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Abstract 
Four equations are presented to determine bending stiffness 
using transverse vibration. These equations are used for 
constant cross-section products, panels, rectangular cross-
section products, and logs with and without taper. Practical 
considerations for their use are discussed and concluding 
remarks are included. 
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Transverse Vibrations of Wood-Based  
Products: Equations and Considerations 
Joseph F. Murphy, Research Engineer 
Forest Products Laboratory, Madison, Wisconsin 

Introduction 
For the past 15 plus years, the Forest Products Laboratory, 
specifically the Engineering Mechanics and Remote Sensing 
Laboratory, has been using transverse vibration of wood-
based products to nondestructively measure bending stiff-
ness, which then can be correlated with strength (Green and 
others 2006). We use the basic vibration equation to mea-
sure bending stiffness that was determined by Timoshenko 
and others 1974) and can be found in general engineering 
books, such as that authored by Young (1989). Whereas the 
basic equation was determined for slender isotropic materi-
als with constant cross section, we have successfully applied 
it to wood, wood-based composites, and even tapered logs. 
This paper presents the equations to measure bending stiff-
ness, analytical solutions for specific classes of products, 
and practical considerations. 

Analytical Solutions 
Equations 
Four equations are used to determine bending stiffness us-
ing transverse vibration for various types of wood products. 
The most important equation is for products with a constant 
cross section. The bending stiffness EI is calculated from 
two terms. The first term uses just the fundamental fre-
quency and the length of the span on which the specimen is 
simply supported. The second term is the specimen mass  
per unit length. No information about the cross section  
is required, as it is buried in the moment of inertia.  
Equation (1) accounts for overhang as noted in Murphy 
(1997) and is an excellent approximation for a span/speci-
men length (S/L) ratio ≥ 0.80. The other three equations use 
the same two right-hand terms of Equation (1) but multiply 
these terms by geometric modifiers. 

Constant cross-section products

 (1)

Panels

(2)

Rectangular cross-section products

(3)

Logs

(4a)

where

(4b)

b is 	 horizontal width of specimen, 
cb 	 butt circumference of log, 
ct	 tip circumference of log, 
E 	 modulus of elasticity, 
EI 	 bending stiffness, 
Eo 	 modulus of elasticity of log, 
f 	 fundamental frequency of vibration, 
g 	 gravitational (acceleration) constant  
 	 (980.665 cm/s2, 386.089 in/s2), 
h 	 vertical height of specimen, 
I 	 moment of inertia, 
L 	 length of specimen, 
S 	 support span (< L), 
W 	 total weight of specimen, and 
p 	 3.1415926... 

Constant Cross-Section Products 
Equation (1) is valid for all wood and wood–plastic mem-
bers with constant cross section. We use it for “I” and “T” 
beams as well as glulam members. The plane of vibration 
is vertical with the member on edge. The moment of inertia 
does not need to be known because displacement is impor-
tant for engineering applications, and bending stiffness (EI) 
is used directly without separating out modulus of elasticity. 

Panels 
Equation (2) is used for panel products. The panel must be 
vibrated in one dimension so that it vibrates like a very wide 
beam. Care must be taken so that the panel does not vibrate 
in two directions simultaneously. Here again bending stiff-
ness (EI) per unit width is important to determine displace-
ment, and specific knowledge of moment of inertia is not 
needed for plywood or oriented strandboard (OSB). 

EI = f     
2S  

4    W
π2/4    gL

f     
2S  

4    W   1
EI  /b = 

f     
2S  

4    W     12
π2/4     gL   bh3E = 

f     
2S  

4   
  W     64 π 

3   1
π2/4   gL   cb

        θ                              
Eo = 4

θ = 

π2/4    gL   b

(m2 + 6mn + n2) (1 + a + a2)
32 3

a = ct  /cb
m = 2 + (a – 1)(1 + S/L) 
n = 2 + (a – 1)(1 – S/L) 
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Rectangular Cross-Section Products 
Equation (3) is used for dimension lumber as well as any 
solid sawn (or wood–plastic) member that has a rectangu-
lar cross section. For wood–plastic or even glulam beams, 
modulus of elasticity is an effective modulus because uni-
form material properties across the gross cross section are 
assumed. In some wood–plastic composites, the modulus 
of elasticity for the skin and core differs, but an effective 
modulus of elasticity can be determined for a particular 
cross section. 

