiological measures have been used to covertly monitor operator’s workload 
state:  EEG, event-related potential, heart rate variability, functional magnetic resonance imaging 
(fMRI), and combinations of the measures (Barnes et al., 2006a; Scerbo et al., 2001).  Freeman 
et al. (1999) showed the potential of using an adaptive system for human tracking performance 
using three neurophysiological EEG indices for automation invocation.  To test whether EEG 
was a good indicator of performance, the authors compared two methods for invoking 
automation:  high arousal components of the EEG (high ratios of the beta wave components 
divided by theta and/or alpha components) and components associated with low arousal (higher 
ratios of alpha and theta wave components).  As predicted, conditions that used EEGs with high 
beta ratios resulted in better tracking performance indicating that neurophysiological indices 
could provide a potential means of covertly measuring the operator’s arousal level for adaptive 
processes.  Milkulka et al. (2002) showed similar patterns of performance for a vigilance task 
using the high beta weightings of the EEG to control adaptive event rate procedures.  However, 
because yoked participants (adaptive processes not based on the operator’s EEG) performed as 
well as participants in the high beta ratios conditions, it is possible that task difficulty measures 
may be as efficient as EEG indices for invoking automated processes.  They also reported that an 
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automation switching rate of about 15 s between conditions was sufficient for operators to be 
able to focus on the current task and to adjust to new adaptive conditions.  

Wilson and Russell (2007) developed a more sophisticated adaptive automation invocation 
method using multiple physiological indices that were performance weighted using a neural 
network–based algorithm.  The adaptive conditions resulted in better performance than manual 
conditions.  More importantly, the weights based on the individual’s past performance resulted in 
better performance than group-weighted invocation methods indicating their indices were 
sensitive to individual differences.  All three studies (Freeman et al., 1999; Milkulka et al., 2002; 
Wilson and Russell, 2007) showed that physiological indices were potential invocation methods 
for adaptive processes; they also indicated that fairly short switching rates were feasible. 
Moreover, the Wilson and Russell study indicated that the measures should be tailored to 
individual differences (see also the Dorneich et al. [2006] study discussed previously).  However, 
none of these studies actually showed an advantage for adaptive processes compared to static 
automation, nor did they compare physiological to nonphysiological indices. 

Parasuraman et al. (1996) demonstrated the efficacy of adaptive processes in a multitasking 
aviation environment.  There were three conditions:  static automation, model-based adaptive 
automation (mission segments with high task difficulty), and performance-based adaptive 
automation (operator error rate–determined invocation).  Manual control was invoked in the 
middle of the 90-min experiment for the two adaptive conditions.  The adaptive system increased 
the SA of the operators and showed significantly better instrument monitoring performance 
compared to the static automated conditions for the sessions immediately following the manual 
conditions.  The authors interpreted this as indicating that putting operators in the loop, even 
briefly during a 90-min experiment, increased their awareness compared to automating a system 
for the entire 90 min.  Also, the experiment demonstrated that either model-based or 
performance-based rules could be used as invocation triggers for automation.  

Parasuraman et al. (2009) compared performance-based adaptive automation, static automation, 
and manual target identification using an automatic target recognition (device in the automated 
conditions.  Their study employed a multitasking environment involving targeting with UAVs 
and planning UGV routes.  The trigger for adaptive automation was the number of missed 
changes in a situation map, which suggests that adaptive processes can be invoked from 
secondary, as well as primary, task difficulties.  The results were dramatic—SA, workload, and 
performance on the secondary task were all improved by automation, but more importantly, 
performance gains for the adaptive (performance-based) vs. static (model-based) automation 
were substantial.  Based on this study and a review of the literature, Parasuraman et al. (2007) 
suggested the following guidelines for adaptive automation: 
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1. Information displays should adapt to the changing military environment. 

2. Software should be developed to allow the operator to allocate automation under specified 
conditions before the mission (as in the Rotorcraft Pilot’s Associate [Dornheim, 1999]). 

3. At least initially, adaptive systems that do not take decision authority away from the 
operator should be evaluated.  This can be accomplished in two ways: 

a. An advisory asking permission to invoke automation (i.e., management by consent).  

b. An advisory that automation will be invoked unless overridden (i.e., management by 
exception).  

4. For safety or crew protection situations, specific tactical or safety responses can be invoked 
without crew permission. 

Steinhauser et al. (2009) also provided several design guidelines for implementing adaptive 
automation based on their review of empirical research on adaptive automation and aiding in the 
past three decades.  The guidelines are as follows: 

1. Adaptive function allocation to the operator should be used intermittently.  Intermittent 
allocation can improve performance in monitoring tasks. 

