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ADAPTIVE CONTROL OF LARGE SPACE STRUCTURES
USING RECURSIVE LATTICE FILTERS

By
Gene L. Goglia*

SUMMARY

This report summarizes the research activities performed under grant
NAG-}-429. The objective of the research has been to study the use of re-
cursive lattice filters for identification and adaptive control of large
space structures. Lattice filters are used widely in the areas of speech
and signal processing. Herein, they are used to identify the structural
dynamics model of tre flexible structures. This identified model is then
used for adaptive control. Before the identified model and control laws are
integrated, the identified model is passed through a series of validation
procedures and only when the model passes these validation procedures con-
trol is engaged. This type of validation scheme prevents instability when
the overall loop is closed.

One of the main aims of the research has been to compare the results
obtained from simulation to those obtained from experiments. In this re-
gard, the flexible beam and grid apparatus at the Asrospace Control Research
Lab (ACRL) of NASA Langley Research Center were used as the principal candi-
dates for carrying out the above tasks. Another important area of research
namely that of robust controller synthesis was investigated using freguency
domain multivariable controller synthesis methods. The method uses the
Linear Quadratic Gaussian/Loop Transfer Recovery (LQG/LTR) approach to en-

sure stability against unmodeled higher frequency modes and achieves the

*Eminent Professor, Department of Mechanical Engineering and Mechanics, 0ld
Dominion University, Norfolk, Virginia 23508.
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desired performarce. Such a controller was designed for the 122 mr. Hoop-
Column antenna using a single 3-axis torque actuator and attitude sensors.

References 1 and 2 present the detailed analysis of identification
results for the flexible grid apparatus using lattice filters. The scheme
provides on-1ine identification of number of modes, mode shapes, modal damp-
ing and natura’ frequencies. The results indicate that thc lattice identi-
fication scheme is a viable scheme for identifying the structural dynamics
of flexible structures., The experimental results also indicate differences
between those predicted by finite element analysic and obtained by experi-
ments. The éifficu]ties are not as such in finite element analysis but in
modeling the apparatus for finite element analysis. This fact empnasises
the need for on-orbit identification of large space structures before con-
trol is attempted. A summary of the experimental results obtained using
lattice filters is described in reference 3.

An adaptive control scheme using lattice filter identification and @
modal description has bean developed in reference 4, Alternate schemes of “
using input-output models instead of modal form from lattice filters is
described therein. The problem in this approach is to obtain efficient g
control schemes as the identified model of the system becomes coupled and to fj *
calculate the pole placement control Tlaw on-line is cemputationally complex.
Presently, the identification scheme using lattice filters for obtaining the
input-output model is under development in the Charles River Data Systers in
the ACRL.

A new approach of u~=signing robust controller for a large flexible
space antenna using the LQG/LTR approach was developed in reference 5. The
method was used in designing rabust controller for the 122 mr. Hoop-Column ‘§

antenna using only a 3 axis torque actuator and attitude sensor. The objec- j




tive is to design the controller based on a lower order model to achieve the

desired bandwidth and at the same time ensuring stability against unmodeled

higher frequency modes, The results in reference 5 indicated that 1if one

uses only a rigid body model for design stability agains® unmodeled modes

can be obtained but not the performance. Based on detailed studies in ref-

erences 6 and 7 it was concluded that with the firgst three flexible modes

(corresponding to the 3 axes) included in the design model both stability

and performance can be ensured,

1.
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Identification of the Dynamics of a
Two-Dimensional Grid Structure using
Least Squares Lattice Filters’

R. C. Montgomery® and N, Sundararajan’

Abstract

The basic theory of least squares lattice filters and their use in identification of structural
dynamics systems is summarized, Thereafier, this theory is applied to a two-dimensional grid
structure made of overlapping bars. Previously, this theory has been anplied to an integral beam.
System identification results are presented for both simulated and experimental tests and they ure
compared with those predicted by means of finite eler. 2t modeling, The lattice filtering ap.
proach works well for simulated data based on finite element modeling. However, considerable
discrepancy exists between estimates obtained from experimental data and the finite element
analysis, It is believed that this discrepancy is the result of inadequacies in the finite element
modeling to represent the damped motion of the laboratory apparatus,

