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1. Background

Since polymeric materials are dense ensembles of large molecules formed by linking

together many repeat units though covalent bonds, the interaction between the polymer

chains leads to chain entanglements. To describe the entangled state, several tube models

have been developed to quantify the dynamics arising due to the entanglements. These

models predict linear viscoelasticity for linear entangled polymers with very good

agreement with experimental data. The shortcoming of these tube models is that they are

restricted to linear systems and cannot be generalized for bidisperse polymers, branched

systems, or cross-linked networks without fundamental modifications. In addition, most

existing tube models lack agreement with small-amplitude oscillatory shear flow

experiments of bidisperse linear melts. To overcome this shortcoming, a newer discrete

slip-link model (DSM) has been developed.

The slip-link concept was first introduced by Doi and Edwards in 1978 (3) and was further

developed by Schieber into the DSM (9, 5, 10, 7). The DSM is a general approach, which

allows for the prediction of both the linear rheological behavior as well as the nonlinear

flow of entangled polymers without additional parameters. The model chain also exhibits

primitive-path-length fluctuations and chain stretching, which allows it to be applied to

nonlinear deformations. In the current version of the DSM used in this report, constant

chain friction and constraint release are also considered to model the creation and

destruction of entanglements. Unlike former slip-link models, this method is capable of

modeling both polymer melts and solutions, and could be generalized for bidisperse,

branched, and cross-linked polymers as well as for biological semi-flexible polymers

(f-actins or intermediate filaments).

The DSM is a mean-field simulation approach, capable of describing a system composed of

entangled polymers of arbitrary architecture including branched or cross-linked systems.

To run a DSM simulation, three input parameters are required: the number of Kuhn

segments, Nk, and two fitting parameters, β and τk. The number of Kuhn segments is fully

determined from the molecular weight of the chain, while the fitting parameter, τk, is

related to the average time for a Kuhn step to jump through a given entanglement. The

parameter, β, is derived from the entanglement spacing on a chain. These parameters are

described in greater detail in section 2.1.

In the slip-link model, the chains are described as a random walk, which are valid for

polymeric chains with contour length and entanglement spacing longer then several Kuhn

steps (figure 1). Each chain has a constant number of Kuhn segments, where each Kuhn

segment has a constant length, ak. Since a random walk of Ni Kuhn steps between two

entanglements with a connector vector, Q, has a Gaussian conditional distribution, the free
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energy of an entangled ith strand of a chain is given by

Fs(Qi, Ni)

kBT
=

3Q2
i

2Nia2
k

+
3

2
ln

[

2πNia
2
k

3

]

, (1)

where kB is the Boltzmann constant and T is the temperature. The free energy of a chain

composed of Z strands is a sum of the free energies associated with the entangled strands:

F (Ω) =

Z−1
∑

i=2

Fs(Qi, Ni), (2)

where Ω is the chain conformation. The free energy of the dangling ends (i = 1 and i = Z)

is a constant, which can be set to zero since it only contributes as a constant shift in the

total free energy. Although the total number of Kuhn steps (Nk) in a chain is constant, the

number of Kuhn step in a strand, Ni, fluctuates between neighboring strands through

Brownian forces and free energy differences. In DSM, the number of Kuhn steps shifted

from one strand to another is an integer number where only one Kuhn step can be shuffled

at a time through entanglement i. The entanglements can be destroyed or created by

sliding dynamics (SD) at the end of the chains or by constrain release (constraint dynamics

[CD]) in the middle of the chain. The entanglement is destroyed by SD when a dangling

end is abandoned by the last Kuhn step, while the creation process is fully determined

from detailed balance. When one entanglement is destroyed by CD, another is destroyed

by SD automatically. The equilibrium distribution of such a chain is given by the modified

Maxwell-Boltzmann relation

peq(Ω) =
δ(NK ,

∑Z

i=1
Ni)

J
exp

[

−
F (Ω)

kBT

]

exp

[

µE(Z − 1)

kBT

] Z−1
∏

i=1

pCD(τCD
i ), (3)

where pCD(τCD
i ) is the probability density for the ith entanglement with a characteristic

CD lifetime, τCD. The Kronecker delta function δ(i, j) = δi,j is responsible for the

conservation of Kuhn steps in a chain and J is a normalization constant. The entanglement

chemical potential of the surrounding chains, µE , is responsible for fluctuations in the

number of entanglements on the chain.

Using the DSM, the relaxation modulus, G(t), can be predicted using the Green-Kubo

expression:

G(t) =
1

nkBT
< τ (0)τ (t) >eq, (4)

where the stress tensor τ (t) is defined as

τ (t) = −n

〈

Z−1
∑

j=2

Qj

[

∂F [Ω]

∂Qj

]

〉

eq

, (5)

where n is the number density of polymer chains and <>eq is an ensemble average.
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Figure 1. The schematic of the polymer for modeling linear polymers using DSM. A
polymer (shown in navy) in a mean field is first discretized using the discrete
Gaussian chain model (shown in cyan). The number and location of entangle-
ments (shown in red) are then determined by equation 3. The number of Kuhn
steps in strand i, Ni, is then determined by connecting two entanglements, i
and i + 1, with the orientation vector Qi (shown in green).

