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Abstract

We propose an approach to formally verify Plural specifications based on access permissions
and typestates, by model-checking automatically generated abstract state-machines. Our
exhaustive approach captures all the possible behaviors of abstract concurrent programs
implementing the specification. We describe the formal methodology employed by our tech-
nique and provide an example as proof of concept for the state-machine construction rules.
The implementation of a fully automated algorithm to generate and verify models, currently
underway, provides model checking support for the Plural tool, which currently supports
only program verification via data flow analysis (DFA).

1 Introduction

Multi-core processor platforms are poised to become massively parallel within the next few
years. To take advantage of this new technology, computer scientists are working on the
development of programming languages and programming paradigms that exploit the par-
allel computing power provided by the new hardware. For example, the Aminium research
project [19], which succeeds Plural [15], is developing a platform that enables programmers
to write concurrent-by-default programs, and is prone to support massive parallelism. The
Plural language uses Java syntax and is inspired by purely functional programming lan-
guages in which programmers express not a sequence of side-effect operations but rather
how a result should be built functionally from an input. The order of the execution does
not matter as long as the dependencies within the program are respected. The Plural
language proposes a new way of structuring object oriented programming based on code
dependencies and data-flow alone. Plural programmers provide data dependencies thus en-
abling Plural runtime system to parallelize the program. Dependencies are written as access
permissions [3,6] that express logical dependencies on concurrent execution runs. Access
permissions are abstractions describing how objects are accessed. For instance, a Unique
access permission describes the case when a sole reference to a particular object exists, and a
Shared access permission models the case when an object is accessed by multiple references.
Access permissions are inspired by Girard’s Linear Logic [12]. Method access permissions
specifications are produced and consumed, in the spirit of Linear Logic.

The Aminium concurrent-by-default platform is still under development and efforts are
in place to develop techniques to improve the analysis performed by its current implemen-
tation. In particular, Aminium does not provide support for model checking. In this paper,
we propose a new formal approach that enables reachability analysis of Plural specifications.
First, we translate Plural specifications into abstract state-machines that capture all pos-
sible behaviors allowed by the specification. Then, we use a symbolic model checker based
on edged-valued decision diagrams (EVMDD) [16] to verify that specifications satisfy a set
of basic integrity properties such as absence of deadlock, absence of unreachable code, and
correct use of access permissions. Additionally, the ability to express custom temporal logic
properties for concurrent programs gives the analysis the freedom to perform verification
tasks tailored to each application. Finally, we use a Petri net inspired semantics to represent
access permission transformations. In contrast to Plural, the focus of our analysis is not
on program verification (concrete code implementing a specification) but on verifying the
specification itself.

The rest of this document is organized as follows. The remaining part of this section
presents related work. Section 2 introduces the specification language used by Plural (access
permissions) and its extension used by the Plural tool (access permissions and typestates).
Section 3 presents the state-machine model used for verifying Plural specifications. Section



4 describes the algorithm that translates Plural specifications into the state machine model.
Section 5 presents the Petri-Nets based approach to formally verifying Plural specifications,
together with a case study taken from a commercial data base application.

Related Work: In previous work [8], we used the jmle tool [13] for writing JML specifi-
cations [14] of an electronic purse application written in the Java Card dialect of Java. JML
is a behavioral interface specification language for Java, which means that the only correct
implementation of a JML class specification is a Java class with the specified behavior. JML
method specifications are written with the aid of the keywords requires, modifies and en-
sures, which respectively give the precondition, the frame (what locations may change from
the pre- to the post-state) and the postcondition. JML provides support for the declaration
and use of specification-only variables (e.g., using the model construct). Typestates can be
regarded as JML abstract variables and so JML tools can be used to simulate typestate ver-
ification of specifications. However, JML does not provide support to the reasoning about
access permissions. JML’s support for concurrency is rather limited. The work presented
here is more complex than the work presented in [8], as it involves reasoning on concurrency
properties of a system.

The Plural group has conducted different case studies on the use of typestates to verify
Java I/O stream libraries [3], Java iterator libraries [4], and Java database libraries [5].
The main goal of these case studies is to show that Plural can effectively be used to check
violations of APIs protocols. The work presented in this document focuses on verifying
Plural specifications in isolation regardless of the program source code, instead.

Validating temporal safety properties of software has been proposed in [2] and applied to
Windows NT drivers. The technique, based on predicate abstraction, is implemented in the
SLAM toolkit. It automatically creates abstractions of C code using iterative refinement and
has been used to verify correct locking behavior. In [10], the Vault programming language
is used to describe resource management protocols that the compiler can statically enforce.
Protocols can specify that certain operations must be performed in a certain order and that
certain operations must be performed before accessing a given data object. The technique
has been used on the interface between the Windows kernel and its device drivers.

Finally, we have previously employed symbolic model checking for analyzing languages
and software. In [11], we have checked the locking mechanism of the Linux Virtual File
System (VFS) by extracting abstract models from the Linux kernel. In [18], we have vali-
dated the correctness of syntactic macro-definitions proposed for the plan execution language
PLEXIL, and in [17] we have studied the semantics of temporal properties specified in the
planning language ANMLite.

2 Specifications for Plural Programs

The Plural language is based on access permissions and Plural combines these with type-
states. Typestates define protocols on finite state machines [20]. They can be used as
abstractions to reason about objects and programs [1]. They are abstract definitions on the
capability of a method to access a particular state [3,6]. Access permissions are inspired
by Girard’s Linear Logic [12], hence, they can be used, produced and consumed. Access
permissions are used to keep track of the various references to a particular object, and
to check the types of accesses these references have. Accesses can be reading or writing
(modifying). Plural provides support to five types of access permissions, namely, Unique,
Share, Immutable, Full, and Pure. Figure 1 presents a taxonomy of how different access
permissions can coexist. For example, Full access to a referenced object allows the existence
of any other reference with Pure access to the same referenced object.



This reference | Other references
Unique | 0
Full | Pure
Share | Share, Pure
Pure | Full, Share, Pure, Immutable
Immutable | Pure, Immutable

Current permission Access through
read/write read-only other permission
Unique - none
Full Immutable read-only
Share Pure read/write

Figure 1. Simultaneous access permissions taxonomy [3]

e Unique(x). It guarantees that reference x is the sole reference to the referenced
object. No other reference exists, so x has exclusive reading and modifying (writing)
access to the object.

e Full(x). It provides reference x with reading and modifying access to the referenced
object. Additionally, it allows other references to the object (called aliases) to exist
and to read from it, but not to modify it.

e Share(x). Its definition is similar to the definition of Full(x), except that other
references to the object can further modify it.

e Pure(x). It provides reference x with read-only access to the referenced object. It
further allows the existence of other references to the same object with read-only access
or read-and-modify access.

e Immutable(x). It provides x and any other existing reference to the same refer-
enced object with non-modifying access (read-only) to the referenced object. An
Immutable permission guarantees that all other existing references to the referenced
object are also immutable permissions.

The Linear Logic formula P—o @) is modeled as the specification @Perm(requires=“P”,
ensures=“Q”) of the Plural language. The semantics of the operator ® of Linear Logic,
which denotes simultaneous occurrence of resources, is captured by the operator “*”. P and
Q can be a specification such as Unique(x) in A * Full(y) in B, which requires (ensures)
that reference “x” has Unique permission on its referenced object, which should be in state
A, and simultaneously requires (ensures) that “y” has Full permission on its referenced
object, which should be in state B. The semantics of the additive conjunction operator “&”
of Linear Logic, which represents the alternate occurrence of resources, is captured by the
use of a @Cases specification, the decision of which is made according to a required resource
in one of its @Perm specifications. The additive disjunction operator & of Linear Logic is
modeled by the use of a @Cases specification, the decision of which is made according to an
ensured resource by one of its @Perm specifications. Typestates are declared with the aid
of the @ClassStates clause. Method specifications are written with the aid of the @QPerm
clause, composed of a “requires” part, describing the conditions required by a method to be
executed, and an “ensures” part, describing the conditions that hold after method execution.



Additionally, the clause @Cases allows the annotation of several @Perm specifications for
a method. The constructor of the class ProducerConsumer creates a Unique object that
is initially in state Empty. A @Truelndicates specification defines the state generated
by a method when it returns true. The resources are stored in a container of bounded
size. Therefore, when the container becomes full, producing is no longer allowed before
consuming at least one resource. Consuming is obviously not permitted when the container
is empty. The following basic producer/consumer example, with one class, one constructor,
two read-only methods, isEmpty() and isFilled(), and two read/write methods, produce()
and consume(), illustrates an example of a Plural specified program.

@ClassStates ({
@State (name = "Empty"),
@State (name = "Partial"),
@State(name = "Filled")
})
class ProducerConsumer {
@Perm(ensures = "Unique (this) in Empty");
ProducerConsumer () { ... }
Q@Pure

@Truelndicates ("Enpty")
bool isEmpty () { ...

Q@Pure
@Truelndicates("Filled")
bool isFilled () { ...

@Cases ({
@Pelm(requires = "Full(this) in Empty", ensures = "Full(this) in Partial"),
@Perm(requires = "Full(this) in Partial", ensures = "Full(this) in Partial"),
@Perm(requires = "Full(this) in Partial", ensures = "Full(this) in Filled")
B

void produce () { }

@Cases ({

@Perm(requires = "Full(this) in Partial", ensures = "Full(this) in Empty"),
@Perm(requires = "Full(this) in Partial", ensures = "Full(this) in Partial"),
@Perm(requires = "Full(this) in Filled", ensures = "Full(this) in Partial")
P

void consume() { ... }

}

3 Abstract Models of Plural Specifications

Our first approach to the verification of Plural specifications relies on an algorithm that
extracts an abstract state-machine representation of the collective dynamic behaviors of the
object references described in the specification. This section introduces the abstract state-
machine model, and Section 4 presents the algorithm that translates Plural specifications to
the abstract state-machine representation. The main difference between our approach and
the line of research pursued by the Plural group in [3,5] is that, while using the same input
language, we model and verify the specification alone and not programs (code analysis).
Our abstract models are not concerned with the body of methods, but only with their
specification: preconditions, postconditions, invariant conditions, and access permissions.
Also by contrast, our technique is able to analyze the specification for any possible concurrent
execution of programs implementing it, while the Data Flow Analysis (DFA) technique in
Plural is designed to study one program at a time.

