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Hydrogeologic Framework of Bedrock Units and Initial
Salinity Distribution for a Simulation of Groundwater Flow

for the Lake Michigan Basin

By David C. Lampe

Abstract

The U.S. Geological Survey is assessing groundwater
availability in the Lake Michigan Basin. As part of the assess-
ment, a variable-density groundwater-flow model is being
developed to simulate the effects of groundwater use on water
availability throughout the basin. The hydrogeologic frame-
work for the Lake Michigan Basin model was developed by
grouping the bedrock geology of the study area into hydro-
geologic units on the basis of the functioning of each unit as
an aquifer or confining layer within the basin. Available data
were evaluated based on the areal extent of coverage within
the study area, and procedures were established to character-
ize areas with sparse data coverage. Top and bottom altitudes
for each hydrogeologic unit were interpolated in a geographic
information system for input to the model and compared with
existing maps of subsurface formations. Fourteen bedrock
hydrogeologic units, making up 17 bedrock model layers,
were defined, and they range in age from the Jurassic Period
red beds of central Michigan to the Cambrian Period Mount
Simon Sandstone.

Information on groundwater salinity in the Lake Michi-
gan Basin was compiled to create an input dataset for the vari-
able-density groundwater-flow simulation. Data presented in
this report are referred to as “salinity data” and are reported in
terms of total dissolved solids. Salinity data were not available
for each hydrogeologic unit. Available datasets were assigned
to a hydrogeologic unit, entered into a spatial database, and
data quality was visually evaluated. A geographic informa-
tion system was used to interpolate salinity distributions for
each hydrogeologic unit with available data. Hydrogeologic
units with no available data either were set equal to neighbor-
ing units or were vertically interpolated by use of values from
units above and below.

Introduction

At the request of Congress, the U.S. Geological Survey
(USGS) Groundwater Resources Program (GWRP) was estab-
lished to identify, measure, and assess the Nation’s ground-
water resources. A pilot phase of the GWRP is the water
availability and use initiative that focuses on the Great Lakes
region (U.S. Geological Survey, 2002). The goal of the initia-
tive is to provide information about trends in water availability
and use and to develop an improved capability to forecast the
availability of water for future economic and ecological uses.
The best methods of evaluating the resource must be deter-
mined and used with the resulting information delivered in a
manner that helps citizens, communities, and natural-resource
managers gain an improved understanding of the Nation’s
water resource.

To aid in forecasting water availability, a variable-density
groundwater-flow model is being developed for the Lake
Michigan Basin and surrounding area. The Lake Michigan
Basin was selected for the study for the following reasons:

1. The entire watershed is in the United States, and many
datasets already are available within the USGS.

2. Groundwater is withdrawn from bedrock and glacial-
deposit aquifers, both of which are important aquifer
systems throughout the Great Lakes Basin.

Important issues related to groundwater and surface-water
interaction can be simulated with the model.

4. Groundwater withdrawals in the Lake Michigan Basin
may affect the locations of groundwater divides with
Lakes Superior, Huron, and Erie.

5. Problems caused by large-scale groundwater withdraw-
als have been documented in the basin (Grannemann and
Reeves, 2005).
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Development of the model is a focused effort to simulate
flow of groundwater at a regional scale and is a compo-

nent in understanding the water balance in the basin. The
model should identify the source of water to wells, define the
complexities of the drainage basin, and provide a regional
framework for use in future, smaller scale groundwater-flow
simulations.

A groundwater-flow model requires multiple datasets that
define hydrogeologic conditions in the area of study. A funda-
mental dataset for any groundwater-flow model is information
on the description and distribution of geologic materials that
underlie the area to be modeled. Mapping of the distribution of
important aquifers and confining units is needed to define the
hydrogeologic framework for a model.

Although the Lake Michigan Basin is the focus of the
GWRP modeling effort, the model extends into neighboring
drainage basins, including the Mississippi River Basin and
other Great Lakes basins. Because of the large size and com-
plexity of the study area, an extensive literature review was
completed and multiple datasets were compiled to characterize
the bedrock geology of the study area. Data for hydrogeologic
units were compiled separately for overlying unconsolidated
sediments (Arihood, 2008) and for bedrock units.

In most cases, groundwater-flow models are used to esti-
mate the flow of freshwater in aquifers. However, in many geo-
logic structural basins, aquifers may be saturated with naturally
occurring brines that can affect the movement of fluids through
geologic formations. Groundwater in many bedrock formations
within the Lake Michigan Basin is affected by highly saline
brines from sources within the Michigan Structural Basin. The
interaction of brines with surrounding freshwater cannot be
simulated by the standard USGS MODFLOW-2000 code that is
commonly used for regional groundwater-flow models (Har-
baugh and others, 2000). A second code, SEAWAT-2000, was
developed to include the effects of variable density on ground-
water flow (Langevin and others, 2003).

The use of the variable density SEAWAT-2000 code in
place of MODFLOW-2000 requires additional information,
including the distribution of salinity throughout the model
domain. Salinity is considered either as an initial condition
subject to evolution through time or, as in the case of the Lake
Michigan Basin model, as a fixed condition influencing the
circulation of groundwater. A literature review was performed
and datasets were compiled to evaluate the distribution of
salinity in groundwater in the study area.

