
NUREG/IA-0405

International
Agreement Report

Coupling the RELAP Code with External Calculation
Programs (Shared Memory Version)

 Prepared by:
 Felix Maciel

 Comisión Nacional de Energía Atómica
 Centro Atómico Bariloche
 San Carlos de Bariloche
 R8402AGP, Argentina

A. Calvo, NRC Project Manager

 Office of Nuclear Regulatory Research
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555-0001

Manuscript Completed: September 2011
Date Published: October 2011

Prepared as part of
The Agreement on Research Participation and Technical Exchange
Under the Thermal-Hydraulic Code Applications and Maintenance Program (CAMP)

Published by
U.S. Nuclear Regulatory Commission

AVAILABILITY OF REFERENCE MATERIALS

IN NRC PUBLICATIONS

NRC Reference Material

As of November 1999, you may electronically access
NUREG-series publications and other NRC records at
NRC‘s Public Electronic Reading Room at
http://www.nrc.gov/reading-rm.html. Publicly released
records include, to name a few, NUREG-series
publications; Federal Register notices; applicant,
licensee, and vendor documents and correspondence;
NRC correspondence and internal memoranda;
bulletins and information notices; inspection and
investigative reports; licensee event reports; and
Commission papers and their attachments.

NRC publications in the NUREG series, NRC
regulations, and Title 10, Energy, in the Code of
Federal Regulations may also be purchased from one
of these two sources.
1. The Superintendent of Documents
 U.S. Government Printing Office
 Mail Stop SSOP
 Washington, DC 20402-0001
 Internet: bookstore.gpo.gov
 Telephone: 202-512-1800
 Fax: 202-512-2250
2. The National Technical Information Service
 Springfield, VA 22161-0002
 www.ntis.gov
 1-800-553-6847 or, locally, 703-605-6000

A single copy of each NRC draft report for comment is
available free, to the extent of supply, upon written
request as follows:
Address: Office of the Chief Information Officer,
 Reproduction and Distribution
 Services Section
 U.S. Nuclear Regulatory Commission
 Washington, DC 20555-0001
E-mail: DISTRIBUTION@nrc.gov
Facsimile: 301-415-2289

Some publications in the NUREG series that are
posted at NRC‘s Web site address
http://www.nrc.gov/reading-rm/doc-collections/nuregs
are updated periodically and may differ from the last
printed version. Although references to material found
on a Web site bear the date the material was accessed,
the material available on the date cited may
subsequently be removed from the site.

Non-NRC Reference Material

Documents available from public and special technical
libraries include all open literature items, such as
books, journal articles, and transactions, Federal
Register notices, Federal and State legislation, and
congressional reports. Such documents as theses,
dissertations, foreign reports and translations, and
non-NRC conference proceedings may be purchased
from their sponsoring organization.

Copies of industry codes and standards used in a
substantive manner in the NRC regulatory process are
maintained at—

The NRC Technical Library
Two White Flint North
11545 Rockville Pike
Rockville, MD 20852-2738

These standards are available in the library for
reference use by the public. Codes and standards are
usually copyrighted and may be purchased from the
originating organization or, if they are American
National Standards, from—

American National Standards Institute
11 West 42nd Street
New York, NY 10036-8002
www.ansi.org
212-642-4900

Legally binding regulatory requirements are stated only
in laws; NRC regulations; licenses, including technical
specifications; or orders, not in
NUREG-series publications. The views expressed in
contractor-prepared publications in this series are not
necessarily those of the NRC.

The NUREG series comprises (1) technical and
administrative reports and books prepared by the staff
(NUREG–XXXX) or agency contractors
(NUREG/CR–XXXX), (2) proceedings of conferences
(NUREG/CP–XXXX), (3) reports resulting from
international agreements (NUREG/IA–XXXX),
(4) brochures (NUREG/BR–XXXX), and
(5) compilations of legal decisions and orders of the
Commission and Atomic and Safety Licensing Boards
and of Directors‘ decisions under Section 2.206 of
NRC‘s regulations (NUREG–0750).