A Plural specification comprises a finite set of class declarations C = {Ci,...,C.}.
Every class C; contains a set of typestate declarations, 78; = {t},.. .,t;”}, where h; is
the number of typestates for class C;, for 1 < i < ¢. A typestate [20] might declare a




class-state invariant that relates the typestate with (Java) code. For each class declaration
C;,1 <i < ¢, we create a finite number of instances of references to objects of that type:
Ri={rdrt,...,r],...,rK}. The parameter K is the only attribute of our model that is
determined a priori. A meta-argument is necessary to support the decision to bound K to a
predetermined value. We informally argue that K can be set to the number of simultaneous
distinct access permissions to the same object, which is 5. The choice of parameter can be
validated formally by extending the analysis to K = 6 (i.e., by allowing multiple accesses
of the same type) and showing that the extended model does not introduce any additional
“relevant” behavior of ¥ in the model.

We assume a default abstract representation of the operating environment. In a generic
reference (z;, 0;) to an object of class C;, o; is the object uniquely described by its physical
memory address, and z; is the name of the alias to the physical object. We reserve r{ to
the generic reference (this, 0;). The abstraction represents the congruence relation over the
equality with o;. From the point of view of analyzing the behavior of (this,o;) in terms
of access permissions, the behavior of other objects, (ypn,on) with h # i, is completely
independent, since it does not affect o;. Thus, all references to other physical locations can
be captured with a single abstract state, for example L = (-, null).

3.1 The Basic Component

The building block of the model generated by our tool is the state-machine of an object
reference r;, which includes:

(a) the program counter, pcf € PC; = {pre, post} x ({J_} u{M},... M:”’}), two per each
method, where we include the constructors in the list of methods. We reserve the symbol
1 for undefined values (for multiple domains: typestates, access permissions, methods),
throughout the paper.

(b) the access permissions associated with rf : a field of enumerated type

apf € AP = {1, Unique, Full, Pure, Immutable, Share}.

~ Additionally, for each object o; we store its typestate (which is shared by all references
1, 0<j<K)ts; € TS; = {L}U{t},...,t"}, where L describes an “undefined” state of
a reference, corresponding to its “pre-creation” state. A reference is created by two means:
either by calling a constructor method of C; or by pointing it to object o; after its creation
(aliasing). As mentioned before, we use the same abstract state L to represent references
that point to objects other than o; as well as null references.
An mapping of the variables representing ] to values in their domain is called a local
state. The cross product of all local states is called a global state.

3.2 State transition rules

From each post-local-state (a local state with pc! = (post,-)) we allow a non-deterministic
transition to any other pre-local-state. This covers all possible sequences of method calls,
which is behaviorly equivalent to placing the reference (this, 0;) in any possible global con-
text. The transitions from post-local-states to pre-local-states are guarded by expressions
that capture several constraints:

(i) the required typestate condition of the pre-local-state

(ii) the access permission constraints determined by the splitting rules described in sub-
section 3.3



Additionally, from each pre-local-state (pre,m) a reference can only transition to its
matching post-local-state (post, m), capturing the completion of the call to method m. The
transition is guarded by the postcondition associated with the method in the specification
and reflects the change in typestate that may occur.

3.3 Access Permissions Splitting Rules

Influenced by Boyland’s work in [7], Plural performs fractional analysis of access permissions,
hence, they can be split into several more relazed permissions and then joined back to form
more restrictive permissions. Figure 2 presents Plural splitting and joining rules, where at
least one of x1 and x5 is z, and ki + ko = k. For instance, a Unique access permission of
weight k can be split in two k/2 Share access permissions. At the present stage of our work,
we fully abstract away the notion of permission fractions, since traditional model checking
techniques do not handle continuous variables.

Splitting rules govern the way transitions from post-local-states to pre-local-states can
be carried out. If the pre-local-state of a method requires a reference “x” to have Unique
permission to an object “o”, but the current post-local-state ensures that two half Share
permissions to the same obJect “o” exist, then the method (non-deterministically) might
still be executed.

(z,0,k) <= Full(z1,0,k;) ® Pure(za,0, ko)

(z,0,k) <= Share(z1,0, k) ® Share(xs,0, ka)
Full(z,0,k) <= Immutable(x1,0, k1) ® Immutable(zs, 0, k2)

(z,0,k) <= Pure(zy,o0,k1)® Immutable(zs, 0, ka)

(v,0,k) <= Immutable(xy,0, k1) ® Immutable(xs, 0, k2)

Figure 2. Access permission splitting rules

4 Translation Algorithm

The translation algorithm builds the two components of a finite state machine: the set
of potential global states S and the transition relation between states, R C S x S. The
potential state space is simply the cross product of the local state spaces:

K

SZE {Lth ot H PC; x AP)

The transition relation can be defined component-wise, for each reference r (the local
transition relations Rf ), and the global transition relation is the asynchronous composition
of the local transition relations. '

Below, define the rules to construct each R’. There are two types of local transitions,
corresponding to starting a method and ending a method. In the following, we use the
standard notation for pairs of states (from states and to states) in the transition relation:
unprimed variables refer to the from-state and primed variables to the to-state.

The routines StartMethod and EndMethod build the transition relation expressions asso-
ciated with starting and ending ending a method m by a reference r}, respectively. The input
for these routines are the reference 7‘3 , the method m, the global context (represented by the

global state s and the global typestate t), and two triplets. The triplets ( Jo tsZO ,ap0> and



(rfj,tsfll,apl) encode the requires (indexed i) and ensures (indexed 4;) clauses from
the method’s specification, namely the required and ensured typestate, reference, and ac-
cess permission. The output of the routines are two Boolean expressions: guard and update.
The guard formula must hold for the transition to be enabled, and the update formula en-
codes the changes in the values of global states that occur by executing a transition. The
semantics of this pair of expressions is: “if guard evaluates to true in the current state then

the transition can be executed and the global state changes according to update.”

We employ the following types:

GlobalTypestate = TS1 x...x TS,

LocalState = (PC, AccessPermission)

GlobalState = Array[l..c] of Array [0..K] of LocalState
Reference = (Objectldz, Aliasldz)

Triple = (Reference, Typestate, AccessPermission)

Algorithm 1 computes the guard and update expressions for the transition corresponding
to starting a method
StartMethod(

s : GlobalState,

t : GlobalTypestate,

r] . Reference,

m : Method,;,

((ng,tsfg’,apg) , (rgll,tsfll,am)) : Triple x Triple

guard — sli][j].ap # L A si][§]-pc = (post, -) A tlig] = tsgg/\
Compatible (s[io][jo]-ap, apo) N Compatible (s[i1][j1]-ap, ap1)
update «— §'[i][j].pc = (pre,m) A ChangePermission (s[io][jo], apo)
return guard = update

Algorithm 2 computes the guard and update expressions for the transition corresponding
to ending a method.
EndMethod(

s : GlobalState,

t : GlobalTypestate,

r] . Reference,

m : Method;,

((rfg,tsf:,apo) , (rgll,tsfll,apl)) . Triple x Triple

quard —  sfil[j].pc = (pre,m)
update — t'[i;] = tsfl1 A 8'[i1][J1]-ap = apy A $'[i][4].pc = (post, m)A
ChangePermission (s[i1][j1].ap, ap1)
return guard = update

In the special case when m is a constructor, the guard for StartMethod is slightly different:
the first predicate, s[i][j].ap # L, enforcing that the reference r! exists, is replaced by
t[i{] = L that enforces the exact opposite: the object o; has not been already created.



Integral parts of the algorithms are two routines that require further explanation. The
routine Compatible(ap,,, ap,) implements a Boolean function that gives a “true or false”
answer to whether the access permissions ap, and ap, are “compatible”, more precisely if
ap, can be downgraded or upgraded to ap, according to Section 4.1, Figure 3. The rou-
tine ChangePermission(ap,,, apy) builds the update formula corresponding to a compatible
access permission transformation from ap, to ap,,.

The formal arguments supporting these two routines are described in more detail in the
next subsection (4.1). Informally, they implement an abstraction of the access permission
joining and splitting rules, without having to explicitly introduce the notion of fractional
permissions.

Next AP Unique Full Share Immutable Pure 1L
this others | this others | this others | this others this others | this others
Current AP v IW W IW v IW v v ™ orw W orw
Unique « ! ! 1 ! 1
== == == += == ++ =— += =— ++ —— 4+
Full T « ! 1 ! 1
== —= == == == =+ =— == =— =+ -—— =+
Share i i = ® I T
Immutable 1 i X — 1 1
=+ —= =4+ == =+ =+ == == == =+ —= =+
Pure T 1 T T - 1
=+ —— =4+ =- =+ == == =- == == —= ==
T T T T T T =
++ —— ++ =- ++ == += =- += == == ==

Figure 3. Access Permission Transformations (downgrade/upgrade).