Purpose and Scope

This report describes the sources of data and the methods
used to develop the hydrogeologic framework of bedrock units
and the sources of data and the methods used to map the salin-
ity of groundwater in the Lake Michigan Basin and surround-
ing area. The maps of the hydrogeologic framework and the
salinity data are intended for use as input data for simulation
of groundwater flow in the Lake Michigan Basin. Bedrock

lithologic data from approximately 54,000 well records were
compiled, evaluated for discrepancies, and interpolated in a
geographic information system (GIS) to develop maps for
each hydrogeologic unit simulated in the model. These data
were supplemented by data and maps from previous investi-
gations. Salinity data evaluated for this report included total
dissolved solids concentrations and density determinations. A
linear relation between salinity and density was developed to
infer concentrations where only density data were available.
Methods to extend interpretations into areas having little or
no data are described. Results are presented in maps showing
thickness and concentration of total dissolved solids for each
hydrogeologic unit and corresponding model layer.

Groundwater Model

The area of study for the Lake Michigan Basin ground-
water model is approximately 180,000 mi® and incorporates
the entire drainage basin of the lake (approximately 45,000
mi?) and adjacent parts of Michigan; Indiana; Illinois; Ohio;
Wisconsin; and Ontario, Canada (fig. 1). The model simulates
flow of groundwater in unconsolidated sediments and sedi-
mentary rocks extending below the surface to the crystalline
rocks of Precambrian age.

Groundwater-flow models use the mathematical method
of finite difference to compute approximate solutions to dif-
ferential equations that describe the flow of groundwater in
space and time. Models require three-dimensional discretiza-
tion of the area to be modeled, resulting in a grid network in
the horizontal dimension and layers in the vertical dimension.
The intersections of the grid with the layers form model cells
that are assigned dimensions and hydraulic properties.

The Lake Michigan Basin groundwater model is dis-
cretized into a grid of 391 by 261 cells. The model has 20 lay-
ers: 3 that simulate the glacial and unconsolidated sediments
and 17 that simulate the bedrock units. The model provides
additional detail in the area of greatest interest, in this case,
the Lake Michigan Basin, by use of smaller grid spacing in the
innermost model domain (fig. 1) compared with the grid spac-
ing at the model boundaries. The smallest interior grid cells
are 5,000 by 5,000 ft. At the model boundaries, the size of grid
cells reaches approximately 68,930 ft (13 mi) from north to
south by 116,490 ft (22 mi) from east to west.

Hydrogeologic Setting

The study area for the Lake Michigan Basin groundwa-
ter-flow model encompasses the entire Michigan Structural
Basin centered in the Lower Peninsula of Michigan and
extending into parts of Illinois, Wisconsin, Indiana, Ohio, and
Ontario, Canada. The Michigan Structural Basin is bounded
by the Canadian Shield to the north, the Wisconsin Arch to
the west, the Kankakee Arch to the southwest, the Findlay
Arch to the southeast, and the Algonquin Arch to the east
(Olcott, 1992, fig. 9; Lloyd and Lyke, 1995, fig. 6) (fig. 1).
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The Kankakee Arch separates the Michigan Structural Basin
from the Illinois Structural Basin—part of which is included
in the southwest section of the study area. The Findlay Arch
separates the Michigan Structural Basin from the Appalachian
Structural Basin to the southeast (Colton, 1962). Cambrian
rocks of the Wisconsin Arch make up the western boundary of
the model.

Within the Michigan Structural Basin, Precambrian
crystalline rocks and the Precambrian Jacobsville Sandstone
are overlain by approximately 14,000 ft of younger Paleo-
zoic and Mesozoic Era sedimentary rocks (Cohee and others,
1951; fig. 2). The Paleozoic Era rocks are made up of Cam-
brian Period sandstones and dolomites, Ordovician Period
sandstones and limestones overlain by shale, Silurian and
Devonian Period limestones and dolomites, and Mississip-
pian Period limestones and shales. The Mesozoic Era rocks
are made up of Pennsylvanian Period sandstones and shales
and Jurassic Period sandstones. These rocks are overlain by
glacial deposits from Wisconsinan age and earlier glaciations
and unconsolidated sediment of recent age. All of the glacial
and unconsolidated sediments and sedimentary rocks located
within the boundary of the study area are included within the
Lake Michigan Basin model.

Hydrogeologic Framework of Bedrock
Units

The sedimentary rocks within the boundary of the
simulation were divided into 14 hydrogeologic units. The 14
units were then subdivided into a total of 17 model layers for
use within the simulation (fig. 2). The Silurian-Devonian and
Mount Simon hydrogeologic units were subdivided into three
and two model layers, respectively. Both the hydrogeologic
units and model layers were identified by evaluating the major
lithology of the geologic formation and its relative importance
as a water-bearing formation within the simulation area.

Correlation of Stratigraphy to Hydrogeologic Units

Six aquifers designated by the USGS as “principal
aquifers” are within the model area (fig. 2; Olcott, 1992). The
surficial aquifer system is found within the Quaternary hydro-
geologic model unit. The Pennsylvanian aquifer is simulated by
the upper Pennsylvanian hydrogeologic unit. The Mississippian
aquifer is simulated by the Marshall hydrogeologic unit and
partially by the Michigan and Devonian-Mississippian hydro-
geologic units. The Silurian-Devonian aquifer is simulated by
the Silurian-Devonian and parts of the Maquoketa hydrogeo-
logic units. The Cambrian-Ordovician aquifer is simulated by
the Maquoketa, Sinnipee, St. Peter, Prairie du Chien-Franconia,
Ironton-Galesville, Eau Claire and Mount Simon hydrogeo-
logic units. The Jacobsville aquifer is simulated by parts of the
Mount Simon hydrogeologic unit.