Introduction

The ability to predict the dynamic behavior of large space structures (LSS) ade-
quately for control system design is doubtful because of their expected size, appreciable
flexibility, and on-orbit assembly anomalies. Hence, dynamical modeling from on-
orbit measurements, followed by modifying the control system as dictated by the
identified control system design model (adaptive control). is of interest, The goal of this
paper is to determine, using a generic grid structure, whether a priori modeling of the
structure is adequate for a high authority control system design oi whether on-orbit
identification is needed,

An approach for identifying the dynamic behavior of LSS that estimates mode! order
in addition to mode! parameters is presented in [1), [t uses lattice filters which provide
an order as well as a time recursive algorithm for linear least squares signal estimation.
[2] provides a tutorial on lattice filter theory and applications. The outputs of the theory
of [1] are the least ‘square estimate of the measurement sequence, the model order
required to fit the measurements, the associaied lattice model (this includes mode shape
"This paper was criginally presented at the American Control Conference, San Diego, California, June 6-8,

1984,

INASA Langley Research Center, Hampton, VA 23665,
’0ld Dominiot University Research Foundation, Hampton, VA 23666.
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38 Montgomary and Sundararajan

estimates that are orthonormal in the measurement space), and the assoctated auto-
regressive moving average IARMAX) model of the measurement sequence.

Some distributed adaptise control strategies require identitication of the natural
modes of a structure |3, ). Unfortunately. the lattice filter provides mode shapes that
are orthonormal in the meisurement space and, hence, are not the natural modes.
Natural modes can be obtained, however, either through an eigenvector analysis of the
identified ARMAX model or through a transformation that provides spectral decome
position of the lattice filter modal amplitudes [S]. The latter method is 1,sed herein to
obtain the natural modes. Using spectral decoupling to determine mode shupes. one cun
obtain mode frequency and damping using an equation error parameter identitication
method {3] that employs a second-order ARMAX model to represent the natural mode
amplitudes, The procedure of (3] tracks frequency and damping coetficients required
for the modal amplitude input sequence to fit the second order ARMAX muodel.
Because the input sequence may have an unfavorable signal to noise ratio, the parame-
ters so derived must be tested for validity before use in control system design. This
parameter testing is treated in detail in [6] but is not employed herein.

The foregoing procedure has been used to identify the dynumie charactersties of an
integral free-free beum in [1,7]. [8) describes the test apparatus used in those studies.
In this paper, the theory is applied to a more complex. two-dimensionul grid structure
made of overlapping bars, First, a brief overview of the theory used is presented. Next,
system identification results are presented using both simulated und experimental
data, Finally, the experimental results are compared, with those predicted using finite
element modeling,

Summary of the Method Used to Identify Structural Dynamics Systems

For the application considered here we assume that the Ath meusurement sample is
of the form

sT = [a(R), yathdyeee wyglk)] (1

where NS represents the number of sensors, It is assumed that ¥ is generated from a
model system such that

M= (b‘l" + m (2)

Here, & is a mode shape matrix, W, is the modal amplitude vector, und n¢ is a Guussian
random variable with a zero mean and a covariance matrix R, Typicully, for structural
dynamics applications, each component of W, is the output of an uncoupled second-
order process. The task here is to estimate the order and obtain the least square estimate
of W, from N + | measurement samples v, through y. [1] presents a derivation of the
equations that relate order n, and time i. recursions for the normalized forward and
backward residuals (e and r, respectively} as well as the least squares estimate of the
measurement vector v, These equations are listed below!