4.1 Access Permission Compatibility and Transformation Rules

Access permissions can be transformed into a series of more lax permissions or combined
together to form a more restrictive permission (see Section 3.3 and Figure 2). Gaining or
losing permissions includes “no change” (i.e., the modification does not have to be strict).
Scenarios where both this and other references strictly gain rights (access permissions)
at the same time are considered incompatible. Similarly, scenarios where both this and
other references strictly lose rights at the same time are also considered incompatible. This
roughly follows the principles of linear logic regarding the “preservation” of resources. There
are two generic ways of access permission transformations:

e Downgrade: this reference may give up (read/write) rights and other references may
gain rights.

e Upgrade: this reference may acquire more rights and other references may lose rights.

Figure 3 describes in an abstract way the implementation of the routines Compatible()
and ChangePermission() presented before. The directional arrows denote the nature of the
transformations: | for downgrade, T for upgrade, < for no change, and x for disallowed.
Furthermore, the second row of symbols details the read and write permission change for



(post,*)

(typestate = null ) /\
pc = (LFJ’“?' constr) typestate = * typestate = *
\ap=_nigue __J pc = (pre, iSEmpty) pc = (pre, isFull)
ap = Pure ap = Pure
( typestate = Empty
pc = (post, Constr)
\ap=Unique _ J pc = (post, isEmpty) | | pc = (post, isFull)
ap = Pure ap = Pure
(“typestate = Empty ) typestate = Filled
pc = (pre, produce) pc = (pre, consume) (pre,*)
aE:FuH kanguII

(‘typestate = Partial typestate = Partial
pc = (post' produce) pc = (post, consume
\ap = Full ap = Full

pc = (pre, consume)
\ap = Full

(typestate = Empty (typestate = Filled
pc = (post, consume) pc = (post, produce)

\ap = Full \ap = Full

pc = (pre, produce)
\ap = Full

(typestate = Partial ) (typestate = Partial )

Figure 4. State transition diagram for the producer/consumer example

reference this and the other references (“the rest of the world”). Therefore, a Full permis-
sion is compatible with a Share permission. Full can be downgraded to Share if reference
this gives up writing permissions that are gained by the other references. Our analysis has
found a single case of incompatibility, between Share and Immutable permissions, so they
cannot be transformed one from another.

In the absence of a fully specified constructor, the default constructor can be treated as
a special pair of triples:

((L, this, L), (initial, this, Unique))
Similarly, for creating an alias (assigning a pointer to an existing object):
((L, this, L), (t[c], this, Pure))

Figure 4 illustrates the state transition diagram for the basic module of the example of
the ProducerConsumer class in Section 2. The transition guards are not depicted for the
sake of simplicity, as they can be quite elaborate formulae.

4.2 Experimental Results

We have generated the input for the evmdd_smc [16] model checker from the above specifi-
cation. For K = 5, the model has 4, 660, 153 states, built in 0.19 seconds on a MacBook.
None of the reachable states is deadlocked and the typestate reachability graph is identical



to the one in Figure 4, meaning that the specification has no blatant errors. The source
code of the model generator and the generated producer/consumer model can be found in
the appendix and at http://www3.uma.pt/ncatano/aeminium/Home.html. Figure 5 shows
the state space size and runtime for checking the generated model parameterized by K
(maximum number of coexisting references to the same object).

K | + states | time (sec.) || K # states | time (sec.)
1 387 0.00 | 6 44,698,270 0.33
2 4,474 0.01 7 422,650,621 0.52
3 47,301 0.03 ] 8 3,952,714,382 0.74
4| 476,422 0.08 || 10 | 337,317,139,558 1.32
5 | 4,660,153 019 || 15 | ~2.09 x 106 3.55

Figure 5. Experimental results: scalability for producer/consumer model

5 A Petri Net Inspired Semantics for Fractional Access
Permissions

The access permission transformations required by our model are based on an underlying
concept of “collective management” of permissions among references to the same object. In-
tuitively, rights (access permissions) are viewed as resources (e.g., tokens) that are available
globally. None, a portion of, or all resources can be used at a moment in time. Each object
has its own share of resources, represented as a fraction or set of tokens. For example,
a constructor creates an object with exclusive rights (Unique permission), therefore the
constructor has to request all the tokens for that object. The tokens are initially stored in
a “bank”, implementing the collective management of permissions, accessible to all. Refer-
ences take and give back tokens depending on access needs, but the total number of tokens
for each object is preserved. Hence, a global invariant property is that no resources are
created or lost for each individual object.

We can illustrate this concept first with the more general framework of fractional per-
missions, where fractional permissions add up to 1. Note however, that we use this as a
starting analogy only. Our implementation uses the bounding assumption of maximum K
co-existing references to translate this framework into a fully discrete model where we map
fractions from the continuous interval [0, 1] to the set {0,1,..., K +1}.

A key departure from the original framework is to separate access permissions into read
and write and describe the rights of a reference 7] as a pair of fractions: (fr], fw!), with
frg , fwf € [0, 1], representing the fraction of the read (and write, respectively) permissions
to object o; owned by reference rf . There are three semantic classes for the values of a
fraction f: f = 0 (no permission), 0 < f < 1 (partial/shared permission), or f = 1
(exclusive rights). The preservation of access permissions is a global invariant, with fr?
and fw? are the unused fractions (still in the bank).

K K
friB—&-Zfrg :1/\fwf3+2fwf- =1
j=0 j=0
The possible combinations of values for fractions is listed in Figure 6. The meaningless

combinations arise from the implicit subordination of read permissions to modifying (write)
permissions: a reference with modifying permissions has to have reading permissions as well.
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this semantic bank others

fri=0A fw] =0 null frP>0n fwf >0 any

fri=0Afw! >0 no meaning - -

0< fri < 1A fwz =0 | Immutable fsz =1 Zl#j fwf = 0 : Immutable or Pure
0<frf:<1‘/\fwg:0 Pure fwf <1 Vi #j: fw} >0, Pure or Full

0< fri ful <1 Share 0< frf <1AO0< fwf <1 | VI#j:0< fri, fui <1, Share

0< fr] <1Afw]=1 | Full 0< fr2 <1 fwP =0 VI #j: fwl =0, Pure
fr{zl/\fwf-::() Immutable | frZ =0A fw? =1 Vi#£j: fri=0A fw: =0, Null

fr{ =1A fw! =0 Immutable | frZ =0A fwf <1 Vi#j: fri =0A fw! >0, no meaning
frg =1A0< fw! <1 | no meaning - -

Frl = 1A fuw! =1 Unique frP=0A fuP =0 Wi fri=0A fwl =0, null

Figure 6. A fractional permission model

Also note that the nature of others rights can be inferred from the value of this reference
and the bank: 3, fri=1—(fr! + frP) and D14 fwl=1— (fw! + fwP). This helps
determine locally the evaluation of the quantified formulae in the definition of certain access
permissions without having to consult the actual values of the other references. This has
practical importance for model checking in particular, where event locality can impact the
efficiency of the analysis.

With our bounding assumption of a maximum number of K distinct aliases per object,
we can implement a simple yet sound system of transformation rules inspired by the afore-
mentioned Petri net semantics. We map the infinite range of fraction values, the dense
interval [0, 1], to the discrete domain {0, 1,...,K + 1}, via the abstraction

N:[0,1]—{0,1,...,K+1}, N(f)={ ze{1,....,K}, if 0<f<1
K+1, if f=1

In this model, there is an initial number of K + 1 tokens for each object and each
access right (read, write) available at the bank. Operations take and restore an integer
number of tokens, either directly from the bank or from another reference with multiple
tokens. An upgrade in read or write permission is equivalent to taking tokens from the bank
and/or others, while a downgrade is equivalent to returning tokens to the bank. In terms
of transformation rules, this approach corresponds to associating the + and — symbols in
Figure 3 with Petri net arcs for taking tokens from and returning tokens to the common
pile, respectively.

We can define two functions for the required number of tokens needed for the next oper-
ation, N, and N,,. There are multiple ways to define this pair of functions, as there is still
non-determinism in the abstraction from fractions to integer values. The definition below
corresponds to the most conservative approach in which references request the minimum
amount of resources required for their operation:

0, if a=1
Ny, : AP —={0,...,K+1},N.(a) = ¢ 1, if a € {Full, Pure,Immutable, Share}
K+1, if a=Unique
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0, if a€{l,Pure,Immutable}
Ny : AP —{0,..., K +1},Ny(a) =< 1, if a = Share
K+1, if a€ {Unique,Full}

To complete our model, in addition to the field ap in the basic module, we introduce
two more fields, tkr and tkw, to represent the number of tokens of each type (reading and
writing) that each reference ¢ = ] holds. Then, the difference in number of tokens &
described below dictates the access permission transformations (upgrade, downgrade) from
the currently owned number of tokens to the target number needed by ap’:

5. (a0 ap') = Ny(ap) — sla thr € (—(K +1),....~1,0,1,... K +1}
dw(q,ap’) = Ny(ap') — s[q|.thw € {—(K +1),...,-1,0,1,..., K + 1}

A negative 0 means downgrade, while a positive one means upgrade. The deficit (or
surplus) is taken from (or given back to) the bank when available, otherwise the deficit is
taken from other references in post state, without violating the requirements of the references
in pre state.

We illustrate this new technique on the producer/consumer example presented in Section
2. The methods isEmpty() and isFilled() require non-exclusive rights (Pure), therefore the
guard for starting isEmpty() checks whether the reference has the one read token necessary
or it needs to “borrow” it from the bank or others. This results in two distinct types of
transitions for isEmpty/():

o If tkrlB + tkrf > 1, corresponding to d,(¢, Pure) > 0, then tkrzl =1A tkrf/ =
thr? + thr] — 1

o If tkriEe + tkr{ =0A3h # j: pch = (post,-) A tkrl}-" > 1, corresponding to d,(gq, Pure) <
0, then thrir=1A tkr?/ = tkr? — 1 (one read token transferred from 7 to r7)

Due to the existential quantifier in the guard of the second type of transition for isEmpty(),
this results in K individual transitions of this type, one for each h # j.