Since experimental data related to the relaxation modulus are typically presented in the

frequency domain (G∗ := iω[F ][G(t)]), it is necessary to transform the data into the

frequency domain. This is done by fitting the simulated relaxation modulus with a

continuous curve, which then transformed into the frequency domain using the analytical

Fourier transform. Thus the complex relaxation modulus G∗ is obtained by multiplying the

Fourier transform of G(t) with iω.

From the relaxation modulus, the storage G′(ω) and loss G′′(ω) modulus can be calculated.

This is performed by calculating the continuous spectrum of the relaxation times, h(τ ),

introduced in the following expression for the relaxation modulus

G(t) = G0

N

∫

∞

0

dτ
h(τ )

τ
exp

(

t

τ

)

, (6)

where it can be decomposed with the power-law spectrum proposed by Baumgaertel,
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Schausberger, and Winter

h(τ ) =

∑m

i=1
ταiH(τi−1 − τ )H(τ − τi)

∏i−1

j=1
τ

αj−αj+1

j

∑

i=1
m

τ
αi
i

−τ
αi
i−1

αi

∏i−1

j=1
τ

αj−αj+1

j

. (7)

In equations 6 and 7, G0
N is the plateau modulus, m, is the number of modes; τi are time

constants; and αi are power-law exponentials.

These coefficients can then be used to calculate the storage and loss modulus

G′(ω) = G0

Nω2

m
∑

i=1

∏i−1

j=0
τ

αj−αj+1

j

αi + 2

[

2F1

(

1,
αi + 2

2
;
αi + 4

2
;−ω2τ 2

i

)

ταi+2

i (8)

−2F1

(

1,
αi + 2

2
;
αi + 4

2
;−ω2τ 2

i−1

)

ταi+2

i−1

]

/
m

∑

i=1

∏i−1

j=0
τ

αj−αj+1

j (ταi

i − ταi

i−1
)

αi

,

and

G′′(ω) = G0

Nω
m

∑

i=1

∏i−1

j=0
τ

αj−αj+1

j

αi + 2

[

2F1

(

1,
αi + 1

2
;
αi + 3

2
;−ω2τ 2

i

)

ταi+1

i (9)

−2F1

(

1,
αi + 1

2
;
αi + 3

2
;−ω2τ 2

i−1

)

ταi+1

i−1

]

/
m

∑

i=1

∏i−1

j=0
τ

αj−αj+1

j (ταi

i − ταi

i−1
)

αi

,

respectively, where 2F1(a, b; c; d) represents the hypergeometric function.

2. Overview

A FORTRAN90 DSM program for linear monodisperse entangled polymer melts was

provided by Professor Schieber from the Illinois Institute of Technology. Using this

program, the simulated relaxation spectrum can be calculated. This data are then

exported into Mathematica where the data can be fitted into a continuous curve. From this

curve, the shear and loss modulus can be subsequently calculated.

To run this program, two parameters are necessary: the number of Kuhn steps, Nk, and

the model parameter, β. The model parameter, τk, is not needed until the calculation of

the storage and loss modulus. The code is provided on both the mjm and harold

supercomputers run by the U.S. Army Research Laboratory at the DoD Supercomputing

Resource Center.
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2.1 Choice of Parameters

2.1.1 The Number of Kuhn Steps, Nk

The input parameter, Nk, is fully determined from the molecular weight of the chain

Nk = Mw/Mk, (10)

where Mw and Mk are molecular weight of polymer and Kuhn steps, respectively. Mw and

Mk can be found from experiment and/or literature.

2.1.2 Model Parameter, β

The model parameter, β, is defined from

β = exp

[

−µE

kBT

]

, (11)

where β depends on the polymer chemistry and solvent concentration. It is assumed to be

independent of temperature, which is valid assumption as long as the chain flexibility does

not change significantly. For long polymer (Nk → ∞), β is estimated from the plateau

modulus of the polymer, G0
N :

β =
ρRT

MkG
0
N

− 1, (12)

where ρ is the polymer density and R is the ideal gas constant. If the molecular weight of

entanglement, Me, is available instead of G0
N , β is evaluated from

β =
5

4

Me

Mk

− 1. (13)

This equation is a result of the following relationship:

Me =
4

5

ρRT

G0
N

. (14)

The DSM does not describe the glassy regime in polymer dynamics and, therefore, the

experimental value of G0
N (apparent plateau modulus) is lower than theoretical plateau

modulus used for calculation of β. Thus, the initial value of β could be taken from

equations 12 or 13 and its value could be later adjusted to the height of relaxation modulus

(G0
N = G(0)) when calculating the loss and storage modulus, or the initial value of β could

be taken to be smaller then the calculated value. For polymer solutions, Msolution
e could

be estimated from the experimental data collected for melts as

Msolution
e =

Mmelt
e

φα
, (15)
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where α depends on the solvent and is usually taken as α ≈ 1.3 and φ is the volume

fraction of the polymer. If Me and α are not known (no experimental data are available),

they can be evaluated from atomistic simulation.

2.1.3 Model Parameter: τk

The parameter, τk, is a time constant related to the friction coefficient of a single step in

the chain, which only depends on the chemistry and temperature of the polymer and

solvent concentration (if present). The time dependence of the model prediction is also

normalized by the time constant, τk, where its value can be determined from fitting

simulation results to a single experimental data set (linear viscoelastic experiment). The

adjustment of the time constant does not influence the shape of the relaxation modulus,

but shifts it in the frequency domain.