€uvy & “ - kin—l)‘il(ehn - k:.n'lrtwl,u) (3)
ey = (1 = klz-ﬂ")-”(rl-l.n - kl.mler.n) (4)
N=|
Jv = 2 Eleyalry-in) (3)
n=0
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with
k:\ml o (elmrlﬂl‘n) (6)

and E{x{y) is the orthogonal projection opsrator of the vector ¥ onto the vector v, The
symmetry of the recursion formulae is apparent. The equations are coupled by the term
&, a1 which is customarily called the “reflection coefficient,”

Clearly, in this approach one may "fit the noise” by continually increasing the order
of the system; however, once the order of the estimator has inereased sufficiently, the
residual errors should lie within a noise band which can be predicted based on assumed
noise characteristics. A threshold value can be selected based on this predicted noise
band and order determined by a test of whether or not the residuals have been reduced
10 lie within the noise band. Also, the test can be made considering several samples of
data; that is, using a data window. 1] documents experience in order determination
based on this threshold test,

Having defined the order required to fit the data using a linear model, we seck & fixed
set of basis functions that are spectrally decoupled for modal control, Therefore, u fixed
orthonormal basis is used during intervals when the order estimate is constant, (How-
ever, the order estimate is checked at each measurement sample based on the threshold
test,) The lattice filter uses the current measurement as the first mode shape and, using
a modified Gram-Schmidt orthonormalization procedure, generates additional basis
functions from estimation residuajs. Consequently, the output of the Jattice filter pro-
duces coupled mode shapes and corresponding modal amplitudes wherein the first
coupled modal amplitude will contain all significant natural modes. Since the order
estimate n has been determined, the first coupled mode digital Fourier transform (DFT)
amplitude spectrum is searched for the n most significant peaks and corresponding
frequencies, Because the spectrum contains n peaks for the n separate modes, a
transformation matrix can be obtained that decouples the spectrum. This transformation
matrix is the inverse of the matrix whose elements are the real part of the transform of
the n coupled modal amplitude channels (rows) evaluated at the n peak frequencies
(columns). It effectively transforms the lattice filter modes into spectrally decoupled
nat[ur]al‘ modes, These decoupled modes are not orthogonal, This procedure is described
in [5].

Thus, the decoupled modal amplitude time series, w (k). is obtained by applying the
transformation to the direct output of the lattice filter, 1his time series is then analyzed,
for each mede, to identify the parameters of its auloregressive moving average
ARMAX model. The inputs to each ARMAX modal mode! are the generalized forces
and hence, ¢ach model takes on the form

wk) = Apw(k = 1} + Ayw(k = 2) + B\ f(k = 1) + By flk = 2) N

where f represents generalized forces, The parameters p™ = (A, A;, B, B:) are the ones
which are identified and which are required for the control law design process, Thus,
the ARMAX model output error is

etk = 1) = wik = 1) = [A{k = Dw(k = 2) + Aslk = Dw(k ~2)
+ Bilk = 1)f(k — 2) + Bylk = 1)f(k = 3)] (8)

The method of [3] is used to identify the parameters (p) using the iteration sequence
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pk) = plk = 1)+ eth = 1)
[Wiwlk = 2), Waw(k = 3), W f(k = 2),W.f(k = 3)) 9

As indicated in [3], the weights W, (/ = 1,...,4) must be selected 50 that they are
copsistent with the relation

Wiwik = 2) + Wowilk = 3) + Wy f3k = 2) + WSk = 3) <2 (10)

and the inputs to the algorithm (w and f) must be sufficiently varying and large if the
parameters are {0 converge to their correct value,