The methods consume() and produce() require non-exclusive read rights and exclusive
write rights. The exclusive rights are translated into requiring that no other reference is
writing, Vh # j : thw! = 0. All write tokens are then collected by 77 thw!r = K-+1AthwPr =
OAVYh # j: tkw?/ = 0. The read rights requirements result in two subcases, similar to

isEmpty().

This model construction can be further optimized, by requiring that all methods re-
turn the tokens to the bank upon completion. This affects only the pre-to-post transitions:
tkrlr =0 A thrPr = thr? + tkr!. Therefore, all available tokens at any time can be found
only at the bank, which eliminates the need to check the other K references. With this ob-
servation, the K different transitions resulting from the existential quantifier are no longer
needed. Besides brevity, this optimized model has the desired property of increased event
locality (fewer dependencies between variables among different references), which dramati-
cally improves the performance of the model checker.
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5.1

The Model Generator

A C program is used to generate the evmdd_smc models in the framework just described.
The input parameters to this program are ¢, the number of distinct objects, and K, the
number of distinct references for each object. The program constructs a model that contains
three sections: variable declarations, variable initializations, and the transition relation.

a)

Abstract variable domains.

As all variables in the model have to be discrete (more precisely of an integer interval
type) we have to define the abstract domains for all such variables. The domain
TS, = {Lyu{th ... ,t;”} are mapped to [0,h;]. The domain of method identifiers
{Lyu{M}, ..., M™} is mapped to [0,m;]. The domain of access permission types
AP = {1,Unique, Full, Pure, Immutable, Share} is mapped to [0,5]. For the
variables referring to tokens, we use the domain [0, K 4+ 1]. For the {pre, post} type
we use [0, 1].

Domain concrete abstract
Typestates TS | {Lyu{th... th} [0...h]
Method ids M; | {LYUu{M}, . M [0...m;]
Access permissions | AP | {L, Unique, Full, Pure, Immutable, Share} | [0 ...5]
Number of tokens 0...K +1] [0...K +1]
Program counter PC | {pre, post} [0...1]

b)

Variable declarations.

For each object o;, we declare two categories of variables. One category refers to the
object proper and includes three variables: state; of type 7S;, tkrf and tkwéB of type
[0, K + 1]. The second category is for references to the object. For each of the K 41
references to o;, we define five variables: pc! of type [0, 1], method] of type [0,m;], ap]
of type [0,5], thr] and thw! of type [0, K +1].

Hence, we have ¢ * (3 + 5 % (K + 1)) variables in the model.

Variable name type
Typestate state; [0...h]
Read tokens in the bank thrP [0...K +1]
Write tokens in the bank thw? [0...K +1]
Program counter of r7 pc] [0...1]
Method executed by 77 method? | [0...m;]
Access permission of 7/ ap? [0...5]
Number of read tokens of 7/ | tkr? 0...K+1]
Number of write tokens of 7/ | thw? 0... K +1]

Variable initializations.
For each object: state; = L A thr? = K +1 A thw? = K + 1.
For each reference: 0 < 5 < K: pcg = post, method{ =1, apg =1, tkr{ = tk'wg = 0.

Transition relation.

Each transition has a guard expression (the enabling condition) and an update expres-
sion (the transformation performed by executing the transition). Unprimed variables
refer to values before the update (the “from” state), while primed variables refer to
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values after the update (the “to” state). For each object o; there is a set of transitions
generated for each reference to the object r! (K + 1 sets). Similar to the translation
algorithm in Section 4, guard and update expressions are generated from the requires
and ensures clauses associated with the corresponding method in the specification.
More precisely, the requires clause impacts the guard of starting a method, while the
ensures clause impacts the update due to ending a method.

Therefore, we can identify four categories of transitions in our model, described in
detail below.

1. Reference rg starts a constructor.
The guard only enforces that the object has not been created yet: /\szo(apg =1).

The update expression sets the program counter and method of rf and takes
all K + 1 tokens of both types (read and write) from the bank: pc{ ! = pre A
methodf/ = constructor A apf/ = Unique A thr?r =0 A thwPr =0 A tkrf/ =
K+1A thwlr =K +1.

J

3
The guard contains four conjuncts. The first requires rg to exist (not undefined):
apg # 1. The second requires it to be in a post state (not executing something
else): pcf = post. If the specification of mF also requires that some object oy,
(NB: must commonly but not necessarily the same o;) to be in state ¢, the third
conjunct enforces that: statej, = 7.

2. Reference r! starts a method m?.

The fourth conjunct checks the availability of access permission tokens. As ex-
plained in the definition of N, and N, there may be 0, 1, or K + 1 tokens
requested for read and/or write permissions associated with method mf. In gen-
eral, if tr¥ and tw! are the number of tokens needed to execute method mF,
then the fourth conjunct is: thr? > tr¥ A thw? > tw’. Note that if tr¥ = 0,
the expression 7§l~zr;B > tr¥ is always true, hence it can be ignored. The same
observation holds for the case tw¥ = 0.
The update expression has two conjuncts. The first reflects the changes in the
state of r!: pclt = pre A method]! = k A aplt = ap. The second reflects the
changes in the distribution of tokens: thrl’/ = tkry — tr¥ A thw?r = thw! — tw?
A thrlr = thr] + trf A thwlr = thw] + tw?.

3. Reference rf ends a method m~.
The guard ensures that the reference is actually executing method m?: pcg =
pre A method{ =k.

The update expression reflects the change in the state of rf: pcg ! = post, and
returns all the access permission tokens held by rg back to the bank: tkriB ! =
tkrf +trk A tkwf/ = tkwf + twk A tkrg/ = tkr{ —trk A tkwg/ = tkwlB — twk.
If the specification of m¥ also ensures that some object o, (again, not necessarily
the same o;) is left in state ¢}, the second conjunct enforces that: state,/ = tj.

J

4. Reference r; is a newly created alias.

The guard expression requires that the object exists, state; # L, rf has not been
previously created, apz = 1, and enough read tokens exist for a pure access,
terB > 1, which is the most conservative approach.

The update expression is pcg/ = post A method{/ =1A apg/ = Pure.
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5.2 Properties of Interest

Within this framework, we can define several categories of generic properties that can be
checked on any specification. They can be automatically generated and provide useful
insight.

Sink states (Deadlock). The presence of states without successors (sink states) may have
different root causes, including improper use of access permissions that block the progress of
all threads, among which deadlock (due to mutual circular wait) is one particular undesired
behavior.

In the CTL temporal logic [9], it can be expressed as simply as:

deadlock : =EX(true)

Once the state space is constructed, finding sink states is a very computationally inexpensive
operation.

Typestate adjacency graph. Often, when laying out a specification, the designer knows
in advance the expected control flow through the typestates of a class. This can be captured
(and even depicted graphically) by means of the adjacency graph of the typestates. For
instance, in a generic database application similar to the one presented in Section 5.3, the
nominal flow of a task would be a linear graph traversing the typestates: 1 — created —
ready — completed — destroyed.

In CTL, the adjacency relation can be written V1 < i < ¢,Vt; #to € TS;:

adjacent, (t1,t9) : state; = t; N EX(state; = ta)

Concurrency. Access permissions are abstractions used to represent how an object is
used. These abstractions can be used for parallel execution of methods along with some
other dependency information. The present Plural specification includes knowledge about
access permissions but does not have explicit knowledge of other dependencies. Even with
this partial knowledge only, we can infer certain facts about method execution order. For
instance, we can find all the possible pairs of methods that can be executed in parallel and
all the pairs of methods that can never be executed in parallel.
In CTL, V1 <i< c,0< 71 75]2 < K,Vmq #mg e M;:

concurrent; (my,mg) : EF (pc{1 = (mq, pre) A pcg2 = (ma, pre))

Note that due to the symmetry in the model, it is sufficient to consider j; = 0 and jo = 1.
An empty set of states satisfying property concurrent; (mq,ms) indicates that methods m;
and mo can never be executed in parallel, while a non empty set means the opposite.

Correct use of access permission. A set of integrity checks can be performed to ensure
that each access permission requirement attached to a method does not violate the intended
semantics described in Section 2. This is theoretically enforced by the model construction
presented in Section 5, therefore double-checking the construction would provide additional
proof of correctness for the entire concept. Of the five access permissions, only violations
of three have meaningful representations, as the remaining two (Pure and Share) do not
impose restrictions on other coexisting references. Furthermore, the predicates for Full and
Immutable are the same.
In CTL, V1 <i < ¢,YVm € M;,V0 < j; # jo < K:
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unique_access(m) : AG— (pcg1 = (m, pre) A apl* # J_)

Jull_or_imm_access(m) : AG— (pcgl = (m, pre) A pcg2 = (-, pre) A tkng > 0)

5.3 Application

We present a case study on a Plural specification taken from a real database application,
that has been previously used in Plural experiments. We first present an actual flawed
attempt to write the specification and show how model checking can help expose and then
correct the errors.

@Refine ({
@States(dim = "A", value={"Created", "Ready", "Comlpleted", "Destroyed"}),
@States(dim = "B", value={"U_Data", "P_Data", "F_Data"}),
1)
@ClassStates ({
@State (name = "Created", inv ="data!=null"),
@State (name = "Ready", inv ="data!=null"),
@State (name = "Completed", inv ="data!=null"),
@State (name = "Destroyed", inv ="data==null"),
@State (name = "U_Data", inv="Unique (data)"),
@State (name = "F_Data", inv="Full (data)"),
@State(name = "P_Data", inv="Pure(data)")
b

public class mttsTask {
private MttsTaskDataX data;

@Perm( ensures= "Unique (this) in Created")
@Unique( ensures="U_Data")

mttsTask ()

{ data=mew MttsTaskDataX (); }

@QFulls ({

@Full(requires="Created" ,ensures="Ready") ,
@Full(requires="F_Data", ensures="F_Data")})
public void setData(MttsTaskDataX data)

(...