2.2 Running the DSM Code

Three files are needed to run the DSM code: (1) the input file called input.dat, (2) the

executable named slm run, and (3) the job submitting script.

2.2.1 Location of DSM Code

The DSM code can be obtained off the mjm machine at /usr/people/yrs/General and the

harold machine at /usr/people/tchantaw/SL code.

2.2.2 Modifying the Input File: input.dat

The input.dat file takes the following form:

5.d0 !β (double)
55 !Nk: number of Kuhn steps (int)
1 !Number of chains (int)
0.d0 0.d0 0.d0 0.d0 0.d0 0.d0 !deformation tensor (xx,xy,xz,yy,yz,zz) (double)
0 !CD off(0)/on monodisperse(1)/on from file(2) (int)
0 !SD off(0)/on (int)
1 !G(t) estimation on/off (int)
0 !fd(t) and destruction rate estimation on/off (int)
0 !Diffusion on/off (int)
1.d0 !time step (double)
100000000.d0 !T - simulation time
500000.d0 !saving interval period

6



The first two lines are the input parameters, β and Nk, mentioned in section 2.1. The third

parameter is the number of chains in the ensemble, which is fixed to 1 since this is a

single-chain mean-field theory. The deformation tensor is the transpose of the imposed

velocity gradient, which is set equal to 0 for the calculation of the relaxation modulus. The

fifth to ninth parameters are switches, where the value is set to 0 for on and 1 for off. For β

values in the range 2 < β < 50 and 3 < Nk/β < 80, CD can be used to model constraint

release where entanglements are created with a predetermined probability density. This

probability density creates short-lived entanglements more often then long-lived ones since

they are destroyed more often. If β and/or Nk/β fall out of this range, the fd(t) and

destruction rate estimation should instead be turned on. SD indicates sliding dynamics,

and G(t) is turned on if the relaxation modulus is desired. The ninth parameter indicates if

the diffusion coefficent should be calculated. The time step used in the code fluctuates

within a simulation run, where the inputted value is used to determine how often the

simulation results are written to a file. The simulation time is the total time that the

simulation will run, and the saving interval period indicates the number of time steps

between which each simulation state is saved.

The simulation time should be long enough to make the results reproducible. This means

that the results of the longer simulation should be the same as the results obtained from a

shorter simulation up to a small error. This error is not specified by Schieber’s group.

Note, that model works only for

2 <
4

5

Me

Mk

− 1 < 50. (16)

2.2.3 Compiling the Code

The subrountines and functions related to the DSM program are shown in table 1. This list

is taken from the readme file provided with the DSM code. Since this report is a brief

guide, not all of these variables and their functions in the DSM code are defined, but more

information regarding the variables can be found in reference 6.

After inputting the proper values into input.dat, compile the code using a provided script

by running ./slm mjm. This produces an executable called slm run.

Although this code has only been tested using the Intel compiler, other FORTRAN90

compilers can be used. If a different FORTRAN90 compiler is desired, modify the script

titled “slm” by replacing the word “fortran” with the name of the new compiler. Then to

compile the code, just run the command ./slm.

On mjm and harold, the FORTRAN code should be compiled using the Intel compiler

options, -i8 and -O1. The option -i8 specifies the size for integer and logical variables to 64,

while the -O1 option is an optimization for speed. This code does not generate proper

7



Table 1. Programs in DSM program.

conformations.f90 module; carries all the global variables for SLM code
conv func.f90 function; gives a front-end position number
BD step.f90 subroutine; changes conformation for SD per time step
BD W calc.f90 function; calculates WSDi for Kuhn step shift to the left or right
bico2.f90 function; calculates binomial coefficient from Numerical Recipes
bico.f90 function; calculates ratio of two binomial coefficients
bnldev.f90 function; used for bico2.f90 from Numerical Recipes
main.f90 main file; reads files: input.dat and CD spectr.dat; saves simulation variables

in cha ].dat; copies some files to resolve access issue; generates file names
CR step.f90 subroutine; changes conformation for CD per time step
dbd dcr plot.f90 subroutine; plots SD destruction and CD destruction
Diff copy.f90 subroutine; copies Diff ].dat to Diff2 ].dat
Diff plot.f90 subroutine; plots diffusion
dtfunc.f90 finds timestep dt=1/sum(W(dt)) using root finding routine
ent copy.f90 subroutine; copies ent ].dat to ent2 ].dat
erf.f90 function; calculates errorfunction
fileinit.f90 subroutine; reads saved simulation variables to continue from the save point
F plot.f90 subroutine; plots free energy
gammln.f90 function used for bico2.f90 from Numerical Recipes
gasdev.f90 function; calculates Gaussian distribution
get r cm.f90 function; calculates center of mass position of the chain
initiation.f90 subroutine; creates initial ensemble of chains
Lcount.f90 function; calculates primitive-path of the chain
life time set.f90 function; calculates characteristic life time, τ i

