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Abstract 
 

Fracture toughness of a total of 13 advanced monolithic ceramics including silicon 
nitrides, silicon carbide, aluminas, and glass ceramic was determined at ambient 
temperature by using both single edge precracked beam (SEPB) and single edge v-notched 
beam (SEVNB) methods. Relatively good agreement in fracture toughness between the 
two methods was observed for advanced ceramics with flat R-curves; whereas, poor 
agreement in fracture toughness was seen for materials with rising R-curves. The 
discrepancy in fracture toughness between the two methods was due to stable crack growth 
with crack closure forces acting in the wake region of cracks even in SEVNB test 
specimens. The effect of discrepancy in fracture toughness was analyzed in terms of 
microstructural feature (grain size and shape), toughening exponent in R-curve, and stable 
crack growth determined using back-face strain gaging. 

 
 

1. Introduction 
 

There are several methods to determine fracture toughness of brittle materials such as 
glasses, glass ceramics, and advanced monolithic ceramics. These includes indentation 
techniques such as indentation fracture (IF) (ref. 1), indentation strength (IS) (ref. 2), 
surface crack in flexure (SCF) (ref. 3), chevron notch technique (ref. 3), single edge 
precracked beam (SEPB) technique (ref. 3), and single edge v-notched beam (SEVNB) 
technique (ref. 4). Both indentation fracture (IF) and indentation strength (IS) methods are 
based on the empirical calibration constants to determine fracture toughness; hence, they 
are less rigorous theoretically from a fracture-mechanics perspective than the other 
methods.  

The SEVNB technique (ref. 4) has been introduced recently, in which a final sharp v-
notch with its radius ranging from 10 to 20 μm was introduced by polishing a pre-notched 
section with razor blade in conjunction with diamond paste. This technique has shown to 
be in good agreement with other techniques. A previous round robin on fracture toughness 
(ref. 4) was dedicated to use the SEVNB method to determine fracture toughness of five  
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Figure 1.—A typical example of a sharp v-notch 
produced in a SEVNB silicon nitride test 
specimen. 

 
different ceramic materials. It was shown that certain ceramics exhibited significant 
difference in fracture toughness between the SEVNB and SEPB methods: the SEVNB  
estimated lower fracture toughness than the SEPB. The plausible reason for this 
discrepancy was presumed to be attributed to R-curve behavior of the materials. 

This study, as motivated from the previous round robin, determined fracture toughness 
of a total of 13 advanced ceramics using both SEVNB and SEPB methods. The difference 
in fracture toughness between the two methods was carefully analyzed based on R-curve 
estimations and back-face strain measurements. The effect of major microstructural feature 
- grain size and its shape - was also taken into account. 
 
 

2. Experimental Techniques 
 

Flexure test specimens typically measuring b = 3.0 mm, W = 4.0mm, and L (length) = 
25 or 50 mm, were used in fracture toughness testing at room temperature in air. In the 
SEVNB method, a razor blade with diamond paste with grain size of 1 μm was used to 
generate a final sharp notch with a root radius ranging from 10 to 20 μm by tapering a saw 
notch (ref. 4). The final notch depth thus produced ranged from 1.0 to 2.0 mm. A typical 
example of a SEVNB test specimen thus v-notched is presented in figure 1. In the SEPB 
method (ref. 3), a starting indent crack was placed at the center of the 3.0 mm side of each 
test specimen. The indented test specimen was then placed onto a specially designed 
precracking fixture and then loaded via a test frame until the indent crack popped-in to 
form a sharp through-the-thickness precrack (refs. 3 and 5). The precrack size was 
typically around 2 mm. 
 