DISCLAIMER: This report was prepared as an account of work sponsored by an agency of the U.S. Government.
 Neither the U.S. Government nor any agency thereof, nor any employee, makes any warranty, expressed or
implied, or assumes any legal liability or responsibility for any third party=s use, or the results of such use, of any
information, apparatus, product, or process disclosed in this publication, or represents that its use by such third
party would not infringe privately owned rights.

NUREG/IA-0405

Coupling the RELAP code with external
calculation programs (Shared memory
version)

Manuscript Completed: September 2011
Date Published: October 2011

Prepared by: Felix Maciel

Comisión Nacional de Energía Atómica
Centro Atómico Bariloche
San Carlos de Bariloche
R8402AGP, Argentina

A. Calvo, NRC Project Manager

Prepared for:
Division of Systems Analysis

Office of Nuclear Regulatory Research

U.S. Nuclear Regulatory Commission

Washington, DC 20555-0001

 iii

ABSTRACT

A communication library has been developed for the connection of external calculation programs to
the RELAP code using shared memory techniques. Modifications to the RELAP program have been
introduced in order to implement these facilities.

A portable (non multi-platform) version of the communication library has been achieved, producing
a reliable, good performance coupling.

This permits exporting variables from RELAP, operating with them in an external program, and
transferring them back to RELAP, working in a synchronized way.

 iv

 v

CONTENTS
Page

1. INTRODUCTION .. 1-1

2. PROGRAMMING OF THE RELAP CODE INTERNAL MODULE .. 2-1
2.1 General description .. 2-1
2.2 Control components added to RELAP ... 2-1

2.2.1 Component IVAR .. 2-1
2.2.2 Component OVAR ... 2-1

2.3 Communication with the external program ... 2-2
2.4 Internal states ... 2-2
2.5 Communication programming .. 2-2

2.5.1 Communication initialization .. 2-2
2.5.2 Communication at each time step ... 2-2
2.5.3 Communication finalization ... 2-3

3. PROGRAMMING OF THE EXTERNAL MODULE ... 3-1
3.1 General description .. 3-1
3.2 Communication with RELAP .. 3-1
3.3 Internal states ... 3-2
3.4 Algorithm programming .. 3-2

3.4.1 Algorithm initialization ... 3-2
3.4.2 Calculation at each time interval ... 3-3
3.4.3 Algorithm finalization ... 3-3

4. CONCLUSIONS ... 4-1

5. REFERENCES ... 5-1

Figures

Page

Fig. 1 -. Flow chart of the external control program. ... 3-4

1-1

1. INTRODUCTION

In the frame of the thermal hydraulic analysis required for supporting the Probabilistic Safety
Analysis (Level 1) of Atucha II NPP, several transient and accident scenarios have been simulated
with RELAP5/MOD3.3 patch 3 1.

For the simulation of the Reactor Protection system, Limitation system, Control system and
interlocking, as well as the reactivity evaluation, it was necessary to couple an external calculation
FORTRAN program to RELAP 2 3. The reason was the limitation found in the normal resources
available in RELAP, mainly related to the maximum number of control variables that can be used to
simulate the complex systems above mentioned. The previous experience modelling Atucha I NPP
confirmed the necessity of implementing this alternative.

The external calculation program used for this particular purpose was based on the DYNETZ code
4. However, the procedure enables the coupling of any external program.

A communication library has been developed for the connection between the external programs and
the RELAP code using shared memory techniques. Modifications to the original RELAP program
have been introduced in order to implement these facilities.

This permits exporting variables from RELAP, operating with them in an external program, and
transferring them back to RELAP, working in a synchronized way.

The programming of the internal and external modules required for the programs coupling is
outlined in the following sections.

2-1

2. PROGRAMMING OF THE RELAP CODE INTERNAL MODULE

2.1 General description

The internal module is composed by a set of FORTRAN subroutines that makes use of the shared
memory calls of the Win32 system to establish a communication channel between the RELAP code
and the external calculation program. All the extra code has been included in the source files
iconvr.ff and convar.ff; additionally, the header files cnvtpa.hh and cnvtpad.hh and the source files
dtstep.ff, rconvr.ff and tran.ff have been modified.

This set of subroutines and modifications to the RELAP code should not be changed as it has
been specially developed to be activated in the ‗communication with external programs‘ mode, as it
is described below, in case that variables of the type ovar or ivar are declared in the configuration
and modeling files of the RELAP code; this automatically activates the communication with an
external program in case that the RELAP code has been compilated with this option.