CD
, for entanglement

L plot.f90 subroutine; plots primitive-path distribution
N dist.f90 subroutine; generates N i for initial ensemble
N plot.f90 subroutine; plots N distribution
plot.f90 subroutine; triggers which plot to make
Q dist.f90 subroutine; generates Q i for initial ensemble
Q plot.f90 subroutine; plots Q distribution
ranils.f subroutine; starts initial sequence for random number generator
ranuls.f function; random number generator from 0 (not included) to 1 (not included)
root.f90 function; finds root
sort.f90 subroutine; sorts list of numbers
taucopy.f90 subroutine; copies tau ].dat to tau2 ].dat
tauwrite.f90 subroutine; writes stress tensors in tau ].dat
tstep.f90 subroutine; makes one τk step for all chains
visc plot.f90 subroutine; plots elongational viscosity
visc shear plot.f90 subroutine; plots transient shear viscosity
w bd.f90 subroutine; calculates all W i

SD
for one chain

w cr.f90 subroutine; calculates all W i
CD

for one chain
z dist.f90 subroutine; generates Z for initial ensemble
z plot.f90 subroutine; plots Z distribution
Gcalc.f90 subroutine; calculates autocorrelation function G(t) using PCS matrix
Load.f90 subroutine; gives stress values to the PCS matrix
PCS.f90 subroutine; loads stress values in the PCS matrix
ReadCalc.f90 subroutine; reads PCS matrix when continue from save point
data.f90 module; carries global variables for PCS method code

8



results with the standard Intel compiler -O2 option, which is a different flag that can be

used to optimize the program for speed.

2.2.4 To Run the Code

To run the program, copy input.dat, slm run to your work directory and submit the script.

The executable line is ./slm run ], where the symbol, ], is an integer value that acts as a

seed for a random number generator. For example, ./slm run 1.

One simulation run corresponds to modeling one chain, with a large number of possible

conformations. If the run is long enough, it is sufficient to describe a system composed of

linear polymers. In order to achieve better statistics, it is desirable to run several runs with

various seeds. Simulations should especially be performed from multiple random

conformations when modeling network polymers.

2.2.5 Analyzing the Results

After each run, an output file of the relaxation modulus called G ].dat is produced, where ]

is the same value that is use in ./slm run ] (for example, G 1.dat from slm run 1). If

several output were produced using various seed values, numerous files consisting of the

relaxation modulus are available and can be averaged to get a statistical average.

To average the relaxation modulus and create a Gnuplot (1) script file from the different

runs (via various seed values), there is a program called gplot avg.f90.

To compile this code, use the following command ifort gplot avg.f90 -o gplot avg,

where the results are averaged by running the executable (./gplot avg).

The averaged relaxation modulus data is saved into the file named G.dat, and the Gnuplot

script is called Gplot.plt. The G.dat file contains the dimensionless time, t/τk, and the

dimensionless relaxation modulus, G(t)/(nkBT ) or G(t)Mw/(ρRT ), where n is the number

of chains per volume, kB is the Boltzmann constant, T is the absolute temperature, Mw is

the molecular weight, ρ is the polymer mass density, and R is the ideal gas constant.

Loading the latter file in Gnuplot via the command, load Gplot.plt, plots the data in

G.dat.

2.2.6 Calculating the Storage and Loss Modulus from the Relaxation Modulus

A Mathematica (2) program is provided to calculate the storage and loss modulus from the

relaxation modulus obtained from the DSM program. This program is provided in the file

called mathematica.zip, which is located in the same directory as the DSM program. Each

9



step in the file is explained in this section, so please study the Mathematica file with this

guide.

To run the Mathematica program, it is necessary to export the relaxation modulus G(t)

produced from the DSM program. It is not necessary for the data to be evenly spaced in

time. For the program to locate the data file, one must change the work directory path

specified in the Mathematica file to the path where the data files are stored. After the

relaxation modulus is imported, the Mathematica program allows for any data points

associated with noise to be cut. From this simulation data, the plateau modulus G0
N is

taken to be G(0), which is the adjusted value briefly mentioned in section 2.1.2.

After this, the continuous spectrum of the relaxation times, h(τ ), and the continuous

relaxation modulus are calculated using equations 7 and 6, respectively. The continuous

relaxation modulus is then compared to our simulated relaxation modulus, where weighted

residules between the two relaxation modulus are calculated using a nonlinear least-squares

algorithm to obtain optimal parameters for the power-law exponentials and time constants,

αi and τi, respectively. In the Mathematica file, the continuous relaxation modulus is

calculated for one and two modes in the spectrum (m = 1 and m = 2). These two curves

are then plotted against the simulated G(t) to determine if the curve can adequately

reproduce the profile. If the curves generated using only one or two modes in the spectrum

do not reproduce the general shape of the simulated relaxation modulus, more modes

should be used. Also in the nonlinear least-squares algorithm, which is used to determine

the optimal parameters, αi and τi, test values within an arbitary user defined range are

specified. If the optimal parameters push the boundaries, the range for that variable should

be expanded.

Using these optimal parameters, the relaxation modulus in the frequency domain, G∗(ω), is

calculated using equations 8 and 9 for the storage G′(ω) and loss G′′(ω) modulus,

respectively, since G∗(ω) = G′(ω) + iG′′(ω). The plateau modulus, G0
N , appears in both

equations 8 and 9, and since the relaxation modulus data from the DSM model is in units

of nkT or ρRT/Mw , it is necessary to multiply the plateau modulus by this factor since it

was set equal to G0
N = G(0) at the beginning of the Mathematica program.