Logs 
Equation (4) is used for logs, either doweled (θ = 1) or 
tapered. When the tip circumference is equal to the butt 
circumference, θ = 1. The second term on the right-hand 
side of the θ = ... equation, Equation (4b), accounts for the 
volume of a tapered cylinder compared with a straight cylin-
der. The first term on the left accounts for measuring the tip 
and butt circumferences at the ends of the log and not at the 
supports and the effect of taper on the fundamental root of 
the frequency equation. While this term is technically most 
accurate, if the ratio of tip circumference to butt circumfer-
ence is greater than or equal to 0.80, then, as an excellent 
approximation, the log can be treated as a straight cylinder 
(θ = 1) with a constant circumference equal to the average 
of the tip and butt circumferences (Murphy 2000b, fig. 1). 

Practical Considerations 
Transverse Vibrations of Logs 
Practical considerations for the transverse vibration of logs 
require the use of two load cells because one end of a log 
can weigh up to twice as much as the other end. Figure 2 
shows a log end support. When swung to one side, the dis-
engaging lever raises the support off the load cell. The 120° 
angled ridges provide a corner edge for centering the log. 
With the log centered, the load cell measures half the weight 

at the end of the log. The total weight of the log is calculated 
by multiplying each load cell reading by 2 and adding. If the 
log is bowed, it is placed bowed side down for safety and to 
ensure only one plane of vibration, i.e., the vertical plane. A 
sewing tape measure is used to measure circumference, as-
suming the log is round in cross section. 

If care is not taken while debarking, debarked logs may 
have processing taper at both ends. In this case, measuring 
the circumference at each end underestimates the volume, 
resulting in unrealistically high modulus of elasticity values 
(Eo). To avoid this problem, we measure the circumference 
“z” distance from the ends, with c1 near the tip end and c2 
near the butt end. We then use the following equations to 
estimate the tip and butt circumferences. 

where

Consider now the transverse vibration of a log with the bark 
still attached. The bark can act like springs or nonrigid sup-
ports, which affect the fundamental frequency of the system 
(Murphy 2000a.) Moreover, taking circumference mea-
surements around the bark without accounting for the bark 
thickness (i.e., without subtracting 2π × thicknessbark from 
the circumference) skews the resulting log modulus of elas-
ticity Eo. Each variable—log volume, weight, density, the 
moment of inertia, and weight/unit length—includes both 
log and bark. Therefore, the resulting Eo is off by the value 
of I, while the fundamental frequency compensates for the 
(log + bark weight)/unit length. 

Dynamic and Static Modulus of Elasticity 
We have found that using transverse vibration gives es-
sentially the same modulus of elasticity in bending as a 
dead load static bending test with the specimen in the same 
orientation. Modulus of elasticity values are different when 
the orientation is changed. For example, a piece of dimen-
sion lumber (nominal 2- by 4-in., standard 38- by 89-mm; 
hereafter called 2 by 4) is transversely vibrated flatwise. The 
flatwise modulus of elasticity is the same as that from a flat-
wise dead load static test. When the specimen is subjected 
to an edgewise dead load static test, the edgewise modulus 
of elasticity can be 15% less than the flatwise modulus of 
elasticity. The difference is not dynamic as opposed to static 
testing, but flatwise as opposed to edgewise orientation. 
This misconception is apparently the result of dynamically 
testing dimension lumber flatwise to estimate a static edge-
wise modulus of elasticity. Dynamic and static modulus of 
elasticity values are the same in the same orientation. Fol-
lowing are two examples of dynamic and static testing with 
the specimens in the same orientation. 