 

300μm
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A four-point flexure fixture with 20 (or 10) mm-inner and 40 (or 20) mm-outer spans 
was used to determine fracture load. A test rate of 0.5 mm/min was used via an 
electromechanical test frame (Model 8562, Instron) with a load cell with a capacity of 
1000 N. Crack sizes were optically determined from fracture surfaces of tested specimens. 
Typically, five test specimens were used for each material in each test method. Fracture 
toughness was calculated based on the formula by Srawley and Gross (ref. 6). Load versus 
back-face strain curves were also determined for some ceramics to better understand stable 
crack propagation. R-curve of each material was estimated using an indentation technique 
(ref. 7). A total of 13 advanced ceramics and glass ceramic were used: seven silicon 
nitrides (NC132, AS800 (’94), SN282, N3208, AS800 (’99), NCX34, and NKK), one 
silicon carbide (α-SiC; Hexoloy), four aluminas (AD998 (Coors), AD998 (VAMAS) 
(ref. 4), AD999 (VAMAS) (ref. 4), and 96% alumina), and one glass ceramic (Pyroceram 
9606). Many properties of these materials including strength and slow crack growth at 
elevated temperatures have been evaluated previously by the authors and others 
(refs. 8 and 13). Some properties such as density, elastic 1modulus and flexure strength at 
ambient temperature, together with fracture toughness values by SEPB and SEVNB 
methods determined in this work, are summarized in table 1.  
 

TABLE 1.—PROPERTIES AND FRACTURE TOUGHNESS OF 
CERAMIC MATERIAL USED IN THIS WORK 

Fracture toughness, 
KIc (MPa m1/2) 

 
Materiala 

Density 
(g/cm3) 

Elastic 
modulus, 
E (GPa) 

Flexure 
strengthc 
(MPa) By SEPB By SEVNB 

NC132 Si3N4 (ref. 8) 
α-SiC (Hexoloy) (ref. 8) 
AS800 Si3N4 (’94) (ref. 8) 
SN282 Si3N4 (refs. 9 and 10) 
AD998 Al2O3 (ref. 8) 
 
N3208 Si3N4

b (ref. 4) 
Glass ceramic (Pyroceram) (ref. 11) 
AD998 Al2O3 (VAMAS)b (ref. 4) 
AS800 Si3N4 (’99) (ref. 9 and 10) 
NCX34 Si3N4 (ref. 8) 
 
NKK Si3N4 (ref. 12) 
96% Al2O3 (ref. 8) 
AD999 Al2O3 (VAMAS)b (ref. 4) 

3.20 
3.13 
3.27 
3.32 
3.85 

 
3.19 
2.59 
3.86 
3.27 
3.37 

 
3.26 
3.67 
3.97 

315 
415 
308 
304 
372 

 
297 
122 
386 
309 
296 

 
307 
309 
386 

1018(35) 
335(35) 
778(39) 
595(64) 
303(7) 

 
951(74) 
303(7) 

342 
775(45) 
805(50) 

 
774(38) 
344(15) 

350 

4.6(0.4) 
2.4(0.1) 
7.2(0.2) 
5.5(0.2) 
4.6(0.4) 

 
5.3(0.1) 
2.3(0.1) 
4.4(0.1) 
8.1(0.3) 
6.9(0.6) 

 
10.2(0.7) 
3.4(0.1) 
3.5(0.2) 

4.3(0.1) 
2.5(0.1) 
6.5(0.3) 
4.5(0.2) 
3.4(0.1) 

 
5.2(0.3) 
2.4(0.1) 
3.6(0.1) 
6.7(0.1) 
4.3(0.2) 

 
7.4 

3.1(0.1) 
3.6(0.2) 

a NC132, Norton Advanced Ceramics, Northboro, MA; α-SiC (Hexoloy), Saint-Gobain Advanced Ceramics, 
Niagara Falls, NY; AS800; Honeywell, Torrance, CA; SN282, Kyocera, Vancouver, WA; AD998, Coors, 
Golden, CO; N3208, Bayer-CFI, Germany; Pyroceram 9606, Corning, Corning, NY; AD998 (VAMAS) and 
AD999 (VAMAS), Metoxit, Switzerland; NCX34, Norton, Worcester, MA; NKK, NKK Corp., Japan; 96% 
Al2O3, General Electrical Ceramics, Laurens, SC. 

b Materials and their strength and density data from the VAMAS report (ref. 4).  
c Strength determined at ambient temperature in four-point flexure typically with 20 to 40 mm spans. The 

numbers in parentheses indicate ±1.0 standard deviation. 
 