The Mathematica file then reads in the experimental data files for the storage and the loss

modulus located in the file path specified in the beginning of the program. The

experimental data and the calculated modulus are then plotted for comparison purposes.

The calculated storage and loss modulus are plotted and represented by a blue line, and

the experimental storage and loss modulus are represented by dots. Different colors are

used for different data sets. The experimental data and the simulated values of the moduli

should not overlap at this point. To overlay the data, the shift parameters still need to be

specified.
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The first shift parameter, τk, is fitted through a single viscoelastic experiment. This value

is used to shift the calculated modulus in the frequency domain so that it matches with the

experimental data, and the user should modify its value until the simulated and

experimental moduli overlap. Since the time dependence is normalized by τk, this

parameter accompanies the frequency, ω, in equations 8 and 9 such that ω = τkω.

Since values of G0
N vary by 20% between different research laboratories due to a very

strong dependence on the radius of the sample in oscillatory measurements, slight shifts in

the calculated modulus are also allowed. This shift is allowed by multiplying the calculated

G′(ω) and G′′(ω) by a shift parameter, b, which shifts the data in the modulus domain.

3. Example Case 1: Storage and Loss Modulus for Polystyrene

We used the discrete slip-link model to calculate the storage and loss modulus for two

linear polystyrene melts with molecular weights of 102 and 390 kg/mol, denoted as PS102

and PS390, respectively. Experimental data are provided by Nielsen et al. in reference 8.

The data and input files associated with this example can be found in the file

“mathematica.zip” along with the example Mathematica file described in section 2.2.6.

3.1 Experimental Data

To calculate the storage and loss modulus, numerous experimental parameters are

necessary including the molecular weight of the polymer and a Kuhn length, Mw and Mk,

respectively; polymer density, ρ; plateau modulus, G0
N ; and temperature, T . The data for

this system are presented in table 2. The polydispersity index, Mw/Mn, is also given as a

measure of the quality of the melt.

The two input parameters for the DSM model are the number of Kuhn segments, Nk, and

the model parameter, β, which can be calculated using equations 10 and 12, respectively.

The values for these two parameters are shown in table 3.

Table 2. Experimental data for polystyrene.

Name Mw (kg/mol) Mk (kg/mol) Mw/Mn ρ (g/cm3) T (K) G0

N
(kPa)

PS102 102 0.720 1.02 0.969 403.15 250
PS390 390 0.720 1.06 0.969 403.15 250

Reference (8) (4) (8) (4) (8) (8)
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Table 3. Parameters needed for DSM program.

Name Nk β

PS102 143 17
PS390 542 17

3.2 DSM Program

Now that the parameters for the DSM program have been calculated, they are inputted

into the input.dat file, where we consider both the constraint and sliding dynamics. For

example, for PS102, this gives us the following input.dat:

17.d0 !β (double)
143 !Nk: number of Kuhn steps (int)
1 !Number of chains (int)
0.d0 0.d0 0.d0 0.d0 0.d0 0.d0 !deformation tensor (xx,xy,xz,yy,yz,zz) (double)
1 !CD off(0)/on monodisperse(1)/on from file(2) (int)
1 !SD off(0)/on (int)
1 !G(t) estimation on/off (int)
0 !fd(t) and destruction rate estimation on/off (int)
0 !Diffusion on/off (int)
1.d0 !time step (double)
5000000.d0 !T - simulation time
500000.d0 !saving interval period

We then ran the DSM program for 10 initial conditions using seeds 1–10, which produced

10 files of data for the relaxation modulus, G(t). To average the results, we then used the

program gplot avg.f90, as described in section 2.2.5.

The averaged relaxation modulus data we obtained from these 10 seeds can be found in

table 4 for PS102 and PS390, respectively, where Gnuplot can be used to plot the data

using the scripts Gplot.plt, as seen in figures 2 and 3.
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Table 4. Simulated relaxation modulus data.

t/τk G(t)/(nkT ) (PS102) G(t)/(nkT ) (PS390)

0.000000000000000E+000 6.91083309464347 29.8898725860124

1.00000000000000 6.19796426384710 28.0854137134369
2.00000000000000 5.95983031951911 27.5037174001375

3.00000000000000 5.79844528724713 27.1185525580062
4.00000000000000 5.69224450413905 26.8392570251266

6.00000000000000 5.49800457660264 26.3922005619445
8.00000000000000 5.35714272394803 26.0744408076688

12.0000000000000 5.13025904543506 25.5715868220268
16.0000000000000 4.96724710835751 25.2209373684510

24.0000000000000 4.70657510398101 24.6714678139358
32.0000000000000 4.52100731226043 24.2937151609842

48.0000000000000 4.22627717740879 23.7064962479896
64.0000000000000 4.01801208834300 23.3074541480095
96.0000000000000 3.68833428551522 22.6907666578126

128.000000000000 3.45814843502180 22.2730552608380
192.000000000000 3.09512842906176 21.6298887133200

256.000000000000 2.84306683982082 21.1969638257405
384.000000000000 2.44513902693429 20.5218935407985

512.000000000000 2.17567922785316 20.0622219649911
768.000000000000 1.76410767550662 19.3435630679622