@Pure(requires:"P_Data", ensures=‘P_Data")
public MttsTaskDataX getData ()
{ return data; }

@Full (requires="Ready",ensures= "Completed")
public void execute ()

{ ... 1%

Q@Full (requires="Complete",ensures= "Destroyed")
public void delete ()
{ data=null; }

}

Figure 7. Specification of mttsTask. java with errors.

The class mttsTask models a generic processing task in the database system. The inter-
nal information about the task is stored in a private member data of type mttsTaskDataX.
The constructor of class mttsTask creates a Unique object that is initially in state Created.
The method setData() requires this to have Full permission on its referenced object, which
should be in state Created. Method execute () requires this to have Full permission and to
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be in state Ready, and ensures that this will have Full permission on its referenced object,
which will be in state Completed. The method delete() sets data to null and moves the
task to the Destroyed typestate.

@ClassStates ({

@State (name = "Created", inv="data!=null"),

@State (name = "Ready", inv="data!=null"),

@State(name = "Completed", inv="data!=null"),

@State (name = "Destroyed", inv="data==null"),
b

public class mttsTask {
private MttsTaskDataX data;

@Perm (ensures= "unique(this) in Created")
mttsTask ()
{ data=new MttsTaskDataX (); }

@Full(requires="Created", ensures= "Ready")
@QPerm(requires="#0!=null")
public void setData(MttsTaskDataX data)

{ this.data=data; }

@Pure(requires="Ready", esnures="Ready")
public MttsTaskDataX getData ()
{ return data; }

@Full(requires="Ready" ,ensures= "Completed")
public void execute() { }

@Full(requires="Completed", ensures= "Destroyed")
public void delete ()
{ data=null; }

Figure 8. Corrected specification of mttsTask. java

Note that the typestate hierarchy in this example has two dimensions (labeled A and
B). Dimensions were not discussed in previous sections. They define a Cartesian product
of possible states an object can have. Dimensions are modeled very straightforwardly by
using two distinct variables (stateA and stateB), one for each dimension. The state-space
for the typestates is simply the cross product of the two subdomains. In this example, the
specification of the second dimension is trying to mimic the access permissions on the field
data. The notation ¢ ‘#i’’ is used to refer to the i* argument of a method. In this case,
the 0" argument of setData() is of type mttsTaskDataX.

Finally, one other feature not covered so far are the invariants. In their most general
form, they cannot be captured by our automated approach. However, in this instance, the
invariants are simple equality checks on data. This is captured by a single boolean variable
that represents whether data is null or not.

As mentioned before, the specification in Figure 7 contains errors. However, the Plural
tool does not generate any warning or error message. The first error is a simple syntax
error in method delete(). The typestate Completed is misspelled as Complete. With this
incorrect specification, the method delete() cannot be called after the method execute().

The second is a semantic error. After the constructor call, the method setData() cannot
be invoked. Similarly, getData() cannot be called after setData(). The constructor takes
the object to state U_Data, while setData() requires state F_Data. Using the model checker,
the reachability analysis is able to expose the error, by signaling that the adjacency graph
on typestates is disconnected.
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The root cause of the semantic error is not just the incomplete adjacency matrix on
typestates in the first dimension. The attempt to follow access permissions by manipulating
typestates on the second dimension is bound to fail, as access permissions provide a much
more expressive environment, by means of transformations (upgrades/downgrades), whereas
the typestate predicates can operate only with equality. For this reason, in the correct
implementation the second dimension is dropped. Figures 8 and 9 present a working version
of this specification.

The specification of mttsTaskDataX.java contains no typestates (which is in fact en-
coded in practice with a single default value alive) and seven methods (including the con-
structor).

public class MttsTaskDataX {
private int task_ID;
private int task_priority;
private Set task_dependencies;

@Perm( ensures="unique (this)")
MttsTaskDataX () { ... }

@QFull
void setID (int id)
{ task_ID=id; }

Q@Full
void setPriority (int priority)
{ task_priority=priority; }

QFull
void setDependencies(Set dependencies)
{ task_dependencies=dependencies; }

@Pure

int getID(int id) { ... }
@Full

int getPriority () { ... }
Q@Full

Set getDependencies() { ... }

Figure 9. Specification of mttsTaskDataX. java

A listing of the model generator for this application (with two classes) is given in Ap-
pendix C. This more advanced version paves the way for full automation with templates
for starting/ending generic methods and dealing with parameters.

For reference, we have run scalability experiments on the complete mttsTask model.
We list the size of the state space and the total verification time for each K. Note that in
practice it is sufficient to use K < 6. The table shows that the model checker can easily
handle extremely large state spaces: more than 1037 states in less than a minute.

6 Future Work

There are several extensions (and refinements) possible to our basic approach. First and fore-
most, we need to incorporate the additional constraints that class relationships (inheritance,
containment) impose on state transitions rules; Access permission of method arguments also
impact the analysis but is not currently taken into account. We consider that an incremental

18




K | # states | time (sec.) || K | # states | time (sec.)
1] 1.7 x 10% 0.03 ][ 11 | 1.3 x 10%2 3.80
2| 1.5x 108 0.12 || 12 | 6.6 x 10?3 4.62
3] 1.2 x 108 0.27 || 13 | 3.1 x 10%° 5.40
4| 8.4x10° 0.48 || 14 | 1.4 x 10?7 6.70
5| 5.4 x 101 0.73 || 15 | 6.5 x 10%8 7.52
6 | 3.3x10" 1.07 || 16 | 2.9 x 10%° 9.26
71 1.8 x10'° 1.49 || 17 | 1.2 x 1032 9.80
8 | 1.0 x 107 1.98 || 18 | 5.5 x 1033 11.37
9| 54x10'8 2.49 || 19 | 2.3 x 10%° 13.19

10 | 2.7 x 1020 3.18 || 20 | 1.0 x 10%7 14.28

Figure 10. Experimental results: scalability for the mttsTask model.

refinement of the overall abstraction is possible, by augmenting the models with member
variables, explicit typestate invariants, etc. One instance is to avoid explicitly encoding the
access permissions into the states for all possible combinations, but instead use a deductive
method (theorem proving, SMT solver) to “decide” if one can transition from a particular
pre-access-permission to a particular post-access-permission. We would also like to explore
the possibility of representing access permission fractions explicitly in a model, which would
therefore require abandoning the traditional model checking framework, that only employs
discrete-state systems, and using more powerful, deductive techniques: SAT/SMT solvers
or automated theorem provers. We plan to implement our approach as part of the Plural
tool.

Aknowledgments. We would like to thank Ijaz Ahmad for the many constructive com-
ments that helped improve the text and for his contributions to the model generator code.
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Appendix A

C program to generate the producer/consumer model
for evmdd_smc

Note that, in this example, we have only one class definition, therefore, for simplicity, we
can ignore the subscript ¢ that identifies references to object i. Only superscript j, ranging

from 0 to K, will appear.

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

#define
#define
#define
#define
#define
#define
#define

#define
#define
#define
#define

#define
#define
#define
#define
#define
#define

#define
#define

int K;

UNDEF
UNIQUE
FULL
SHARED
PURE
IMMUTABLE
NUM_AP

EMPTY
PARTIAL
FILLED
NUM_STATES

CONSTRUCTOR
IS_EMPTY
IS_FILLED
PRODUCE
CONSUME
NUM_METHODS

PRE
POST

void Init(){
printf ("Declarations\n");
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GO WN

printf (" state [0, %d]\n", NUM_STATES);

printf (" tkrB [0, %dal\n", K+1);

printf (" tkwB [0, %d]\n\n", K+1);

for (int i=0; i<=K; i++) {
printf (" pc_%d [0, 1]1\n", i);
printf (" method_%d [0, %d]\n", i, NUM_METHODS);
printf (" ap_%d [0, %d]\n", i, NUM_AP);
printf (" tkr_%d [0, %d]l\n", i, K+1);
printf (" tkw_%d [0, %d]\n\n", i, K+1);

}

printf ("Initial states\n");

printf (" state = %d\n", UNDEF);

printf (" tkrB = %d\n", K+1);

printf (" tkwB = %d\n\n", K+1);

for (int i=0; i<=K; i++) {
printf (" pc_%d = %d\n", i, POST);
printf (" method_%d = %d\n", i, UNDEF);
printf (" ap_%d = %d\n", i, UNDEF);
printf (" tkr_%d = 0\n", i);
printf (" tkw_%d = O0\n\n", i);

¥

¥
void Trans (){

printf ("Transitions\n");
for (int i=0; i<=K; i++) {
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// start comstructor, unique access

printf (" start_constructor_%d:\n", i);

printf (" ap_%d = %d", i, UNDEF);

for (int j=0; j<=K; j++) if (i'=j) printf(" /\\ ap_%d = %d", j, UNDEF);

printf (" ->");

printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d", i, PRE, i,
CONSTRUCTOR, i, UNIQUE);

printf (" /\\ tkrB\’ = 0 /\\ tkwB\’ = 0 /\\ tkr_%d\’ = %d /\\ tkw_%d\’ = %d\n", i, K
+1, i, K+1);