 
 



NASA/TM—2006-214090 4

3. Results and Discussion 
 

Typical fracture surfaces of both SEPB and SEVNB silicon nitride specimens are 
shown in figure 2. Precracked or notched region is evident for each specimen. Note that the 
precrack front of the SEPB specimen is curved, which represents a unique feature of a pop-
in event from a micro-indentation crack to form a precrack. A summary of fracture 
toughness of a total of 13 advanced ceramics used in this work by both SEVNB and SEPB 
methods is presented in figure 3 and table 1 as well. The figure compares the values of 
fracture toughness for each test material. As can be seen, agreement in fracture toughness 
between the two methods was good at lower fracture toughness, but poor at higher fracture 
toughness with a deviation becoming significant. This deviation can be seen more readily 
in terms of microstructural features -grain size and its shape- of test materials. Figure 4 
depicts KIc ratio [=(KIc by SEVNB)/(KIc by SEPB)] with respect to a range of grain size. 
Fine grained ceramics and glass ceramic, such as α-SiC, AD999 alumina, NC132 and 
N3208 silicon nitrides, and Pyroceram, exhibited little difference in fracture toughness 
with KIc ratio close to unity. By contrast, coarse grained and elongated grained ceramics 
exhibited consistently lower KIc ratio ranging from 0.6 to 0.9 with an average of about 0.8. 
This indicates clearly that the two methods are in good agreement for fine-grained 
materials but in poor agreement with coarse or elongated grained materials.  

It has been known that increase in fracture toughness for coarse or elongated grain-
structured ceramics was due to mechanisms such as grain pullouts, grain bridging, and/or 
crack deflection, thereby generating crack closure stresses in the wake region of a crack. It 
has been also observed by the authors for a long time that these coarse and elongated 
grained ceramics revealed rising R-curve behavior with its degree depending on material.  

 
 

    
                                            (a)                                                (b) 
 

Figure 2.—Typical fracture surfaces of silicon nitride specimens showing a precracked 
region by SEPB method (a) and a notched region by SEVNB method (b). 

 

Notched
regionPrecracked

region

1 mm
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Figure 3.—Fracture toughness determined by SEVNB and 
SEPB methods for various ceramics.  
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Figure 4.—KIc ratio (=SEVNB/SEPB) with respect to range 
of grain sizes for various ceramics. 
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Figure 5.—A typical example of indent crack propagation in 

coarse grained NKK silicon nitride. A tortuous crack path 
with interactions such as grain bridging and pullout is noted. 
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Figure 6.—Crack growth resistance curves of some brittle 

materials, determined by indent techniques. 
 

A typical example showing a microstructural feature of a coarse and elongated grained 
NKK silicon nitride associated with tortuous indent crack propagation is shown in figure 5 
(ref. 12). Based on the authors’ experience, this material exhibited the highest value of 
fracture toughness (KIc = 10.2±0.7 MPam1/2) of monolithic ceramic materials and a rising 
R-curve as well (ref. 12). Typical examples of R-curves of some materials evaluated by the 
indentation technique (ref. 7), are shown in figure 6. Note that fine-grained NC132 silicon 

Indent

a 
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nitride (grain size <1 μm) and soda-lime glass showed flat R-curve behavior; whereas, 
coarse-grained AD998 alumina (grain size >10 μm) and elongated grained NKK and 
AS800 silicon nitrides (elongated grain size >20 μm) exhibited significant rising R-curves. 
The degree and size of grain elongation were greater in NKK than in AS800. The R-curve 
in figure 6 was formulated using the following expression (ref. 7) 
 
 m

R akK ][=  (1) 
 
where KR is crack growth resistance, a is crack size (crack extension), k is a parameter, and 
m is toughening exponent. With the estimated m parameter for each test material, KIc ratio 
was plotted as a function of m, as shown in figure 7. A clear trend can be seen from the 
figure such that KIc ratio remained close to unity for lower m values (m<0.02) but decreased  
 
appreciably (or dropped) at higher m values (m = 0.1 to 0.14), giving rise to a following 
approximation 
 
 KIc/SEVNB /KIc/SEPB ≈ –1.9 m + 1 (2) 
 
This, although not based on theoretical consideration, implies that the toughening exponent 
m could be an important parameter to quantify the degree of discrepancy in fracture 
toughness between the SEVNB and SEPB methods.  
 