1024.00000000000 1.48925114318622 18.8506897264010
1536.00000000000 1.08002363664520 18.0739321422468

2048.00000000000 0.824844929292372 17.5354852799470
3072.00000000000 0.485397404135916 16.6597892714719

4096.00000000000 0.325533615384035 16.0468021973291
6144.00000000000 0.140749736670129 15.0892088120946

8192.00000000000 7.491837480645815E-002 14.4165194076411
12288.0000000000 1.146546863200251E-002 13.3450624449661

16384.0000000000 1.636253498597255E-003 12.5931522095167
24576.0000000000 -5.738856952541065E-003 11.4093068236647

32768.0000000000 -5.747403926758270E-004 10.6004916011373
49152.0000000000 4.052422628952885E-003 9.29707756201879
65536.0000000000 1.033559509771989E-002 8.31446807859437

98304.0000000000 3.084434564843599E-003 6.90482027244776
131072.000000000 4.707060633778353E-003 5.89862351214386

196608.000000000 -4.991878704392457E-003 4.42668804312963
262144.000000000 9.252570356156216E-004 3.42334979090572

393216.000000000 1.776842640453745E-003 2.20392772330922
524288.000000000 1.627208379936440E-004 1.72105885610507

786432.000000000 8.862902171381414E-004 0.718130734528209
1048576.00000000 -6.850332688539823E-004 0.195794718887397

1572864.00000000 2.111278482574322E-003 -0.340805533589627
2097152.00000000 -0.114542256332998

3145728.00000000 -4.146371847763596E-002
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Figure 2. The simulated relaxation modulus produced using Gplot.plt in Gnuplot for
PS102.
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Figure 3. The simulated relaxation modulus produced using Gplot.plt in Gnuplot for
PS390.
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3.3 Mathematica

To calculate the storage and loss modulus from the simulated relaxation data, we use the

Mathematica file, as described in section 2.2.6. We compare the results to the experimental

values of the modulus presented in reference 8. This experimental data are presented in

tables 5, 6, 7, and 8.

Table 5. Experimental storage modulus data for the PS102 from reference 8.

ω (rad/s) G′(ω) (kPa)

5.05825E-4 1.73876E-1

1.09648E-3 7.12612E-1
2.29087E-3 2.96123E+0

5.15229E-3 1.19696E+1
1.07647E-2 3.61875E+1

2.37684E-2 6.93172E+1
5.15229E-2 1.03518E+2

8.16582E-2 1.23906E+2
1.29420E-1 1.44264E+2

2.01372E-1 1.63385E+2
3.13329E-1 1.87617E+2
5.05825E-1 2.03849E+2

8.01678E-1 2.30868E+2
1.29420E+0 2.68800E+2

2.05116E+0 3.00246E+2
3.13329E+0 3.30765E+2

4.96592E+0 3.90474E+2
8.01678E+0 4.42227E+2

1.24738E+1 5.51749E+2
2.01372E+1 6.42403E+2

3.13329E+1 7.79636E+2
5.05825E+1 9.72720E+2
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Table 6. Experimental loss modulus data for the PS102 from reference 8.

ω (rad/s) G′′(ω) (kPa)

4.99812E-4 4.16719E+0

1.10904E-3 8.52373E+0
2.41598E-3 1.79228E+1

4.97794E-3 3.46973E+1
1.10367E-2 5.46147E+1
2.39981E-2 6.26056E+1

5.12192E-2 6.88599E+1
8.13123E-2 7.07292E+1

1.31517E-1 7.67662E+1
2.04999E-1 8.33237E+1

3.31585E-1 9.16912E+1
5.26626E-1 1.08104E+2

8.21076E-1 1.27458E+2
1.35332E+0 1.56609E+2

2.11053E+0 2.00573E+2
2.58661E+0 2.06109E+2

3.23059E+0 2.43102E+2
4.10913E+0 2.63960E+2

5.03796E+0 3.07082E+2
6.29144E+0 3.47522E+2

8.30407E+0 3.82554E+2
1.03728E+1 4.70271E+2

1.27170E+1 5.39606E+2
1.61780E+1 6.19126E+2
2.09658E+1 7.20203E+2

2.61856E+1 8.49467E+2
3.21033E+1 9.74710E+2

4.23785E+1 1.11828E+3
5.10105E+1 1.33739E+3
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Table 7. Experimental storage modulus data for the PS390 from reference 8.

ω (rad/s) G′(ω) (kPa)

5.24807E-5 1.64519E+1
9.46237E-5 3.28486E+1

1.70608E-4 5.25679E+1
2.33346E-4 6.46861E+1

2.96483E-4 7.22535E+1
4.20727E-4 8.52964E+1

5.34564E-4 9.26759E+1
7.31139E-4 1.03518E+2

9.12011E-4 1.06421E+2
1.31826E-3 1.22204E+2
1.64437E-3 1.20526E+2

2.29087E-3 1.38402E+2
2.91072E-3 1.40329E+2

4.13048E-3 1.50376E+2
5.24807E-3 1.52470E+2

7.31139E-3 1.61141E+2
8.95365E-3 1.63385E+2

1.05682E-2 1.75083E+2
1.31826E-2 1.70307E+2

1.64437E-2 1.82499E+2
1.87068E-2 1.87617E+2

2.29087E-2 1.85041E+2
2.85759E-2 1.90230E+2

3.25087E-2 2.01050E+2
4.05509E-2 1.95565E+2

5.15229E-2 2.03849E+2
5.75440E-2 2.09566E+2

7.31139E-2 2.03849E+2
9.28966E-2 2.15443E+2
1.05682E-1 2.27697E+2

1.34276E-1 2.15443E+2
1.64437E-1 2.21486E+2

2.29087E-1 2.24570E+2
3.37287E-1 2.50842E+2

4.05509E-1 2.34083E+2
5.54626E-1 2.68800E+2

7.17794E-1 2.57876E+2
1.00000E+0 3.12965E+2

1.27057E+0 2.80187E+2
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Table 8. Experimental loss modulus data for the PS390 from reference 8.