// start isEmpty(), 1 read token available
printf (" start_is_empty_%d:\n", 1i);

printf (" pc_%d = %d /\\ ap_%d !'= %d /\\ tkrB > 0", i, POST, i, UNDEF);

printf (" ->");

printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d", i, PRE, i, IS_EMPTY,
i, PURE);

printf (" /\\ tkr_%d\’ = 1 /\\ tkrB\’ = tkrB - 1\n", i);

// start tsFilled(), 1 read token awvailable
printf (" start_is_filled_%d:\n", i);

printf (" pc_%d = %d /\\ ap_%d !'= %d /\\ tkrB > 0", i, POST, i, UNDEF);

printf (" ->");

printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d", i, PRE, i, IS_FILLED,
i, PURE);

printf (" /\\ tkr_%d\’ =1 /\\ tkrB\’ = tkrB - 1\n", i);

// start produce (), enough tokens exist

printf (" start_produce_%d:\n", i);

printf (" pc_%d = %d /\\ ap_%d != %d /\\ (state = %d \\/ state = %d)", i, POST, i,
UNDEF, EMPTY, PARTIAL);

printf (" /\\ tkrB > 0 /\\ tkwB = %d", K+1);

printf (" ->");

printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d", i, PRE, i, PRODUCE, i
, FULL);

printf (" /\\ tkwB\’ = 0 /\\ tkrB\’ = tkrB - 1 /\\ tkr_%d\’ = 1 /\\ tkw_%d\’ = %d\a"

, i, i, K+1);

// start consume (), enough tokens ezist

printf (" start_consume_%d:\n", i);

printf (" pc_%d = %d /\\ ap_%d != %d /\\ (state = %d \\/ state = %d)", i, POST, i,
UNDEF, FILLED, PARTIAL);

printf (" /\\ tkrB > 0 /\\ tkwB = %d", K+1);

printf (" ->");
printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d4", i, PRE, i, CONSUME, i
, FULL);

printf (" /\\ tkwB\’ = 0 /\\ tkrB\’ = tkrB - 1 /\\ tkr_%d\’ = 1 /\\ tkw_%d\’ = %d\n"
, i, i, K+1);

// end methods
printf (" end_constructor_%d:\n", i);
printf (" pc_%d = %d /\\ method_%d = %d -> pc_%d\’
i, CONSTRUCTOR, i, POST, EMPTY);
printf (" /\\ tkrB’ = %d /\\ tkwB\’ = %d /\\ tkr_%d\’ = 0 /\\ tkw_%d\’ = 0\n", K+1,
K+1, i, i);
printf (" end_is_empty_%d:\n", i);
printf (" pc_%d = %d /\\ method_%d = %d -> pc_%d\’ = %d", i, PRE, i, IS_EMPTY, i,
POST) ;
printf (" /\\ tkrB’ = tkrB + 1 /\\ tkr_%d\’ = 0\n", i);
printf (" end_is_filled_%d:\n", i);
printf (" pc_%d = %d /\\ method_%d = %d -> pc_%d\’ = %d", i, PRE, i, IS_FILLED, i,
POST) ;
printf (" /\\ tkrB’ = tkrB + 1 /\\ tkr_%d\’ = 0\n", i);
printf (" end_produce_1st_%d:\n", i);
printf (" pc_%d = %d /\\ method_%d = %d /\\ state = %d -> pc_%d\’ = %d /\\ state\’
= %d", i, PRE, i, PRODUCE, EMPTY, i, POST, PARTIAL);
printf (" /\\ tkrB’ = tkrB + 1 /\\ tkwB\’ = %d /\\ tkr_%d\’ = 0 /\\ tkw_%d\’ = O\n",
K+1, i, i);
printf (" end_produce_%d:\n", i);
printf (" pc_%d = %d /\\ method_%d = %d /\\ state = %d -> pc_%d\’ = %d /\\ (state
\’> = %d \\/ state\’ = %d)", i, PRE, i, PRODUCE, PARTIAL, i, POST, PARTIAL,
FILLED);
printf (" /\\ tkrB’ = tkrB + 1 /\\ tkwB\’ = %d /\\ tkr_%d\’ = 0 /\\ tkw_%d\’ = O\n",
K+1, i, i);
printf (" end_consume_full_%d:\n", i);

%d /\\ state\’ = Jd4d", i, PRE,
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printf (" pc_%d = %d /\\ method_%d = %d /\\ state = %d -> pc_%d\’ = %d /\\ state\’
= %d", i, PRE, i, CONSUME, FILLED, i, POST, PARTIAL);

printf (" /\\ tkrB’ = tkrB + 1 /\\ tkwB\’ = %d /\\ tkr_%d\’ = 0 /\\ tkw_%d\’ = O\n",
K+1, i, i);

printf (" end_consume_%d:\n", i);

printf (" pc_%d = %d /\\ method_%d = %d /\\ state = %d -> pc_%d\’ = %d /\\ (state
\’ = %d \\/ state\’ = %d)", i, PRE, i, CONSUME, PARTIAL, i, POST, PARTIAL,
EMPTY) ;

printf (" /\\ tkrB’ = tkrB + 1 /\\ tkwB\’ = %d /\\ tkr_%d\’ = 0 /\\ tkw_%d\’ = O\n",

K+1, i, i);

// create alias, read tokens ezist
printf (" create_alias_%d:\n", 1i);

printf (" ap_%d = %d /\\ tkrB > 0 /\\ state != %d", i, UNDEF, UNDEF);

printf (" ->");

printf (" pc_%d\’ = %d /\\ method_%d\’ = %d /\\ ap_%d\’ = %d\n", i, POST, i, UNDEF,
i, PURE);

}

void Spec() {
printf ("Properties\n");
printf (" !EX(true)\n");
¥

int main(int argc, char x*argv[])
{
K = 5;
for (int i = 1; i < argc; ++i) {
if (strcmp(argv([i], "-k")==0 && i<argc-1) {
K = atoi(argv[i+1]);
if (K<0) {
fprintf (stderr, " ERROR: invalid number of references, %d.\n", K);
fprintf (stderr, " need at least 1 reference.\n");
return 2;
}
}
}

Init ) ;
Trans () ;
Spec () ;
return O;
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Appendix B

An example generated evmdd_smc model

Below is an instance of a generated producer/consumer model, for parameter K = 2.

Declarations

state [0, 3]
tkrB [0, 3]
tkwB [0, 3]
pc_0 [0, 1]
method_0 [0, 5]
ap_0 [0, 5]
tkr_0 [0, 3]
tkw_0 [0, 3]
pc_1 [0, 1]
method_1 [0, 5]
ap_1 [0, 5]
tkr_1 [0, 3]
tkw_1 [0, 3]
pc_2 [o, 1]
method_2 [0, 5]
ap_2 [0, 5]
tkr_2 [0, 3]
tkw_2 [0, 3]

Initial states
state =0
tkrB =3
tkwB =3

pc_0 =
method_0
ap_0 =
tkr_0
tkw_O0

|
O O O O =

pc_1

method_1
ap_1 =
tkr_1
tkw_1

O O O O

pc_2
method_2
ap_2
tkr_2
tkw_2 =

n
OO OO~

Transitions
start_constructor_O:
ap_0 = 0 /\ ap_1 =0 /\ ap_2 = 0 ->

pc_0’ = 0 /\ method_0’ =1 /\ ap_0’ =1 /\ tkrB’ = 0 /\ tkwB’ = 0 /\ tkr_0’ = 3 /\
tkw_0’ = 3

start_is_empty_O:

pc_0 =1 /\ ap_0 !'= 0 /\ tkrB > 0 ->

pc_0’ = 0 /\ method_0’ = 2 /\ ap_0’ =4 /\ tkr_0’ =1 /\ tkrB’ = tkrB - 1
start_is_filled_O:

pc_0 =1 /\ ap_0 != 0 /\ tkrB > 0 ->

pc_0’ = 0 /\ method_0’ = 3 /\ ap_0’ =4 /\ tkr_0’ =1 /\ tkrB’ = tkrB - 1

start_produce_O:

pc_0 = 1 /\ ap_0 '= 0 /\ (state = 1 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_0’ = 0 /\ method_0’ = 4 /\ ap_0’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_0’
1 /\ tkw_0’ = 3
start_consume_O:
pc_0 =1 /\ ap_0 != 0 /\ (state = 3 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_0’ = 0 /\ method_0’ = 5 /\ ap_0’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_0’
1 /\ tkw_0’ = 3
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end_constructor_0:

pc_0 = 0 /\ method_0 =1 ->
pc_0’ =1 /\ state’ =1 /\ tkrB’ = 3 /\ tkwB’ = 3 /\ tkr_0’ = 0 /\ tkw_0’ = 0
end_is_empty_O:
pc_0 = 0 /\ method_ 0 = 2 ->
pc_0’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_0’ = 0
end_is_filled_O:
pc_0 = 0 /\ method_0 = 3 ->
pc_0’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_0’ = 0
end_produce_1st_0:
pc_0 = 0 /\ method_0 = 4 /\ state = 1 ->
pc_0’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_0’ = 0 /\ tkw_0’ =
end_produce_0:
pc_0 = 0 /\ method_0 = 4 /\ state = 2 ->
pc_0’ =1 /\ (state’ = 2 \/ state’ = 3) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_0’
0 /\ tkw_0’ =0
end_consume_full_O:
pc_0 = 0 /\ method_0 = 5 /\ state = 3 ->
pc_0’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_0’ = 0 /\ tkw_0’ =
end_consume_O0:
pc_0 = 0 /\ method_0 = 5 /\ state = 2 ->
pc_0’ =1 /\ (state’ = 2 \/ state’ = 1) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_0’
0 /\ tkw_0’ =0
create_alias_O:
ap_0 = 0 /\ tkrB > 0 /\ state != 0 ->
pc_0’ = 1 /\ method_0’ = 0 /\ ap_0’ = 4
start_constructor_1:
ap_1 = 0 /\ ap_0 = 0 /\ ap_2 = 0 ->
pc_1’> = 0 /\ method_ 1’ =1 /\ ap_1’ =1 /\ tkrB’ = 0 /\ tkwB’ = 0 /\ tkr_1’ = 3 /\
tkw_1’ = 3
start_is_empty_1:
pc_1 =1 /\ ap_1 '= 0 /\ tkrB > 0 -
pc_1’ = 0 /\ method_1’ = 2 /\ ap_1’ 4 /\ tkr_1’ =1 /\ tkrB’ = tkrB - 1
start_is_filled_1:
pc_t =1 /\ ap_t !'= 0 /\ tkrB > 0 -
pc_1’ = 0 /\ method_1’ = 3 /\ ap_1’ 4 /\ tkr_1’ =1 /\ tkrB’ = tkrB - 1
start_produce_1:
pc_1 =1 /\ ap_1 !'= 0 /\ (state = 1 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_1’ = 0 /\ method_1’ = 4 /\ ap_1’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_1’
1 /\ tkw_1’> = 3
start_consume_1:
pc_1 =1 /\ ap_1 != 0 /\ (state = 3 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_1’ = 0 /\ method_1’ = 5 /\ ap_1’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_1’
1 /\ tkw_1’ = 3
end_constructor_1:
pc_1 = 0 /\ method_1 =1 ->
pc_1’ =1 /\ state’ =1 /\ tkrB’ = 3 /\ tkwB’ = 3 /\ tkr_1’ = 0 /\ tkw_1’ = 0
end_is_empty_1:
pc_1 = 0 /\ method_1 = 2 ->
pc_1’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_1’ = 0
end_is_filled_1:
pc_1 = 0 /\ method_1 = 3 ->
pc_1’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_1’ = 0
end_produce_1st_1:
pc_1l = 0 /\ method_1 = 4 /\ state = 1 ->
pc_1’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_1’ = 0 /\ tkw_1’ =
end_produce_1:
pc_1 = 0 /\ method_1 = 4 /\ state = 2 ->
pc_1’ =1 /\ (state’ = 2 \/ state’ = 3) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_1’
0 /\ tkw_1’ =0
end_consume_full_1:
pc_1 = 0 /\ method_1 = 5 /\ state = 3 ->
pc_1’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_1’ = 0 /\ tkw_1’ =
end_consume_1:
pc_1l = 0 /\ method_1 = 5 /\ state = 2 ->
pc_1’ =1 /\ (state’ = 2 \/ state’ = 1) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_1’
0 /\ tkw_1’ =0
create_alias_1:
ap_1 = 0 /\ tkrB > 0 /\ state != 0 ->
pc_1’ = 1 /\ method_1’ = 0 /\ ap_1’ = 4
start_constructor_2:
ap_.2 = 0 /\ ap_0 = 0 /\ ap_1 =0 ->
pc_2’ = 0 /\ method_2’ =1 /\ ap_2’ =1 /\ tkrB’ = 0 /\ tkwB’ = 0 /\ tkr_2’ = 3 /\
tkw_2’ = 3

start_is_empty_2:

25



pc_2 =1 /\ ap_2 != 0 /\ tkrB > 0 ->

pc_2’ = 0 /\ method_2’ = 2 /\ ap_2’ =4 /\ tkr_2’ =1 /\ tkrB’ = tkrB - 1
start_is_filled_2:
pc_2 =1 /\ ap_2 != 0 /\ tkrB > 0 ->
pc_2’ = 0 /\ method_2’ = 3 /\ ap_2’ = 4 /\ tkr_2’ =1 /\ tkrB’ = tkrB - 1
start_produce_2:
pc_2 =1 /\ ap_2 != 0 /\ (state = 1 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_2’ = 0 /\ method_2’ = 4 /\ ap_2’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_2’
1 /\ tkw_2’ = 3
start_consume_2:
pc_2 =1 /\ ap_2 '= 0 /\ (state = 3 \/ state = 2) /\ tkrB > 0 /\ tkwB = 3 ->
pc_2’ = 0 /\ method_2’ = 5 /\ ap_2’ = 2 /\ tkwB’ = 0 /\ tkrB’ = tkrB - 1 /\ tkr_2’
1 /\ tkw_2’ = 3

end_constructor_2:

pc_2 = 0 /\ method_2 =1 ->

pc_2’ =1 /\ state’ =1 /\ tkrB’ = 3 /\ tkwB’ = 3 /\ tkr_2’ = 0 /\ tkw_2’ =0
end_is_empty_2:

pc_2 = 0 /\ method_2 = 2 ->

pc_2’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_2’ = 0
end_is_filled_2:

pc_2 = 0 /\ method_2 = 3 ->

pc_2’ =1 /\ tkrB’ = tkrB + 1 /\ tkr_2’ =0
end_produce_1st_2:

pc_2 = 0 /\ method_2 = 4 /\ state =1 ->

pc_2’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_2’ = 0 /\ tkw_2’ =
end_produce_2:

pc_2 = 0 /\ method_2 = 4 /\ state = 2 ->

pc_2’ =1 /\ (state’ = 2 \/ state’ = 3) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_2°
0 /\ tkw_2’ =0
end_consume_full_2:
pc_2 = 0 /\ method_2 = 5 /\ state = 3 ->

pc_2’ =1 /\ state’ = 2 /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_2’ = 0 /\ tkw_2’ =
end_consume_2:

pc_2 = 0 /\ method_2 = 5 /\ state = 2 ->
pc_2’ =1 /\ (state’ = 2 \/ state’ = 1) /\ tkrB’ = tkrB + 1 /\ tkwB’ = 3 /\ tkr_2’
0 /\ tkw_2’ =0
create_alias_2:

ap_2 = 0 /\ tkrB > 0 /\ state != 0 ->
pc_2’ = 1 /\ method_2’ = 0 /\ ap_2’ = 4

Properties
'EX(true)
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Appendix C

The generator for the mttsTask model

#include <stdio.h>
#include <stdlib.h>
#include <string.h>

int K;

#define UNDEF
#define UNIQUE
#define FULL
#define SHARED
#define PURE
#define IMMUTABLE
#define NUM_AP

Ao WN = O

#define PRE 0
#define POST 1

//MttsTask. java States
#define CREATED 1

#define READY 2

#define COMPLETE 3

#define DESTROYED 4

#define NUM_STATES_MttsTask 4

//MttsTask. java methods

#define MttsTask 1

#define setData 2

#define getData 3

#define execute 4

#define DELETE 5

#define NUM_METHODS_MttsTask 5

//MttsTaskDataX. java states
#define ALIVE 1
#define NUM_STATES_MttsTaskDataX 1

//MttsTaskDataX. java methods
#define MttsTaskDataX 1
#define setID

#define setPriority
#define setDependencies
#define getID

#define getPriority 6

#define getDependencies 7

#define NUM_METHODS_MttsTaskDataX 7

o WwN

#define MttsTask_CLASS 0
#define MttsTaskDataX_CLASS 1
#define NUM_CLASSES 2

const int NUM_STATES[NUM_CLASSES] =
{NUM_STATES_MttsTask, NUM_STATES_MttsTaskDataX};

const int NUM_METHODS [NUM_CLASSES] =
{NUM_METHODS_MttsTask, NUM_METHODS_MttsTaskDataX};

void Init() {
printf ("Declarations\n");
for (int i=0; i<NUM_CLASSES; i++) {
printf (" state_%d [0, %d]\n", i, NUM_STATES[il);

printf (" tkrB_%d [0, %d]\n", i, K+1);

printf (" tkwB_%d [0, %dl\n\n", i, K+1);

for (int j=0; j<=K; j++) {
printf (" pc_%d_%d [0, 11\n", i, j);
printf (" method_%d_%d [0, %d]\n", i, j, NUM_METHODSI[il]);
printf (" ap_%d_%d [0, %d]\n", i, j, NUM_AP);
printf (" tkr_%d_%d [0, %d]\n", i, j, K+1);
printf (" tkw_%d_%d [0, %d]\n\n", i, j, K+1);

}

27



}
printf ("Initial states\n");
for (int i=0; i<NUM_CLASSES; i++) {

printf (" state_%d = %d\n", i, UNDEF);

printf (" tkrB_%d = %d\n", i, K+1);

printf (" tkwB_%d = %d\n\n", i, K+1);

for (int j=0; j<=K; j++) {
printf (" pc_%d_%d = %d\n", i, j, POST);
printf (" method_%d_%d = %d\n", i, j, UNDEF);
printf (" ap_%d_%d = %d\n", i, j, UNDEF);
printf (" tkr_%d_%d = 0\n", i, j);
printf (" tkw_%d_%d = 0\n\n", i, j);

¥

}
}

void start_constructor (int classID,const char* name, int id, int state, int j )
{
printf (" start_%s_%d:\t", name,j);
for (int k=0; k<=K; k++){
if (k!=K) printf(" ap_%d_%d = %d /\\",classID, k, UNDEF);

else printf (" ap_%d_%d = %d", classID,k, UNDEF);
}
printf (" ->");
printf (" pc_%d_%d\’ = %d /\\ method_%d_%d\’ = %d",classID, j, PRE, classID,j, id);

printf (" /\\ ap_%d_%d\’ = %d /\\ tkrB_%d\’ = 0 /\\ tkwB_%d\’ = 0 /\\ tkr_%d_%d\’ = J%d
/\\ tkw_%d_%d\’ = %d\n",classID, j, UNIQUE,classID,classID, classID,j, K+1,classID
s . K+1);
}

void end_constructor (int classID,const char* name, int id, int state, int j )
{
printf (" end_%s_%d:\t",name, j);
printf (" pc_%d_%d = %d /\\ method_%d_%d = %d ",classID, j, PRE, classID,j,id);
printf (" -> ");
printf (" pc_%d_%d\’ = %d", classID,j, POST);
if (state!=-1) printf(" /\\ state_%d\’ = %d ",classID,state);
printf (" /\\ tkrB_%d’ = %d /\\ tkwB_%d\’ = %d /\\ tkr_%d_%d\’ = 0 /\\ tkw_%d_%d\’ = O\
n",classID, K+1,classID, K+1,classID, j, classID,j);