 
 

Toughening exponent, m

0.00 0.05 0.10 0.15 0.20

K
Ic
 ra

tio
 (=

K
Ic

/V
N

B
/K

Ic
/P

B
)

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

NCX34

AD998

96%ALUAS800('94)

NKK

SN282

α-SiC
PYRO.

N3208

AD998(V)

NC132
AS800('99)

 
 

Figure 7.—KIc ratio as a function of toughening exponent (m) 
for various ceramics. 
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Figure 8.—Typical examples of applied load-versus-strain 
curves, determined by back-face strain gaging. 

 
Typical load versus back-face strain curves of SEVNB test specimens of several 

ceramics are shown in figure 8 (Note that back-face strain was in compression but was 
expressed in tension for simplicity). Both fine-grained ceramics such as N3208 silicon 
nitride and AD998 alumina showed linearity in their load-versus-strain curves. However, 
the coarse-grained AD998 alumina and the elongated-grained AS800 silicon nitride 
exhibited nonlinearity at the region close to the final fracture, resulting in stable crack 
growth prior to instability. This stable crack growth was determined analytically in 
conjunction with the results of figure 8. The analytical solution was expressed as follows: 
 
 ),,,,(][1 2/1 EWbLLf

d
dP

ioε
−=α  (3) 

 
where α = a/W with a and W being crack size and specimen depth, P is applied load, ε is 
backside strain, and the function f depends on fixture spans, and width and elastic modulus 
of test specimen. 

The crack growth resistance KR, corresponding to crack size (α) and applied load in the 
stable crack-growth region, was determined using equation (3) and the results are shown in 
figure 9. For N3208 and AD999 materials, no or negligible stable crack growth occurred. 
By contrast, AS800 material exhibited a significant stable crack growth, resulting in a 
considerable increase in fracture toughness by about 35 percent. Also, AD998 material 
resulted in fracture-toughness increase by about 25 percent. It is interesting to note from 
the figure that fracture toughness started from the values determined by the SEVNB 
method and ended up with the values determined by the SEPB method. This indicates that 
the discrepancy in fracture toughness between the two methods, particularly for coarse and  
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Figure 9.—Crack growth resistance curves determined by 
back-face strain gaging based on the results in figure 6.  

 
 
elongated grained ceramics, is due to the fact that the calculation of KIc in SEVNB 
specimens did not consider the stable crack growth in their final crack sizes, which is 
hardly discernable from fracture surfaces in many cases. Although this extension by sable 
crack growth is small in the order of a few hundred micrometers and the measurement 
imposes a great difficulty, the effect on fracture toughness is still significant. Stable crack 
growth occurring via grain bridging and pullouts together with crack closure stresses acting 
in the wake region is the most plausible, physical explanation for the discrepancy in 
fracture toughness between the two methods.  
 
 

4. Conclusions 
 

The discrepancy in fracture toughness between the SEVNB and SEPB methods was 
attributed to R-curve behavior of ceramic materials, in which stable crack growth through 
grain pullouts and/or bridging takes place, imposing crack closure forces in the wake 
region of a propagating crack even for SEVNB specimens. The discrepancy increased for 
materials with stronger rising R-curve and was quantified with a toughening exponent (m). 
It is recommended that both SEVNB and SEPB methods be used together to evaluate 
fracture toughness of any materials unknown in microstructural features and/or R-curve 
behavior. Any appropriate method to monitor stable crack growth in SEVNB specimens is 
also recommended. 

 
 

a 
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Fracture toughness of a total of 13 advanced monolithic ceramics including silicon nitrides, silicon carbide, aluminas,
and glass ceramic was determined at ambient temperature by using both single edge precracked beam (SEPB) and
single edge v-notched beam (SEVNB) methods. Relatively good agreement in fracture toughness between the two
methods was observed for advanced ceramics with flat R-curves; whereas, poor agreement in fracture toughness was
seen for materials with rising R-curves. The discrepancy in fracture toughness between the two methods was due to
stable crack growth with crack closure forces acting in the wake region of cracks even in SEVNB test specimens. The
effect of discrepancy in fracture toughness was analyzed in terms of microstructural feature (grain size and shape),
toughening exponent in R-curve, and stable crack growth determined using back-face strain gaging.