ω (rad/s) G′′(ω) (kPa)

5.17743E-5 3.13173E+1

9.02209E-5 4.12223E+1
1.66111E-4 4.72671E+1

2.36004E-4 4.72387E+1
2.94612E-4 4.72208E+1

3.95995E-4 4.71969E+1
5.32199E-4 4.52616E+1

7.42282E-4 4.52358E+1
9.43900E-4 4.52172E+1

1.31650E-3 4.51915E+1
1.61312E-3 4.33453E+1

2.29129E-3 3.98798E+1
2.91377E-3 4.04168E+1

4.21647E-3 3.87546E+1
5.46132E-3 3.76838E+1

7.47605E-3 3.51545E+1
9.16245E-3 3.61249E+1

1.02358E-2 3.46545E+1
1.32577E-2 3.36970E+1
1.71733E-2 3.36821E+1

1.88377E-2 3.46184E+1
2.43971E-2 3.27463E+1

3.16027E-2 3.27318E+1
4.24797E-2 3.31695E+1

5.92660E-2 3.65096E+1
7.26163E-2 3.45386E+1

9.23638E-2 3.75019E+1
1.05162E-1 4.24473E+1

1.36175E-1 3.79974E+1
1.60869E-1 4.18356E+1

1.86562E-1 4.60630E+1
2.28625E-1 4.60470E+1

3.37313E-1 5.89790E+1
4.36973E-1 6.06012E+1

5.87845E-1 7.98034E+1
7.20324E-1 7.76059E+1

1.04356E+0 1.07977E+2
1.27886E+0 1.07940E+2
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We use PS102 to calculate the parameter, τk, which can also be used in the calculation for

PS390, since the parameter is only dependent on the chemistry and temperature of the

polymer melt.

After importing and plotting the simulated relaxation data, we notice that there are some

data points that are associated with noise (see figure 2). In the Mathematica file, there is a

variable “a”, which indicates how many points will be cut from the simulated data. For

this system this value should be set to 12. After removing the noise, we obtain the

following plot of the relaxation modulus in figure 4.

Figure 4. The simulated relaxation modulus G(t)/(nkBT ) vs. t/τk for PS102.

The relaxation times h(τ ) and the continuous relaxation modulus are then calculated

(equations 7 and 6), where we consider one and two modes in the spectrum (m = 1 and

m = 2). When one mode is considered, the following parameters for the power-law

exponentials and time constants, α0 = 0.227, α1 = 0.227, τ0 = 0.075, τ1 = 3952.4, are

obtained through the nonlinear least-squares algorithms. For two modes, we obtain the

following optimal parameters: α0 = 0.1996, α1 = 0.1996, α2 = 9.99, τ0 = 0.164,

τ1 = 2511.99, and τ2 = 3066.87.

The two fits of the continuous relaxation modulus are then plotted in figure 5, where the

red and black lines are produced using one or two modes, respectively.
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Figure 5. The simulated relaxation modulus (data points), G(t)/(nkBT ) vs. t/τk , fitted
with a continuous line where one (red) and two (black) modes are used in
equations 7 and 6 for PS102.

Using these fit parameters, we calculated the Fourier transform of continuous relaxation

modulus, which is then used to calculate the storage and loss modulus. Calculating G∗(ω)

involves a multiplication by the plateau modulus, G0
N . Up till now, the plateau modulus

was normalized by nkT , so we must multiply this value by nkT or ρRT/Mw , in units of

kPa, before applying it in the calculation of the modulus. Comparing the calculated loss

and storage modulus to the experimental data, the values of τk and b are calculated, which

will shift the data in the frequency (ω) and modulus domains, respectively. For a shift

parameter of τk = 0.03s and b = 1.6, an adequate fit of the data is produced, as seen in

figure 6. The shift parameter, b, is due to experimental fluctuations, and its value can vary

from experiment to experiment, so this value can be different for PS390. In this figure, the

circles represent the experimental data and the lines represent the calculated modulus,

where orange/green and red/blue represents the storage and loss modulus, respectively.

Since the DSM does not describe the glassy regime in polymer dynamics, which dominates

at high frequencies, the model prediction deviates from the experimental data at high

frequency.

Now that we have calculated τk from PS102, we can use it in the calculation for PS390.

First, the Mathematica file imports the simulated relaxation modulus for PS390 produced

from the DSM. The data lacks any noise, so the truncation parameter a is set equal to

zero. Figure 7 shows the relaxation modulus produced by Mathematica for PS390.
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Figure 6. A comparison of the experimental and calculated modulus, in units of kPa,
as a function of frequency (ω (rad/s)) for PS102. The data points represent
experimental data points (orange = storage modulus, red = loss modulus).
The continuous lines represent the calculated values (green = storage modulus,
blue = loss modulus).