In case that the RELAP code has not been compilated for the communication with external
programs, an error message will be produced during the initialization process as the variables ovar
and/or ivar will not be recognized.

2.2 Control components added to RELAP

Two new components have been implemented in the context of the control system (cards
205CCC00 or 205CCCC0): ivar (input variable, based on RELAP control variable constant) and
ovar (output variable, based on RELAP control variable poweri).

2.2.1 Component IVAR

In the components of the type ivar the third word of the card 205CCC00 (or 205CCCC0) W3(R) will

not be a scaling factor but it will correspond to the initial value of this variable. For this type of
component, the rest of the cards 205CCC01-CCC09 or 205CCCC1-CCCC9 must not be entered.

2.2.2 Component OVAR

The components of the type ovar are defined as:

Y = S V1

W1(A) Alphanumeric name of the variable request code for V1
W2(I) Integer name of the variable request code for V1
W3(I) 1 (one) or 0 (zero) (Currently not used, it can be used for outputs activation/deactivation)

S and the limits are defined in the component type card.

2-2

2.3 Communication with the external program

The communication with the external program is established by means of subroutines programmed
in the source files iconvr.ff and convar.ff. These subroutines allocate the variables for the
communication with RELAP in the COMMON ctrldata. The COMMON must contain REAL type

variables in order to be managed by the RELAP pre-processor.

The limit for the number of variables that the arrays Entradas and Salidas can contain is defined
through the parameter grande (currently 1023). This value should be modified very carefully as it is
related to the variable transfer which controls the low level communication.

2.4 Internal states

The internal states and the shared memory communication system data, together with multiple
access protections, are stored in the COMMON memdata; they are the reference to the shared
memory and several flags that the operative system uses as event managers.

2.5 Communication programming

2.5.1 Communication initialization

The communication initialization process is performed by a three stage exchange to establish the
data channel between the RELAP code and the external program.

If, during the initialization of the RELAP code run, the declaration of a variable of the type ivar
and/or ovar is found in the configuration and/or modeling files (processing achieved in the source
file iconvr.ff) the subroutine iodataini is called, and if the variable is of the ovar type the subroutine
mando is called for the variable initialization in the communication with the external program.

The first time the subroutine iodataini is called, this in turn calls the subroutine inicmem to initialize
the shared memory subsystem and create also a communication pipe and wait for the contact with
the external program, with a maximum waiting time of 600 seconds; if no contact is established
within that time, the subroutine terminates the RELAP run with an error message.

Once the connection is produced, connection parameters as well as the configuration file name and
the restart number of the current run are exchanged. After this, the connection is properly
established and initialized.

Following, the subroutine iodata is invoked to produce the first data transfer to the external program
for the initialization of its variables.

2.5.2 Communication at each time step

The subroutine convar calls the subroutine mando at each time step for every variable of the types
ivar and/or ovar in order to copy the datum into the communication structures of the shared
memory; after this loop process, the subroutine iodata is invoked to perform the actual

2-3

communication by means of the shared memory copy system, and then the control variables
processing loop is initiated, where the variables ivar are extracted from the communication
structure by the subroutine recibo.

2.5.3 Communication finalization

During the execution of the last time step of the RELAP code run, the end of the calculation is
detected in the subroutine tran (source file tran.ff) and the closure call to the subroutine iodata is
made, with the flag set to -1, meaning that this is the last message, carrying no useful data.

After this, the RELAP code run terminates, neither waiting any response from the external program
nor producing an explicit closure of the shared memory system.

3-1

3. PROGRAMMING OF THE EXTERNAL MODULE

3.1 General description

The external module is a FORTRAN program that utilizes the shared memory calls of the Win32
system for the communication with the RELAP code. The source files associated to this program
are CtrlExterno.f, CtrlExt_Lib.f, inic.f, paso.f and term.f; that require the header files CtrlExt.h and
CtrlExt_Lib.h. These in turn obtain information from the header files grande_size.h and ctrldata.h.