Damping ratios and natural frequencies of the modes can be abtained from A, and
A; of equation (7). However, the solution is not unique, due to the foldover phenome-
non of sampling. By finding the roots, z,, of the characteristic equation (7) and using
the relation z, = e** in the primary strip, where 7 is the sampling period, the following
equations for damping ratio and natural frequency are obtained for a typical root,’
say 2

w = ¢/(2mr) (m
¢ = cle? + 9Y)? (1%,
wierein
¢ = tan"'(b/a) (13)
: ¢ = ~~;-1n(a1 - bY) (14)

and a = Re(z) and & = Im(z). The behavior of this overall system identifica-
tion methiodology with both simulated and experimental data is discussed in the sub-
sequent sections,

Description of the Flexible Grid Facility

Figure | shows the flexible grid experimental appartus currently being built at the
NASA Langley Research Center. The grid is a 7 ft by 10 ft planar structure made by
overlaying aluminum bars of rectangular cross section, The bars are centered every foot
so that there are 8 vertical and 1] horizontal bars, As shown in Fig. I, the grid is
suspended by a cable at two locations on the top horizontal bar. The motions of the grid
perpendicular to the plane of Fig. 2 are the ones of intevest in this study. There are nine
noncontacting defiection sensors mounted on a back frame which give a 9 X |
measurement vector. The sensor data are linked to the main CYBER 175 Real-Time
Computer System at NASA Langley Research Center so that the identification can be
carried out in real time. For the experimental tests, the locations of the sensors are
indicated in Fig. 2.

Simulation Studies

A finite element anaiysis of the grid was performed which included the suspension
cables. Nodes were places at each overlapping joint on the grid. the ceiling attachment
points of the cable, and every one-half foot along the cable. The grid elements con-
necting the nodes were modeled as bending elements, whereas the cable elements were
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FIG. 2, A Schematic of the Gnd Apparatus Indicating Locatiens Referred 10 in the Text and i
Subsequent Figures g

modeled as two-force members. Thus, a total of 165 elements were included in the Iy
model, Four degrees of freedom appropriate for motion normal to the plane of the grid
were considered, No damping was included in the model. Thirty modes were obtained
from this analysis. The frequencies of the first ten modes are listed in Table 1, The first
thres modes are the pendulum modes, the fourth is the first bending mode and the fifth
is the first torsional mode. The finite eJement analysis uses an iterative method to
calculate mode frequencies, The frequencies used in simulation ar¢ believed to be A
numerically accurate since the change in eigenvalue iterate of the highest frequency L
mode used in the simulation is 10"" on the final iteration, The corresponding eigen-
value iterate was 1565, which corresponds to the mode 8 frequency in Tuble |.

A simulation was developed that accommodates the first 15 modes of the analysis,
but only four moues were used herein. Modes 4, 6, 7, and 8 were used. A sampling
rate of 32 Hz was sirulated with a standard deviation for the measurement noise of]
0.005 in, which was based on actual sensor characteristics, Modes were simulated with
modal amplitude initial conditions of 0.1. The data window for order determination
included eight samples. In this work, the sensor locations were chosen based on several
simulations. These locations differ from those of the experimental apparatus in that they
were selected to maximize the « fect of simulated modes on the sensors. This was
accomplished by visual examination of the simulated sensor outputs, The selected
locations are indicated in Fig. 2. An asterisk is used fo distinguish simulation sensor
locatinns from experirnental ones. One may expect that Jocation 5 would be preferable
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TABLE 1, Modal Frequencies Obtained
from the Finlte Element Analysis of
the Grid

Mode Number Frequency (Hz)

0.364
0.625
1.398
2.29
3.07
4.791
5933
6.297
7.337
10.352

O OO0 IO 1% S oD —

to location 5*; but, since some simulated modes had little input to a sensor at loca-
tion 5, location 5* proved to be 2 better Jocation.