Figure 7. The simulated relaxation modulus G(t)/(nkBT ) vs. t/τk for PS390.
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The relaxation times h(τ ) and the continuous relaxation modulus are again calculated using

equations 7 and 6 for one and two modes in the spectrum. When one mode is considered,

the following parameters are obtained for the power-law exponentials and time constants,

α0 = 0.172, α1 = 0.172, τ0 = 0.00078, τ1 = 651360, while for two modes we obtain the

following constants: α0 = 0.172, α1 = 0.172, α2 = 200, τ0 = 0.000784, τ1 = 654616,

τ2 = 108549. The fit of the simulated data is presented in figure 8 for both cases. Now that

we have the fit parameters, we then calculate the Fourier transform of the continuous

relaxation modulus, which we then use to calculate the storage and loss modulus. Again,

we multiply the plateau modulus by ρRT/Mw before applying it to this calculation. When

comparing the simulated moduli with the experimental data, we use the value of τk = 0.03s

calculated in the PS102. This value adequately shifts the data in the frequency domain.

We then shift the data in the modulus domain with a shift parameter, b = 1.15. A

comparison of the simulated and experimental data can be seen in figure 9, where the lines

and circle represent the calculated modulus and experimental data, respectively.

Figure 8. The simulated relaxation modulus (data points), G(t)/(nkBT ) vs. t/τk , fitted
with a continuous line where one (red) and two (black) modes are used in
equations 7 and 6 for PS390.
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Figure 9. A comparison of the experimental and calculated modulus, in units of kPa,
as a function of frequency (ω (rad/s)) for PS390. The data points represent
experimental data points (orange = storage modulus, red = loss modulus).
The continuous lines represent the calculated values (green = storage modulus,
blue = loss modulus).

4. Conclusion

Step by step, we illustrated how to use the DSM code provided by Professor Schieber to

calculate the storage and loss modulus for two different molecular weights of polystyrene.

This code is composed of a FORTRAN 90 code, which is used to calculate the relaxation

modulus. A Mathematica code is then used to compute the storage and loss modulus from

the relaxation modulus. To parameterize the fitting parameters in the model, experimental

data from one linear viscoelastic experiment are necessary although current research is

being conducted to circumvent this necessity. In our test case, we observed good agreement

between the simulated and experimental results in the elastic regime. This theory has also

been applied to other homopolymer solutions and melts with similar agreement.
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 1 ADMNSTR 
 ELEC DEFNS TECHL INFO CTR 
  ATTN  DTIC OCP 
  8725 JOHN J KINGMAN RD STE 0944 
  FT BELVOIR VA 22060-6218 
 
 1 CD OFC OF THE SECY OF DEFNS 
  ATTN  ODDRE (R&AT) 
  THE PENTAGON 
  WASHINGTON DC 20301-3080 
 
 1 US ARMY RSRCH DEV AND ENGRG  
  CMND 
  ARMAMENT RSRCH DEV & ENGRG  
  CTR  
  ARMAMENT ENGRG & TECHNLGY  
  CTR 
  ATTN  AMSRD AAR AEF T  
  J  MATTS 
  BLDG 305 
  ABERDEEN PROVING GROUND MD  
  21005-5001 
 
 1 PM TIMS, PROFILER (MMS-P)  
  AN/TMQ-52 
  ATTN  B  GRIFFIES  
  BUILDING 563 
  FT MONMOUTH NJ 07703 
 
 1 US ARMY INFO SYS ENGRG CMND 
  ATTN  AMSEL IE TD  A  RIVERA 
  FT HUACHUCA AZ 85613-5300 
 
 1 COMMANDER 
  US ARMY RDECOM 
  ATTN  AMSRD AMR   
  W C  MCCORKLE 
  5400 FOWLER RD 
  REDSTONE ARSENAL AL 35898-5000 
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  DEPOSITORY RECEIVING SECTION 
  ATTN  MAIL STOP IDAD  J  TATE 
  732 NORTH CAPITOL ST NW 
  WASHINGTON DC 20402 
 
 1 US ARMY RSRCH LAB 
  ATTN  RDRL WMM G  J  ANDZELM 
  BLDG 4600 RM C204 
  ABERDEEN PROVING GROUND MD  
  21005 
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COPIES ORGANIZATION 
 
 1 US ARMY RSRCH LAB 
  ATTN  RDRL WMM G   
  T  CHANTAWANSRI 
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  ABERDEEN PROVING GROUND MD 
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  ATTN  RDRL WMM G   
  Y  SLIOZBERG 
  BLDG 4600 RM C213 
  ABERDEEN PROVING GROUND MD  
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 1 US ARMY RSRCH LAB 
  ATTN  RDRL CIM G  T  LANDFRIED 
  BLDG 4600 
  ABERDEEN PROVING GROUND MD  
  21005-5066 
 
 3 US ARMY RSRCH LAB 
  ATTN  IMNE ALC HRR  
  MAIL & RECORDS MGMT 
  ATTN  RDRL CIM L TECHL LIB 
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