Figure 2 shows the correlation of units in the model.
Confining units are shown in red, aquifers in blue, and units
that act as aquifers in some parts of the model area and con-
fining units in others are shown in light blue. Five of the 15
hydrogeologic units simulate aquifer materials, 4 of the 15
units simulate confining unit materials, and 6 of the 15 units
describe units that have properties of aquifers and confining
units. The basal confining unit of the Lake Michigan Basin
groundwater flow model is the Precambrian crystalline rock
that underlies the entire model area. Overlying the crystal-
line rock is the Precambrian Jacobsville Sandstone, which is
located in the Upper Peninsula of Michigan, and a series of
Cambrian and Ordovician aquifers including the Mount Simon
Formation, the Ironton and Galesville Sandstones, and the
St. Peter Sandstone. An upper Ordovician confining unit, the
Maquoketa Group, primarily consisting of shale, underlies
a series of Silurian and Devonian limestones and dolomites.
The Silurian-Devonian hydrogeologic unit was divided into
three model layers. The uppermost of the three model lay-
ers represents a discontinuous eroded surface in parts of the
model area. The remaining portion of the unit was divided
into two model layers based upon thickness. Mississippian
and Devonian shales form a confining unit above the Silurian
and Devonian limestones and dolomites and are overlain by
Quaternary glacial deposits in Illinois, Indiana, Ohio and parts
of Wisconsin.

Bedrock units that are younger than the Devonian-
Mississippian confining unit are not present within the model
area outside the state of Michigan (fig. 2). Within Michigan,
the Marshall Sandstone is overlain by the Michigan Forma-
tion confining unit. The Bayport Limestone, Parma Sandstone,
and the shale portion of the Saginaw Formation make up the
Lower Pennsylvanian hydrogeologic unit. The remainder of
the Saginaw Formation and Grand River Formations make up
the upper Pennsylvanian hydrogeologic unit and are partially
overlain by the Jurassic Ionia Formation. Quaternary glacial
deposits completely cover the bedrock within the modeled
area, except for parts of the bedrock in the Upper Peninsula of
Michigan.

Some hydrogeologic units in the Lake Michigan Basin
groundwater-flow model act as aquifers in some parts of the
model area and confining units in other areas of the model
(fig. 2). The Eau Claire hydrogeologic unit acts as an aquifer
where it is a coarse grained sandstone in Michigan’s Upper
Peninsula and northeastern Wisconsin, but it acts as a con-
fining unit where it becomes finer grained in southeastern
Wisconsin. In northeastern Illinois, the Eau Claire hydrogeo-
logic unit is a siltstone and acts as a confining unit. The Prairie
du Chien-Franconia hydrogeologic unit can be an aquifer
where karstic dolomite is present or where the sandstone units
dominate; but, often, where no karst is present and the clastic
sedimentary rocks are siltstones, this unit can act as a confin-
ing unit. The Sinnipee hydrogeologic unit, when overlain by
the Maquoketa hydrogeologic unit, is unweathered and acts as
a confining unit. Weathered portions of the unit are aquifers.



Hydrogeologic Framework of Bedrock Units

5

Time-stratigraphic

Survey, 2006

Willman and others, 1975

Young and Siegel, 1992

- Aquifer

Aquifer/confining unit

Confining unit

EXPLANATION

Depositional s

N\ Erosional surface

TRocks of the Pennsylvanian System were grouped with
the Mississippian-Devonian hydrogeologic unit for lllinois

urface

Fm, Fo

Gr, Group

rmation

Ls, Limestone

- Hydrogeologic USGS
unit Wisconsin Illinois Indiana Ohio Michigan unit principal
(model layer) aquifer
System Series
Quaternary Glacial deposits | Glacial deposits | Glacial deposits Glacial deposits | Glacial deposits Qujﬁ‘ig’)‘aw S“rﬁsc;g{:r‘j]“ifer
NNANNNNAN NNNNNNNNNNNNNNNNNNNNNNNNN
Jurassic Middle lonia Fm Jurassic (4)
Upper Absent Grand River Fm .
Pennsylvanian
Pennsylvanian / Saginaw Fm
Lower Pennsylvanian System Absent Absent Saginaw Fm (Shale)
Absent {Undifferentiated) g Lower
el Parma Sandstone Pennsylvanian
(6)
Upper Bayport Ls
Absent Michigan Fm Michigan (7)
Mississippian INNANNNANNNY Marshall Sandstone Mississippian
Lower Mississippian System MW Coldwater Shale )
(Undifferentiated) Sunbury Shale Sunbury Shale Sunbury Shale MIiJses\i,gsl}I;;i-an
L A~ AAAAAA New Albany Shale Ellsworth Shale Bedford Shale Ellsworth Shale 9)
Upper Antrim Shale Group Antrim Shale trim Shale Antrim Shale
Devonian ] Milwaukee Fm__| Cedar Valley Limestone Muscatatuck [~ AKCRERREN A Traverse Group
Middle Thiensville Fm _|wapsipinicon Limestone Group Dundee Formation Detrolt River G
Lower i INNANNNNNNNANNNNNNN" etroit River Group etroit River Group
Absent Absent Absent Bass Islands Group
Upper Waubakee Fm Salina Group . Salina Group Silurian-
Racine Fm Racine Dolomite Salina Group Niagara Group Siluri??]—l)fz\;onian Devonian
Silurian : Manistique Fm Sugar Run Dolomit Lockport Grou i )
Middle Hendrigks o ugar Run Dolomite | o\ monie Dolomite - hp = Ip Manistique Group
Joliet Dolomite ochester Shale
Byron Fm Dayton Formation Burnt Bluff Group
X Kankakee Dolomite N N INNNNNNNN
Lower Mayville Fm Wilhelmi Fm Brassfield Limestone m Cataract Group
NNNNNNNN
Neda F h
Upper /%m:??n{\n Magquoketa Group | Magquoketa Group Cincinnati group Richmond Group | Maquoketa (13)
Galena Grou i [ L
Sinnipee Group P |\TIenion MESIONe | Trenton Limestone Trenton Fm Sinnipee
Ordovician Middle Platteville Group [Black River Limestone Black River Fm (14)
Glonwood Fm NNANNNNNNN Black River Group ¥ R
Ancell Group Ancell Group £nwood fm
St. Peter Fm Wells Creek Fm St. Peter Sandstone
INNANNNNNNANNNNNNANN
Lower | Prairie du Chien Gr | Prairie du Chien Gr | Prairie du Chien Gr bsent Prairie du Chien Gr SR
rairie du Chien-
Trempealeau Group Potosi Dolomite Potosi Dolomite Knox Dolomit Trempealeau Fm Fra(r11%u)nia
nox Dolomite -
i Cambrian-
Tunnel City Group Franconia Fm Franconia Sandstone Franconia Fm Ordovician
Ironton Sandstone | Ironton Sandstone :
Galesville
Wonewoc Fm - Kerbel Fi
Galesville Sandstone | Galesville Sandstone erbetrm Sandstone
Cambrian Upper Eau Claire Fm Eau Claire Fm  [Eau Claire Sandstone| ~ Eau Claire Fm Eau Claire Fm Eau Claire (18)
Mount Simon Mount Simon ISVIm:jntSimo? Mount Simon Mount Simon
Formation Sandstone Dr:snb:éﬂngrgup Sandstone Sandstone
NNNNNNNUINNANNNANNANNNNNNNNANINNNNNNNN
Jacobsville Sandstone Jacobsville
Precambrian Keweenawan |Crystalline Basement |Crystalline Basement | Crystalline Basement N
Supergroup Complex Complex Complex Crystalline Basement
Complex
Buschbach, 1964
Wisconsin Kolata and Graese, 1983
Geological Kolata, 1990 Gray and others, Catacosinos
References and Natural History | Mikulic and others, 1985 1985 Hull, 1990 and others, 2001