Figure 1. Transformed fundamental root of the frequency 
equation as a function of the degree of taper. cS, circumfer-
ence of log at the support near the butt; co, circumference 
of log at the support near the tip.

ct = c2 [2 +(β – 1)(1 +1/X    )]/2
cb = c2 [2 +(β – 1)(1 –1/X    )]/2

X = 1 – (2z/L)
c1 ≤ c2

β = c1/c2
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Log Tests 
In the first example, 119 doweled logs were transversely 
vibrated (Green and others 2006). Then, without moving 
the logs on the supports, we added a 50-lb (22.7-kg) dead 
weight at midspan and measured midspan deflection. We 
then plotted dynamic versus static modulus of elasticity 
(Fig. 3). 

Lumber Tests 
In the second example, we tested 59 pieces of 2 by 4 lum-
ber, varying in length from 96 to 102 in. (244 to 259 cm). 
For 50 pieces, the span was 96 in. (244 cm); for the remain-
ing 9 pieces, the span was 92 in. (234 cm). Each piece was 
weighed. After the transverse vibration test (and without 
moving the lumber from the support stands) we added a 5-lb 
(2.3 kg) dead weight, P, at midspan and measured midspan 
deflection, δ. Cross section was not measured. We plotted 
calculated EI/S 

3 from the vibration tests using Equation (1), 
against calculated EI/S 

3 from the static dead weight tests 
using δ = PS 

3/(48EI) (Fig. 4). A best-fit line yielded a slope 
of 1.00977 and an offset of 0.009947 with a correlation 
coefficient r 

2 of 0.997. The offset corresponds to a differ-
ence of only 0.0036 in. (0.0914 mm) in the static deflection 
measurement. With twisted boards, we found that adding the 

5-lb (2.3-kg) weight could increase the twist and skew the 
deflection measurement if care was not taken. 

With the spans used and the moment of inertia of a  
flatwise 2 by 4, EI/S 

3 = 1.0 corresponds approximately  
to E = 1.0 × 10 

6 lb/in 
2 (6.9 GPa). 

Effect of Moisture Content 
If the wood is not frozen, then the bending stiffness EI as 
measured is at the moisture content at the time of measure-
ment. The added weight of the water affects the frequency 
of vibration appropriately such that the product frequency 
and weight (f 2W) remains a constant. This can be proven 

Figure 2. Log end support: (a) unassembled; (b) as-
sembled. Load cell and disengaging lever shown. 

Figure 3. Dynamic versus static modulus of elasticity for 
119, dry, 9-in. (229-mm) uniform-diameter logs. 

Figure 4. Dynamic stiffness versus static stiffness. 
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by measuring the EI of a member and then attaching a chain 
along the length of the member and measuring EI again. 
The added weight of the chain increases the weight per unit 
length, W/L, but the frequency of vibration, f, is slowed such 
that f 2W does not change. 

Concluding Remarks 
The Engineering Mechanics and Remote Sensing Labora-
tory of the Forest Products Laboratory uses four equations 
in the nondestructive assessment of bending stiffness prop-
erties of structural wood and wood–plastic members. The 
first two terms of all the equations account for overhang of 
the test specimen over the supports and are very accurate for 
a ratio of support span to specimen length (S/L) equal to or 
greater than 0.80. The result of Equation (1) is used in the 
other equations. The general Equation (1) is merely modi-
fied by geometric specifics to apply transverse vibration to 
panels (Eq. (2)), rectangular cross sections (Eq. (3)), and 
logs (Eq. (4)). If the log taper is not severe (ct/cb ≥ 0.80), 
then the log can be treated accurately as a straight cylinder 
(θ = 1) with a constant circumference equal to the average 
of the tip and butt circumferences. 

Dynamic bending stiffness EI as measured by transverse 
vibration is the same as static bending stiffness EI as mea-
sured by dead load if the support setup and specimen orien-
tation are not changed. 
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