2. Energetic human qualities should be considered in design.  For example, degrees of 
challenge can be automatically adjusted with artificial tasks. 

3. Emotional requirements of the human operator must be considered.  The human 
operator should not feel unnecessary to the system as a whole. 

4. The system should be calibrated to the individual operating it.  Individual differences 
factor into the human operator portion of a human-system pairing and thus should be 
incorporated into the design. 

5. Task transformation should be used to simplify tasks for operators.  A task that is 
partitioned and transformed can be handled piecemeal instead of as a whole. 

6. The environmental context of the system should be used to determine allocation. 
Environmental stressors such as heat, vibration, and gravitational force affect human 
performance and should be addressed.  

7. Tasks should be partitioned when both the human and the system can contribute 
effectively.  A true human-system collaboration operates as a pairing instead of a 
dichotomy of effort.  Performance is improved when the most effective attributes of 
each part are employed.
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8. Adaptation should be controlled by the system but be open to human intervention when 
the system fails to recognize new conditions or demands. In order to reduce task load 
on the human operator and improve general performance, the system should allocate 
tasks. To improve satisfaction and motivation, the human operator should retain 
control, or perceived control, of the system. 

Hou and his colleagues developed an intelligent adaptive system for controlling multiple UAVs 
and demonstrated that the system significantly reduced operators’ workload, improved their 
situational awareness, and facilitated the operators’ ability to work under high time pressure 
(Hou et al., 2007b).  Hou et al. (2007a) also presented a framework, based on their review of 
more than 200 articles, for designing intelligent adaptive systems.  A number of useful guidelines 
for designing intelligent adaptive systems were provided in this article. 

Adaptable systems and adjustable automation are two related schemas for combining automated 
and manual control.  Adaptable systems allow the operator to elicit preprogrammed behaviors 
during system use similar to the way a coach would send in various “plays” from a playbook 
during a football game.  The advantage of adaptable systems is the introduction of more flexible 
roles for supervisory control that allow the operator to command complex behaviors without 
requiring complicated communication protocols (Miller and Parasuraman, 2007).  Adjustable 
automation allows operators to fix the level of system autonomy, allowing them to decide, 
depending on the changing situation, how much decision authority to reserve for themselves and 
how much autonomy to delegate (Goodrich, in press; Sellner et al., 2006).  The best type of 
adaptive system depends on the task environment, the amount of complexity required, and the 
ability of the operator to delegate autonomy during high-workload environments.  However, it 
should be kept in mind that delegation and choosing an appropriate autonomy level can be very 
high-workload decisions in themselves.  Hardin and Goodrich (2009) demonstrated that a mixed-
initiative control scheme (i.e., allowing the human operator and the intelligent robotic agents to 
jointly decide the appropriate level of autonomy) resulted in better overall performance than did 
adaptive autonomy and adjustable autonomy in a simulated target search task.  The authors, 
however, caution that mixed-initiative control schemes should meet the following requirements 
in order to be effective:  

1. The human operator and the agents should have complementary abilities.  

2. Agents should have the capabilities to progress without waiting for commands from the 
human operator. 

3. The human operator must be able to interact with multiple agents efficiently and 
simultaneously.  

The next section further discusses teaming between human and intelligent agents.
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6.7 Intelligent Agents and Human-Robot Teaming 

The necessity for more powerful intelligent agents that can interact with human operators in 
increasingly sophisticated ways will require that current performance-improving techniques and 
technologies be augmented with techniques and technologies that facilitate effective H-A team 
interactions (Billings, 1996; Bradshaw et al., 2004; Green et al., 2008; Lewis, 1998).  In recent 
years, researchers have designed agents that can support team cognition.  Dias et al. (2006), for 
example, presented the architecture of a dynamically formed human-robot team that performs 
coordinated tasks.  The architecture was developed based on the vision that H-A teams will 
dynamically form to solve complex tasks by coordinating their complementary capabilities.  The 
architecture included TraderBot (Dias et al., 2004), TeamTalk (Harris et al., 2004), and Plays 
(Bowling et al., 2004).  These components were used to support the development of coordination 
among both H-A teams and agent-agent teams. 