Figure 2. Stratigraphic chart showing time- and rock-stratigraphic framework nomenclature for the Lake Michigan Basin region, the
U.S. Geological Survey principal aquifers in the model area, and the hydrogeologic units used in the model.
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Model layers 11 and 12 of the Silurian-Devonian hydrogeo-
logic unit are aquifers in Wisconsin and Illinois, but the layers
act as a confining unit in Michigan due to changes in lithology.
The Lower Pennsylvanian hydrogeologic unit is dominated

by the Parma Sandstone and Bayport Limestone, which act as
aquifers in south central Michigan. In other areas, the unit is
made up of shale of the Saginaw Formation, thus making it a
confining unit.

Sources of Lithologic Data

Several studies have gathered data on bedrock stratigra-
phy for parts of the Lake Michigan Basin model study area.
Prior to 2006, few data sources describe the bedrock geology
beneath Lake Michigan. Kontis and Mandle (1980) developed
a computerized database system to facilitate the collection,
evaluation, and manipulation of large quantities of hydrogeo-
logic information used during the development of the strati-
graphic framework of the northern Midwest Regional Aquifer-
System Analysis for parts of Illinois, Wisconsin, Michigan and
Indiana. Feinstein and others (2005) described the geologic
framework for a regional model for southeastern Wisconsin.
Bricker and others (1983) compiled sources of Cambrian-
Ordovician bedrock formations and developed maps showing
the structure and thickness of the formations for the state of
Michigan. S.C. Meyer and others (Illinois State Water Survey,
written commun., 2008) described the geologic framework for
a regional model of northeastern Illinois.

Lithologic data from well records and from prior inves-
tigations were compiled to map the distribution of hydrogeo-
logic units within the Lake Michigan Basin model study area.
The sources of this information are listed for each State in
table 1.

lllinois

A recent study centered on northeastern Illinois (S.C.
Meyer and others, Illinois State Water Survey, written
commun., 2008) established a detailed hydrostratigraphic

framework that included part of the Lake Michigan Basin
groundwater-flow model that is in Illinois. This framework

is similar in conception to the hydrostratigraphic layering
developed in previous studies (Feinstein and others, 2005) for
adjacent areas of Wisconsin.

Wisconsin

Lithologic information for parts of the study area in
Wisconsin was retrieved from 6,813 well drillers’ logs from
the wiscLITH lithologic and stratigraphic database (Wisconsin
Geologic and Natural History Survey, 2004). Well construc-
tion reports (WCR) were used to supplement the wiscLITH
data (Wisconsin Department of Natural Resources, 2006).
Information about depth to the top of the bedrock surface
was provided from 15,179 WCRs and 6,625 WCRs provided
additional information on the depth to crystalline Precambrian
bedrock within the state.

Other datasets that describe specific areas of Wisconsin
were used to supplement the wiscLITH database and WCRs.
The southeastern portion of the state was described by the
hydrologic framework developed for a groundwater model in
southeast Wisconsin (Feinstein and others, 2005; Eaton and oth-
ers, 1999). The hydrologic framework for a groundwater-flow
model of a part of south-central Wisconsin by Krohelski and
others (2000) was also included. Additional information on the
top of bedrock was taken from (1) a lithologic database of parts
of northeastern Wisconsin (B.A. Brown, Wisconsin Geological
and Natural History Survey, written commun., 2005), (2) figures
describing the thickness of glacial deposits in a part of north-
central Wisconsin (Batten, 1987), and (3) maps describing the
elevation of the bedrock surface and the depth to Precambrian
crystalline rock in an area south of Lake Winnebago (Batten,
2004; W.G. Batten, Wisconsin Geological and Natural History
Survey, written commun., 2006). Additional information on the
depth to Precambrian crystalline rock was obtained from R.D.
Cotter (U.S. Geological Survey, unpublished data, 1986), Olcott
(1966) and W.G. Batten (Wisconsin Geological and Natural
History Survey, unpublished data, 1979).