The source file CtrlExterno.f contains the main program. The source file CtrlExt_Lib.f contains all
the subroutines for the communication with RELAP by means of the shared memory calls of the
Win32 system, including the process of reading and writing of a binary data storing file (called
xxxx_REG.res, where xxxx is the file name identifying the RELAP simulation run). This file stores all
the data necessary for the external control algorithm to initiate a simulation from a ―restart‖ point.

Neither these two source files (CtrlExterno.f and CtrlExt_Lib.f) nor the header file

(CtrlExt_Lib.h) need to be modified by the control algorithm programmer, and it is

recommended not to do so.

The control algorithm must be programmed in the source files inic.f, paso.f and term.f. All the
calculations required for the algorithm initialization must be performed in the file inic.f; a time step
for this algorithm must be defined in the file paso.f; and all the calculations required for the
algorithm finalization, if necessary, must be made in the file term.f.

3.2 Communication with RELAP

The communication with the RELAP code is performed through the subroutines programmed in the
source file CtrlExt_Lib.f. These subroutines allocate the variables for the communication with
RELAP in the COMMON statements Entradas, BaseTiempo and Salidas. All these COMMONs

must contain variables of the type REAL *8.

For each calculation interval, two variables are updated in the COMMON BaseTiempo: the first one,
Time (the RELAP simulation time), and the second one, DTime (the RELAP time step). The
programmer can change the name of these variables, taking into account the described sequential
order, and the requirement that the variables must be defined as REAL*8.

For each calculation interval also, all the variables that RELAP transfer to the control program are
updated in the COMMON Entradas. The user can choose convenient names for these variables
(that must be of the type REAL *8), considering that their sequential order must be coincident with
the order in which RELAP transfers them to the control program.

The user transfers to the RELAP code the result of all the control actions for each time step through
the COMMON Salidas. RELAP receives them in the same order as they are listed in this
COMMON. Also these variables must be of the type REAL *8.

3-2

The limit for the number of variables contained in the COMMONs Entradas and Salidas is controlled
by the parameter grande included in the file grande_size.h.

3.3 Internal states

In the definition of the control algorithm it is often necessary to store a set of variables from a time
interval for the following one. These variables are referred to as internal states and they must be
stored in the corresponding ―restart‖ file in order to be recalled for a ―restart‖ calculation. The user
can list these REAL *8 type variables in COMMONs. The file Restart_commons.h contains the
COMMONs definition and the files Read_restart.h and Write_Restart.h contain the corresponding
read/write codes.

3.4 Algorithm programming

In this section, the procedure for the control algorithm programming inside the external control
program is presented. A general flow chart of the program is showed in Fig.1. In the following sub
sections, the algorithm initialization, the calculation at each time interval and the algorithm
finalization are described, specifying the source files where these processes are to be performed.

3.4.1 Algorithm initialization

The control algorithm initialization must be programmed in the source file inic.f, in the subroutine
inicializacion, which is called by the main program just once at the beginning of the program
execution (see Fig.1). The subroutine inicializacion calls first the subroutine InicCom, which
initializes the communication with RELAP and performs the first communication operations.

In this early stage, InicCom receives the file name identifying the simulation run and an integer
variable indicating whether the calculation starts at time equal zero (the variable value is 0 in this
case) or it is initiated from a ―restart‖ point (the integer variable value means the iteration number
where the new simulation starts).

The subroutine InicCom returns an integer value indicating whether the initiated simulation run
starts at time equal zero (the variable value is 0) or from a ―restart‖ point (the variable value is 1).

The control algorithm initialization is mainly intended for the case of starting a simulation run from
time equal zero, rather than for a ―restart‖ run, as it is showed in Fig.1, in which after calling the
subroutine InicCom, the value of the return integer variable is analyzed and if it is 0 (simulation
starts at time equal zero) the initialization calculations are performed. Once the IF execution ends,
the execution of the subroutine inicializacion finalizes returning the control to the main program.

NOTE: For the initialization process, the initial conditions for all the integrators included in

the control algorithm must be adequately set (corresponding to an internal state variable or

an input/output variable). A proper initialization relies upon the responsibility of the user

programming the external control algorithm.