TraderBot supports team coordination by allocating tasks to other agents using a market-based 
coordination approach.  This approach is analogues to and is described within the context of 
market trading (Dias et al., 2006).  Market-based approaches can distribute much of the planning 
and execution of an operation over the team, gather information about the team, and distribute 
resources all within a team aware context.  Within the architecture described by Dias et al., each 
team member is assigned an interface agent, or trader (see Zlot and Stentz, 2006).  This agent is 
the team members’ interface to the market and simplifies the communication process among 
human and agent team members.  The use of TeamTalk, a multiagent, multimodal dialog system, 
further simplifies the communication between humans and agents.  Finally, the architecture 
supports shared environment awareness by broadcasting all user input to all robots on the team. 
Therefore, coordination, communication, and shared awareness are all supported within the 
architecture. 

Yen et al. (2006) presented research on agents that can support the development of shared mental 
models.  These researchers discussed the use of the Collaborative Agents for Simulating 
Teamwork (CAST) model, which enables agents and humans to anticipate potential information 
needs and proactively exchange information between team members.  Components of the CAST 
model were tested in a simulated battlefield over two experiments.  The ability of CAST to 
support communication and decision making was investigated.  For the scenario used in the first 
study, the human was considered a virtual agent and invisible to other team agents.  Human team 
members could affect team activities by directly adjusting their agent’s behaviors and strategies.  
For this team, the decision-making process was supported by the interactions (e.g., 
communication) between the human and the agents; the human provided domain expertise, while 
the agents gathered relevant information by collaborating with other agents.  In experiment one, 
the use of a CAST-supported communication model (i.e., decision-theoretic) was compared to a 
non-CAST-supported communication model.  Results of the simulation indicated that using the 
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decision-theoretic approach, which analyzes the cost benefit ratio of communicating with other 
team members vs. not communicating with other team members, produced better decision 
making than when team members communicated every time.    

In the simulated scenario used in the second experiment, humans had an assistant agent that was 
invisible to the other team members.  The assistant agent supported the human by fusing and 
filtering information received from other agents, tracking the human team member’s mental 
model, and tracking the mental model shared among the team.  Here, both the interactions 
between the human and the agents, and the interaction between the human and the assistant agent 
supported decision making.  For this experiment, the use of information fusion provided by the 
assistant agent was compared to not using information fusion (i.e., no assistant agent) by 
assessing the accuracy of decision making, particularly when the human’s cognitive capacity was 
taxed.  The results indicated that the simulated fusion team, in general, performed better than the 
nonfusion team.  Furthermore, the disparity in performance between the two simulated teams 
increased as cognitive capacity decreased. 

The results of the two experiments by Yen et al. (2006) suggest that using collaboration models 
such as CAST to form H-A teams may lead to better performance.  However, future research 
should determine whether the increase in performance was a result of the CAST approach 
facilitating team cognition.  For example, did the decision-theoretic approach support team 
decision-making processes and/or did fusion lead to an increase in shared mental models among 
team members?  Investigating these questions along with investigating factors that may influence 
an operator’s decision to accept an agent’s attempt to establish team cognition (see section 1.2) 
just begins to open the door to the design of future human-robot team systems.  

 

7. Conclusions 

This report examined human performance issues in supervisory control of unmanned vehicles 
(i.e., robotics) and reviewed user interface solutions that could potentially address those issues. 
As robotics become increasingly prevalent in both military and civilian operations, it is important 
to understand HRI and its associated limitations and potentials.  In the foreseeable future, it will 
be more common for humans to work with robots as a team to perform tasks that humans cannot 
realistically accomplish alone.  Research programs, such as the U.S. Army’s Safe Operations of 
Unmanned Systems for Reconnaissance in Complex Environments Army Technology Objective, 
were also initiated to explore how to enhance operator performance by employing advanced 
technologies and user interface design concepts.  These solutions, and other innovative user 
interface designs reviewed in this report, can hopefully improve HRI and therefore reduce the 
current challenges of operators’ robotic control tasks.  
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AR  augmented reality  

AT   activity time 

ATC   air traffic control  

CAST   Collaborative Agents for Simulating Teamwork 

EEG   electroencephalography 

EID   ecological interface design 

FA   false alarm 

FAP   false-alarm prone 

FCS   Future Combat System 

fMRI   functional magnetic resonance imaging 

FO   fan-out 

H-A  human-agent 

HRI   human-robot interaction  

IT   interaction time 

LOA   level of automation 

MBC   management by consent 

MBE   management by exception 

MiDAS  Mission Displays for Autonomous Systems 

MP   miss prone 

SA   situation awareness  

UV   unmanned vehicle 

UAV   unmanned air vehicle 

UGV   unmanned ground vehicle
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