Table 1. Sources of lithologic data for each State in the study area.
State Sources

Ilinois S.C. Meyer and others, Illinois State Water Survey, written commun., 2008

Wisconsin Batten (1987, 2004), Eaton and others (1999), Feinstein and others (2005), Krohelski and others (2000),
Olcott (1966), Wisconsin Department of Natural Resources (2006), Wisconsin Geological and Natural
History Survey (2004)

Michigan Bricker and others (1983), Michigan Department of Environmental Quality (2008)

Indiana Gray (2003), Indiana Geological Survey (2005)

Ohio Ohio Division of Geological Survey (2005), Wickstrom and others (1992)




Michigan

Hydrogeologic unit surfaces within Michigan were inter-
preted primarily by use of 22,586 well logs from the Michigan
Department of Environmental Quality’s Wellogic database
(Michigan Department of Environmental Quality, 2008).
Additional logs from wells in Quaternary deposits were also
used to characterize the top of bedrock surface within Michi-
gan (D.P. Lusch, Michigan State University, written commun.,
20006). Isopach and structure maps from the Michigan Geo-
logical Survey also were used to define the St. Peter and lower
hydrogeologic units where well log information was sparse
(Bricker and others, 1983). Updated information from Nadon
and others (2000) was used to characterize the extent of the St.
Peter Sandstone in the Lower Peninsula of Michigan.

Indiana

Hydrogeologic unit surfaces within Indiana were inter-
preted by use of 2,753 oil and gas well logs from the Indiana
Geological Survey’s (IGS) Petroleum Database Management
System, which contains oil and gas well logs for the state of
Indiana (Indiana Geological Survey, 2005). Contours of the
top of bedrock surface were used to characterize the bottom of
the Quaternary hydrogeologic unit surface (Gray, 2003).

Ohio

Hydrogeologic unit surfaces within Ohio were interpreted
by use of 749 well logs from Wickstrom and others (1992).
Contours of the top of bedrock were used to characterize the
bottom of the Quaternary hydrogeologic unit surface (Ohio
Division of Geological Survey, 2005).

Areas Under Lake Michigan

Little information was found describing the bedrock units
beneath Lake Michigan. The base altitude of the Antrim Shale
was characterized by use of information from C.S. Swezey
(U.S. Geological Survey, written commun., 2008).

Stratigraphic Framework Interpolation Methods

A hydrogeologic framework for a groundwater-flow
model of northeastern Illinois, which includes the entire area
of Illinois in the Lake Michigan Basin groundwater-flow
model, was used as the sole data source for the state of Illinois
(S.C. Meyer and others, Illinois State Water Survey, written
commun., 2008). The hydrogeologic framework used for the
northeastern Illinois groundwater-flow model corresponds to
the framework used with the Lake Michigan Basin model,
except for Pennsylvanian bedrock. The Illinois model grouped
the Pennsylvanian Period bedrock with the Devonian-Missis-
sippian Period bedrock because they have similar lithologies
and physical properties. The Illinois Pennsylvanian bedrock

Hydrogeologic Framework of Bedrock Units 7

units were therefore included with the Devonian-Mississippian
hydrogeologic unit in the Lake Michigan Basin groundwater-
flow model. The nodal data from the northeastern Illlinois
groundwater-flow model were converted into ARC-INFO GIS
point coverages (Environmental Systems Research Institute,
2003) for each hydrogeologic unit in Illinois.

The well log data for Wisconsin, Michigan, Indiana, and
Ohio initially were assigned to multiple hydrogeologic units
based on the lithologic log associated with each well. Land-
surface altitude information reported for the well log was com-
pared to the land-surface altitude interpreted from the digital
elevation model (DEM) data for the study area. If the differ-
ence between the reported altitude of the well and the land sur-
face DEM was greater than 10 ft, the reported altitude of the
well log was investigated. If the source of the difference was
not apparent, the well log was not used in the development of
the hydrogeologic units. Each lithologic unit described in the
well logs was assigned to a hydrogeologic unit (fig. 2). The
lithologic log for a well included depth information for each
lithologic unit. The depth information associated with the bot-
tom of each hydrogeologic unit in the model was subtracted
from the reported land-surface altitude of the well to obtain an
altitude of the bottom of the unit. This process was repeated
for each hydrogeologic unit described in the well log. Data
points for each separate hydrogeologic unit in Michigan,
Indiana and Ohio were grouped and then converted into an
ARC-INFO point coverage (Environmental Systems Research
Institute, 2003). Available contour data describing the eleva-
tion of the bedrock surface (bottom of hydrogeologic unit 1,
fig. 2) within the state of Indiana also were interpolated using
the TOPOGRID command in ARC-INFO and then converted
into ARC-INFO point coverages.