3-3

3.4.2 Calculation at each time interval

In the control algorithm, the calculation at each time interval must be programmed in the source file
paso.f, in the subroutine paso which is called at each calculation step by the main program. This
subroutine must return an integer number indicating whether the simulation is terminated or not; if
so, the main program terminates the calculation loop and calls the subroutine for the simulation run
finalization. This integer number must be 0 for continuing with the calculation, and a non-zero value
for the algorithm finalization.

First, the subroutine paso calls the subroutine LeeCom to read all the variables that RELAP
transfers to the external control program at a time step (see Fig.1). The subroutine LeeCom also
stores -at intervals controlled by RELAP- all the variables in the COMMONs Entradas, BaseTiempo,
Estados and Salidas, necessary for an eventual restart run.

The subroutine LeeCom returns an integer variable indicating whether the calculation loop must
terminate (its value is 1) or it must continue (the value is 0). If the returning value is 1, the
subroutine paso returns the control to the main program, setting the variable NFLAG to 1, to make
the main program exit the calculation loop. Otherwise, the subroutine paso performs the control
algorithm calculation.

Once the algorithm calculation is achieved, the internal state variables must be updated for the next
time step, and after that the subroutine EscCom is called to transfer to RELAP all the variables in
the COMMON Salidas calculated in the control algorithm (if any of these variables is not updated,
the value calculated in the previous time step will be transferred).

After calling EscCom, the subroutine returns the control to the main program.

NOTE: The program does not update the internal state variables, therefore the programming

user must implement the updating process where described in this section.

3.4.3 Algorithm finalization

Once the simulation execution terminates, the main program calls (externally to the calculation
loop) the subroutine terminacion programmed in the source file term.f (see Fig.1). At this point, the
calculations for the finalization of the control algorithm execution must be performed, if necessary
(usually not necessary).

When these calculations are achieved, the subroutine calls FinCom prior to return the control to the
main program. The subroutine FinCom stores the data corresponding to the COMMONs Entradas,
BaseTiempo, Estados and Salidas for an eventual restart run from this last calculated time. After
this, FinCom closes properly the communication with RELAP.

3-4

Fig. 1 -. Flow chart of the external control program.

4-1

4. CONCLUSIONS

A communication library has been developed for the connection of external calculation programs to
the RELAP code using shared memory techniques. Modifications to the RELAP program have been
introduced in order to implement these facilities.

This permits exporting variables from RELAP, operating with them in an external program, and
transferring them back to RELAP, working in a synchronized way.

The programming of the internal and external modules required for the programs coupling has been
outlined. The result is a portable (non multi-platform) version of the communication library,
producing a reliable, good performance coupling.

5-1

5. REFERENCES

1. Information Systems Laboratories, Inc., RELAP5/MOD3.3 Code Manual,
Vol. 1 to 7, January 2002

2. Maciel, F, Coupling the RELAP code to FORTRAN programs, Technical Report under

preparation.

3. Schivo, M. A., CtrlExterno - Descripción del programa de simulación de las lógicas de
control de la CNA II para la nodalización con RELAP, Technical Report NA-SA
TN/777/2006, Lima, Bs. As., October 2006.

4. Hirmer, F., CNA2: Beschreibung des Arbeitsablaufes zur Durchführung von

Transientenanalysen mit dem Programm DYNETZ auf dem Personalcomputer (PC)
unter MS-DOS, Technical Report KWU NDS1/99/2067, Erlangen, May 1999.

	ABSTRACT
	CONTENTS
	1. INTRODUCTION
	2. PROGRAMMING OF THE RELAP CODE INTERNAL MODULE
	2.1 General description
	2.2 Control components added to RELAP
	2.2.1 Component IVAR
	2.2.2 Component OVAR

	2.3 Communication with the external program
	2.4 Internal states
	2.5 Communication programming
	2.5.1 Communication initialization
	2.5.2 Communication at each time step
	2.5.3 Communication finalization

	3. PROGRAMMING OF THE EXTERNAL MODULE
	3.1 General description
	3.2 Communication with RELAP
	3.3 Internal states
	3.4 Algorithm programming
	3.4.1 Algorithm initialization
	3.4.2 Calculation at each time interval
	3.4.3 Algorithm finalization

	4. CONCLUSIONS
	5. REFERENCES