}
void start_ap_state(int classID, int ap, int state, int j)
{
if (ap==FULL)
printf (" /\\ ap_%d_%d !'= %d /\\ tkrB_%d > O /\\ tkwB_%d = %d", classID,j, UNDEF,
classID,classID, K+1);
else if (ap==PURE)
printf (" /\\ ap_%d_%d '= %d /\\ tkrB_%d > 0", classID,j, UNDEF,classID);
if (state!=-1) printf(" /\\ state_%d = %d ", classID,state);
//-1 means mno state
¥
void start_ap_state_prime(int classID, int ap, int state, int j)
{
if (ap==FULL)
printf (" /\\ ap_%d_%d\’> = %d /\\ tkwB_%d\’ = 0 /\\ tkrB_%d\’ = tkrB_%d - 1 /\\ tkr_j
d_%d\’ = 1 /\\ tkw_%d_%d\’ = %d",classID,j,FULL,classID,classID,classID,classID,
j,classID,j, K+1);
else if (ap==PURE)
printf (" /\\ ap_%d_%d\’ = %d /\\ tkrB_%d\’ = tkrB_%d - 1 /\\ tkr_%d_%d\’ = 1",
classID,j,PURE,classID,classID,classID,j);
}
void end_ap_state_prime(int classID, int ap, int state, int j)
{
if (state!=-1) printf(" /\\ state_%d\’ = %d ",classID,state);
if (ap==FULL)
printf (" /\\ tkrB_%d’ = tkrB_%d + 1 /\\ tkwB_%d\’ = %d /\\ tkr_%d_%d\’ = 0 /\\
tkw_%d_%d\’ = 0",classID,classID,classID, K+1,classID, j,classID, j);
else if (ap==PURE)
printf (" /\\ tkrB_%d’ = tkrB_%d + 1 /\\ tkr_%d_%d\’ = 0",classID,classID,classID,
i)s
}
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void start_method(int classID,const char* name, int id, int ap, int state, int*
ap_parameteres, int* st_parametres, int size, int j)

printf (" start_%s_%d:\t", name,j);
printf (" pc_%d_%d = %d ",classID, j, POST);
start_ap_state(classID,ap,state,j);

// if method does not have parameter, this code does not have any effect

if (j==0) {
int subscript=1;
for (int i=0; i<size;i++) {
subscript++;

start_ap_state (subscript,ap_parameteres[i],st_parametres([il],j);

}
}
printf (" ->");
printf (" pc_%d_%d\’ = %d /\\ method_%d_%d\’ = %d",classID, j,

start_ap_state_prime(classID,ap,state,j);
if (j==0) {
int subscript=1;
for (int i=0; i<sizej;i++) {
subscript++;

PRE,classID, j,

start_ap_state_prime (subscript,ap_parameteres[i],st_parametres([il,j);

}
}
printf ("\n");
}

void end_method(int classID,const char* name, int id,

printf (" end_%s_%d:\t", name,j);

int ap, int state, int*
ap_parameteres, int* st_parametres, int size, int j)

printf (" pc_%d_%d = %d /\\ method_%d_%d = %d",classID, j, PRE,

printf (" -> "),
printf (" pc_%d_%d\’ = %d",classID,j, POST);
end_ap_state_prime (classID,ap,state,j);
if (j==0) {
int subscript=1;
for (int i=0; i<size;i++) {
subscript++;

classID, j, id);

end_ap_state_prime (subscript,ap_parameteres[i],st_parametres([i],j);

!= %d",classID,j,

¥
}
printf ("\n");
}
void create_alias(int classID,const char namel[], int j)
{
printf (" create_alias_%s_%d:\t", name,j);
printf (" ap_%d_%d = %d /\\ tkrB_%d > 0 /\\ state_%d
classID,UNDEF) ;
printf (" ->");
printf (" pc_%d_%d\’ = %d /\\ method_%d_%d\’ = %d ", classID,j,
printf (" /\\ ap_%d_%d\’ = %d\n",classID, j, PURE);
¥

void transitions_for_class_MttsTask(int j)

{

start_constructor (MttsTask_CLASS,"MttsTask",MttsTask,-1,j);

// -1 means, no required state

P0OST,classID,

start_method(MttsTask_CLASS,"setData“,setData,FULL,CREATED,NULL,NULL,O,j);
start_method(MttsTask_CLASS,"getData“,getData,FULL,READY,NULL,NULL,O,j);
start_method (MttsTask_CLASS,"execute",execute,FULL,READY,NULL,NULL,O0,j);
start_method (MttsTask_CLASS,"delete",DELETE,FULL, COMPLETE ,NULL,NULL,0,j);

end_constructor(MttsTask_CLASS,"MttsTask“,MttsTask,CREATED,j);
end_method (MttsTask_CLASS,"setData",setData,FULL,READY,NULL,NULL,0,j);

//To introduce syntaxz error, comment out the line above,
//and do the mecessary changes in the MttsTask. java

uncomment the

//end_method (MttsTask_CLASS,"setData",setData,FULL,CREATED ,NULL,NULL,0, j);

end_method (MttsTask_CLASS,"getData",getData,FULL,READY,NULL,NULL,0,j);
end_method (MttsTask_CLASS,"execute",execute ,FULL,COMPLETE,NULL,NULL,0,j);
end_method (MttsTask_CLASS,"delete",DELETE,FULL,DESTROYED ,NULL,NULL,0,j);

create_alias (MttsTask_CLASS,"MttsTask",j);
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id) ;

i

line below

UNDEF ,classID,

UNDEF)



}

void transitions_for_class_MttsTaskDataX(int j)

{

}

start_constructor ( MttsTaskDataX_CLASS,"MttsTaskDataX",MttsTaskDataX,-1,j);
// -1 means, no required state

start_method (MttsTaskDataX_CLASS,
start_method (MttsTaskDataX_CLASS,
start_method (MttsTaskDataX_CLASS,

i)

start_method (MttsTaskDataX_CLASS,
start_method (MttsTaskDataX_CLASS,
start_method (MttsTaskDataX_CLASS,

i)

"setID",setID,FULL,-1,NULL,NULL,0,j);
"setPriority",setPriority ,FULL,-1,NULL,NULL,0,j);
"setDependencies",setDependencies ,FULL,-1,NULL,NULL,O,

"getID",getID,PURE,-1,NULL,NULL,0,j);
"getPriority",getPriority ,PURE,-1,NULL,NULL,0,j);
"getDependencies",getDependencies ,PURE,-1,NULL,NULL,O,

end_constructor (MttsTaskDataX_CLASS,"MttsTaskDataX",MttsTaskDataX ,ALIVE,j);
end_method (MttsTaskDataX_CLASS,"setID",setID,FULL,-1,NULL,NULL,O0,j);
end_method (MttsTaskDataX_CLASS ,"setPriority",setPriority,FULL,-1,NULL,NULL,O0,j);
end_method (MttsTaskDataX_CLASS,"setDependencies",setDependencies ,FULL,-1,NULL,NULL,O, j)

end_method (MttsTaskDataX_CLASS,"getID",getID,PURE,-1,NULL,NULL,O0,j);
end_method (MttsTaskDataX_CLASS ,"getPriority",getPriority ,PURE,-1,NULL,NULL,O0,j);
end_method (MttsTaskDataX_CLASS,"getDependencies", getDependencies ,PURE,-1,NULL,NULL,O, j)

create_alias (MttsTaskDataX_CLASS,"MttsTaskDataX_CLASS",j);

void Trans (){
// This array is used to store the access permissions for parameters

}

int ap_parametres [5];

// This array is used to store the states of parameters

int st_parametres[5];

printf ("Transitions\n");
for ( int j=0;j<=K;j++)
{

transitions_for_class_MttsTask(j);
transitions_for_class_MttsTaskDataX(j);

}

void Spec() {

printf (" adjacent_%d_%d_%d state_%d
k, i, 1);
}
¥
printf ("\n");
}
}
}
int main(int argc, char x*argv[])
{
K = 5;
for (int i = 1; i < argc; ++i) {
if (strcmp(argv([i], "-k")==0 && i<argc-1) {

printf ("Properties\n");

//This checks the presence of deadlock.

printf (" deadlock

'EX(true)\n\n");

//The nezt batch checks for every method being able to ezecute.

for (int i=0; i < NUM_CLASSES;

i++) {

for (int k=1; k<= NUM_METHODS[i]; k++){
printf (" reach_method_%d_%d

k, i, PRE);
}

//The adjacency matriz
printf ("\n\n");

for (int k=0; k<=NUM_STATES[i];

EF (method_%d_0 = %d /\\ pc_%d_0

k++) {

for (int 1=1; 1<=NUM_STATES[il; 1++) {

if (k!'=1) {
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%d /\\ EX(state_¥%d

%hd)\n",

%d)\n",



K = atoi(argv[i+1]);

if (K<0) {
fprintf (stderr, " ERROR: invalid number of references, %d.\n", K);
fprintf (stderr, " need at least 1 reference.\n");
return 2;
}
¥
}
Init ();
Trans () ;
Spec () ;

return O;
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