The hydrologic framework developed for a groundwater
model in southeast Wisconsin (Feinstein and others, 2005;
Eaton and others, 1999) has the same layering configuration as
the Lake Michigan Basin groundwater-flow model. Nodal data
from both the southeast Wisconsin model and a groundwater-
flow model by Krohelski and others (2000) were converted
into ARC-INFO point coverages (Environmental Systems
Research Institute, 2003). All sources of data for Wisconsin
were interpolated using the Surfer software package (Golden
Software Inc., 2002). Contours of the interpolated Wisconsin
data were visually inspected and evaluated for data inaccura-
cies within the Surfer software package. Files in ASCII format
were then exported from the software and then converted into
ARC-INFO point coverages.

Within Michigan, the Wellogic database included sparse
information for the deeper hydrogeologic units in the Lower
Peninsula. Isopach and structural contour maps (Bricker and
others, 1983) were used to supplement the Wellogic data for
the St. Peter through the Mount Simon hydrogeologic units
(fig. 2). The contours were digitized and elevation surfaces
were generated using the TOPOGRID command in ARC-
INFO, version 8.3 (Environmental Systems Research Insti-
tute, 2003). Structural contours of the top of the Glenwood
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Formation were used as the bottom of the Sinnipee hydro-
geologic unit. Isopach data of the underlying formations were
then subtracted from the bottom of the next youngest hydro-
geologic unit, thus creating the surface altitude for the rest of
the underlying units. These interpolated surfaces were then
converted into ARC-INFO point coverages for each hydrogeo-
logic unit.

The geologic logs for many of the wells used to define
the hydrogeologic layering in the Michigan Structural Basin
include the St. Peter Sandstone with underlying rock associ-
ated with the Prairie du Chien Formation. To separate the two
hydrogeologic units, the bottom surface of the St. Peter was
revised by use of contour information from a recent interpreta-
tion of its stratigraphy by Nadon and others (2000).

Point coverages for each hydrogeologic unit were
grouped across states and then interpolated to create a top-
of-hydrogeologic-unit altitude surface using a kriging inter-
polator available in ARC-INFO, version 8.3 (Environmental
Systems Research Institute, 2003). Within Michigan, interpo-
lations were restricted to areas within the subcrop boundaries
of each hydrogeologic unit, which were determined by use of
the bedrock geology map of Michigan (Michigan Department
of Environmental Quality, 1987). Because the USGS MOD-
FLOW-2000 code requires continuous hydrogeologic units
and model layers throughout the area of the model, areas out-
side of the subcrop boundaries were assigned an altitude equal
to 0.2 ft less than the overlying hydrogeologic unit to maintain
the layer throughout the modeled area.

The interpolated surfaces were evaluated to determine if
areas existed where surfaces crossed, indicating the absence of
one or more hydrogeologic units. The lower, or older, surface
was subtracted from the upper, or younger, surface to identify
areas that had an apparent negative unit thickness. If the areas
with apparent negative thickness were also mapped as areas
where the unit is absent, the thickness of the hydrogeologic
unit within that area was assigned an arbitrary value of 0.2 ft.
If the areas with apparent negative thickness were not mapped
as areas where the unit is absent, which was common in areas
of sparse data coverage, artificial data points were used to
control the results of the interpolation procedure. Points with
values similar to existing well log data were included to pro-
duce a consistent surface across the area in question.

Because very few data were available for the geology
beneath Lake Michigan, elevations for each hydrogeologic
unit were linearly interpolated across the lake from data
points in Wisconsin to points directly east in Michigan. This
produced a decrease in elevation and a gradual thickening
of the units from Wisconsin eastward into Michigan and the
Michigan Structural Basin. The bottom of the Devonian-Mis-
sissippian hydrogeologic unit surface was adjusted to reduce
the extent of the unit, thus making it similar to the unit extent
interpreted by C.S. Swezey (U.S. Geological Survey, written
commun., 2008) and J.A. East (U.S. Geological Survey, writ-
ten commun., 2008) under Lake Michigan.

The interpolated surfaces were evaluated for accuracy
within the Upper Peninsula of Michigan in areas with sparse
data coverage (C.J. Hoard, U.S. Geological Survey, written
commun., 2005). Additional data points were added to define
thicknesses for the Prairie du Chien through Mount Simon
hydrogeologic units in these areas.

Interpolated surfaces for each hydrogeologic unit were
then converted to ASCII format text files that listed the eleva-
tions of each hydrogeologic unit in each cell of the groundwa-
ter-flow model. These altitude values for the hydrogeologic
units were then imported into the Lake Michigan Basin
groundwater-flow model.

Figures 3—17 display the unit thickness values for each
hydrogeologic unit. The shaded elongated areas around the
borders of the figures represent the larger cells at the bound-
ary of the model. The uncharacteristic appearance of the
Devonian-Mississippian hydrogeologic unit beneath Lake
Michigan (fig. 9) is due to small amounts of Devonian-Missis-
sippian materials found in eastern Wisconsin. Isolated blocks
like those found near the Lake Michigan shore in Wisconsin
(see figs. 10—14) represent areas where small amounts of data
were present in a model cell outside of the innermost model
domain. The maximum thicknesses for each hydrogeologic
unit are listed in table 2. The Jurassic, Lower Pennsylvanian,
Marshall and Ironton-Galesville hydrogeologic units have
thicknesses less than 550 ft. The Silurian-Devonian hydrogeo-
logic unit has thicknesses less than about 7,550 ft.

Table 2. Maximum thicknesses for each hydrogeologic unit.

L Maximum thickness
Hydrogeologic unit

(feet)
Quaternary 1,107
Jurassic 195
Upper Pennsylvanian 601
Lower Pennsylvanian 527
Michigan 720
Marshall 493
Devonian-Mississippian 2,260
Silurian-Devonian 7,538
Maquoketa 2,162
Sinnipee 1,632
St. Peter 1,364
Prairie du Chien-Franconia 2,060
Ironton-Galesville 543
Eau Claire 1,566
Mount Simon 3,014
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Initial Salinity Distribution
of Groundwater in Bedrock
Hydrogeologic Units

The use of the variable-density SEAWAT-2000 code in
place of MODFLOW-2000 requires additional data including
an initial or fixed distribution of salinity throughout the mod-
eled area to account for its effect on hydraulic gradients and
hydraulic conductivity. This section describes the data sources
and procedures used to evaluate the initial salinity of ground-
water within the Lake Michigan Basin model study area. Only
data that originated from water samples or geophysical meth-
ods were used in developing the distributions. Data presented
in this report are referred to as “salinity data” and are reported
in terms of the concentration of total dissolved solids, which
is an expression for the combined content of all inorganic
and organic substances contained in a volume of water (Hem,
1985, p. 157).

Sources of Groundwater Salinity Data

Several studies have gathered data on the salinity of
groundwater for parts of the Lake Michigan Basin model study
area. Kammerer (1998) investigated the geology, groundwater
flow, and total dissolved-solids concentrations within Wiscon-
sin aquifers. Gupta (1993) compiled an extensive dataset of
the total dissolved-solids concentrations and fluid densities for
areas of Indiana, Michigan, Illinois, and Ohio. Schnoebelen
and others (1995) delineated the approximate location of the
10,000-mg/L total dissolved-solids boundary in Devonian and
Silurian carbonate aquifers in northern Indiana. Ryling (1961)
investigated the distribution of saline water in bedrock aqui-
fers within Wisconsin. Nicholas and others (1987) described
the salinity of multiple formations at a test well in northeastern
[llinois. Bond (1972) described the density of groundwater in
the Mount Simon Formation in northeast Illinois and north-
west Indiana. Ging and others (1996) describe the salinity
of the Marshall aquifer in the Lower Peninsula of Michigan.
Meissner and others (1996) describe the salinity of the Sagi-
naw aquifer in the Lower Peninsula of Michigan. Wahrer and
others (1996) describe the salinity of the glaciofluvial aquifer
system in the Lower Peninsula of Michigan.

Salinity data were available for only some of the hydro-
geologic units within the area of the groundwater-flow model.
No data were available for the Jurassic, Lower Pennsylvanian,
Michigan, Devonian-Mississippian, Maquoketa, St. Peter,
Ironton-Galesville, or Eau Claire hydrogeologic units. Sources
used in each State are listed in table 3.

Interpolation Methods Used to Develop Initial
Salinity Distribution

Data from Gupta (1993) were reported as both the density
and total dissolved-solids concentration of groundwater;
however, for the state of Michigan, data were reported only
in terms of density. The data points reported in both density
and concentration were used to create a linear regression of
the relation between the two terms (fig. 18). This regression
model was used to calculate the missing concentration values
based on reported density values. Concentration values of total
dissolved-solids were interpolated spatially by use of a kriging
interpolator available in ARC-INFO, version 8.3 (Environ-
mental Systems Research Institute, 2003). Contours of total
dissolved-solids concentration were manually drawn from the
interpolated surfaces to create the initial distribution of salinity
for each hydrogeologic unit with available data.

Salinity data for groundwater in the two Mount Simon
model layers were created by use of total dissolved-solids
concentration contours from Bond (1972) in the Illinois region
of the model. Bond reports seven different distributions of
concentration that vary with depth. Two distributions were
selected based on the approximate depths of the two model
layers that represent the Mount Simon hydrogeologic unit.

Total dissolved-solids concentrations for groundwater in
the bedrock hydrogeologic units present in Wisconsin were
defined by use of data from cross sections included in Kam-
merer (1998), and the distributions of total dissolved-solids
concentrations were then compared with those reported by
Ryling (1961) for similarities. Both datasets have similar dis-
tributions of groundwater salinity along the western shoreline
of Lake Michigan and areas around Lake Winnebago. Much of
the salinity in the Wisconsin part of the study area is less than
1,000 mg/L for all of the model layers. Concentrations greater
than 1,000 mg/L were digitized and included in the salinity
dataset.

Contour datasets of groundwater salinity for each
hydrogeologic unit with available data were combined by
use of the ARC-INFO GIS and spatially interpolated using
the kriging interpolator (Environmental Systems Research
Institute, 2003). These distributions were then assigned to the
model layers corresponding to the hydrogeologic unit (fig. 2).
Because the vertical distribution of salinity is inconsistent, it
was necessary to either interpolate data between model layers
with reported salinity and those without, or assign salinity
values from a layer with similar hydrogeologic properties.
Table 4 shows where data were available and how data were
assigned or interpolated vertically from known to unknown
locations. Although the distributions for model layers 2 and 3
were taken from model layer 1, the maximum total dissolved-
solids concentrations vary due to the extent of the model
layers. The distributions for each model layer were converted
into ASCII format text files that list the total dissolved-solids
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concentration of each cell in the specific model layer of the layers in the Quaternary, Jurassic, Upper Pennsylvanian, Lower

groundwater-flow model. These values were then imported Pennsylvanian, and Michigan hydrogeologic units have total

into the groundwater flow model. dissolved-solids concentrations less than 100,000 mg/L. Model
Figures 19-38 display the total dissolved-solids concen- layers in the Silurian-Devonian, Sinnipee, St. Peter, Prairie du

tration values for each layer of the model. Because the distri- Chien-Franconia, and Ironton-Galesville hydrogeologic units

bution of total dissolved-solids values vary by several orders have total dissolved-solids concentrations greater than

of magnitude, the scales present on the figures vary. Model 400,000 mg/L.

Table 3. Sources of salinity data for each State in the study area.

State Sources
Ilinois Bond (1972), Visocky and others (1985), Young (1992)
Indiana Eberts and George (2000), Gupta (1993), Schnoebelen and others (1998)
Michigan Ging and others (1996), Gupta (1993), Meissner and others (1996), Wahrer and others (1996)
Ohio Gupta (1993)
Wisconsin Kammerer (1998), Ryling (1961), Young (1992)

TOTAL DISSOVLED-SOLIDS CONCENTRATION, IN MILLIGRAMS PER LITER

500,000
O
O
400,000 -
300,000
200,000
O
O
100,000 —
y = 1.3794E6x — 1.3778E6
_ R2-0.96
oo
0_
T T T T T .
1.0 1.1 12 13

GROUNDWATER DENSITY, IN KILOGRAMS PER CUBIC METER

Figure 18. Groundwater density and total dissolved-solids concentrations for data from Gupta (1993).
The equation of the best fit line was used to determine the concentration of total dissolved solids for the
data where only groundwater density was reported.
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Table 4. Hydrogeologic units, model layers, data sources, and maximum total dissolved-solids concentration for the

initial salinity concentrations.

[Data presented in this report are referred to as salinity data and are reported in terms of total dissolved solids (TDS)]

Maximum total
dissolved-solids

Hydrogeologic unit Model layer Sources of data concentration
(milligrams per liter)
1 Data available 6,549
Quaternary 2 Assigned from model layer 1 2,861
3 Assigned from model layer 1 1,067
Jurassic 4 Interpolated from model layers 1 and 5 2,049
Upper Pennsylvanian 5 Data available 5,034
Lower Pennsylvanian 6 Assigned from model layer 5 5,034
Michigan 7 Interpolated from model layers 5 and 8 66,658
Marshall 8 Data available 131,950
Devonian—Mississippian 9 Interpolated from model layers 8 and 11 249,075
10 Interpolated from model layers 8 and 11 249,075
Silurian—Devonian 11 Data available 401,799
12 Assigned from model layer 11 401,799
Maquoketa 13 Interpolated from model layers 11 and 14 379,760
Sinnipee 14 Data available 402,589
St. Peter 15 Interpolated from model layers 14 and 16 407,106
Prairie du Chien—Franconia 16 Data available 413,623
Ironton—Galesville 17 Assigned from model layer 16 413,623
Eau Claire 18 Interpolated from model layers 17 and 19 399,180
19 Data available 386,410
Mount Simon

20 Data available 386,410

Summary

The U.S. Geological Survey is assessing the availabil-
ity and use of our Nation’s water resources to gain a clearer
understanding of the status those resources. A hydrogeologic
framework and distribution of total dissolved-solids concen-
trations were developed for input into a groundwater-flow
model of the Lake Michigan Basin and surrounding area. The
geology of the study area was divided into 15 hydrogeologic
units that describe the glacial and bedrock geology of the
study area. Five of the 15 hydrogeologic units simulate aquifer
materials, 4 of the 15 units simulate confining unit materials,
and 6 of the 15 units describe units that have properties of
aquifers and confining units. These hydrogeologic units were

subdivided into 20 layers to be used within the Lake Michigan
Basin groundwater-flow model. The Jurassic, Lower Penn-
sylvanian, Marshall and Ironton-Galesville hydrogeologic
units have thicknesses less than 550 ft. The Silurian-Devonian
hydrogeologic unit has thicknesses less than about 7,550 ft.

A related background investigation identified different
data sources that could be used to characterize the groundwa-
ter resources of the study area. Existing models, well log data-
bases, and geologic maps provided data to define the extent
and depth of each hydrogeologic unit within the study area.
Well log databases were assigned to multiple hydrogeologic
units based on the lithologic log associated with each well.
Data for each hydrogeologic unit were grouped and converted
into a GIS based database. The hydrologic frameworks for



existing models were converted to nodal data points, assigned
to a hydrogeologic unit, and converted into a GIS database.
Isopach and structural contour maps were digitized, and eleva-
tion surfaces for each hydrogeologic unit were generated by
use of a GIS. The interpolated surfaces of each hydrogeologic
unit were then converted into point GIS databases. These data
were merged, interpolated by use of a GIS, and then converted
to ASCII format text files that could be imported into the
groundwater-flow model.

Data were also compiled to define an initial distribution
of total dissolved-solids concentrations that would be used
to simulate the effects of density-driven flow of groundwater
within the study area. Data presented in this report are referred
to as “salinity data” and are reported in terms of total dis-
solved solids. When datasets were reported only in terms of
density, total dissolved solids concentrations were derived by
use of a linear regression developed from datasets that report
both total dissolved solids concentration and density. Individ-
ual data points and contours of total dissolved-solids concen-
tration and density for hydrologic units were combined and
interpolated by use of a kriging interpolator for model layers
with available data. Those layers without data were assigned
values based on available data from layers above and below.
The interpolated distributions for each model layer were then
converted to ASCII format text files that could be imported
into the groundwater-flow model. Model layers in the Quater-
nary, Jurassic, Upper Pennsylvanian, Lower Pennsylvanian,
and Michigan hydrogeologic units have total dissolved-solids
concentrations less than 100,000 mg/L. Model layers in the
Silurian-Devonian, Sinnipee, St. Peter, Prairie du Chien-Fran-
conia, and Ironton-Galesville hydrogeologic units have total
dissolved-solids concentrations greater than 400,000 mg/L.
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