Based on the entire measurement vector, the lattice filter zrder estimate is shown in
Fig. 3. Also. sensor 5* data, typical of those of the other sensors, is shown in Fig. 3.
After estimating the order, we carried out a transformation based on the discrete Fourier

n
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FIG. 3. Simulation Time Histories of Sensor 5*, Lattice Filter Order Estimate, and the Norm of the
Esttmation Error for the Entire Measurement Vector.
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wansform (DFT) using 128 samples in order to obtain the natural modes, and used the {}

equation error method to identify associated modal frequencies and damping. The ]
resulting modal frequencies, damping and mode shapes are compared with those
predicted by finite element analysis in Table 2, The identification of frequencies and
damping are close for all four simulated modes, Howevel, the mode shape estimates
agree with simulation for only three modes. One possible explanation for this is the
limitation imposed by sampling rate and the number of samples used to decouple the
lattice filter modes, Sampling at 32 Hz and including 128 data points in the DFT, a

TABLE 2, Comparison Between Simulzted and Identified Results

v
e

i = ettt e O

Mode 4 Mode 6 Mode 7 Mode 8 ;
Simue Identi- Simu- Identi- Simu- Identi- Simu- Identi- 7

lated fied lated fied lated fied lated fied |

Frequency y. |

(Hz) 2.29 2.4 4,79 4.8 5.93 6.0 6.3 6.4 : iﬂ’:‘-}

Sensor

1* 0.29 0.30 -0.16 -0.17 0.31 0.32 0.59 0.45
2+ -0.40 -0.41 -0.12 ~0.08 -0.43 -0.43 0 -0.43
3 0.29 0.30 ~0.16 ~0.18 0.31 0.32 ~0.16 0.21
4 0.30 0.31 0.38 0.37 -0.06 ~0,06 0.01 ~-0,09
5* ~-0.39 ~0.36 -~0,72 -0,74 0.49 0.49 0.01 0.49
6* 0,30 0.30 0.37 0,36 -0.,06 ~0.06 -0,01 -0.06
7* 0.31 (1] -0.20 ~0,15 ~-0.32 -0.31 0.39 -~0.19
8* -0.39 -0,38 -0.26 -0.29 0.41 0.41 0 0.37
9* 0,31 0.31 -0.20 ~-0,14 -0.32 -0.31 -0,39 -0.38
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frequency resolution of only 0.25 Hz is obtained. Since the expected frequency sepa-
ration between modes 7 and 8 is only 0,4 Hz, good decoupling cannot be achieved.

To summarize the lessons leamned from the simulation studies:

1, The least squares lattice filter gives good identification of simulated modal
frequencies, damping ratios, and mode shapes in the presence of sensor noise
expected in the experimental apparatus,

2, The DFT method of obtaining natural modes from the Jattice modes is inaccurate
if the modes are closely spaced in frequency. This may he improved by adding
more samples to the DFT,

3, Sensor locations should be properly selected to insure good identification of
simulated mode shapes.

The next section will discuss results obtained from the experimental apparatus,
Experimental Results

Experiments were conducted using the grid apparatus previously described, The grid
was excited using an air shaker which periodically exhausted a jet of air that impinged
on the grid at sensor location |, The frequency of the jet was adjustable from O to
50 Hz. Although the resulting grid excitstion was periodic, it was not purely sinusoidal
hut was rich in harmonics. Because of the range limits of the deflectiun sensors - 0 to
approximately 2 in, - the maximum peak-to-peak deflections of the grid were limited
to about 1 in, When the peak-to-peak deflection neared this limit, the air shaker was
turned off and the grid was allowed to vibrate freely with only air and material damping.
A CYBER 175 Real-Time Computer System sampled the deflection sensor data at
32 Hz for 5 seconds. The data were stored on a system data file for further analysis.
Since only free-decay response data were recorded, the B, and B, parameters of
equation (7) were not identifiable, Figure 4 presents data from file 5. Here, the order
estimate is seen to converge to an oscillation between 2 and 3 at about 0,5 s. At about
0.8 s, the order estimate was fixed at 3 and data collection (at 32 Hz) for the 64 time
samples required for the DFT was started. The DFT was accomplished at about 2.8 &
and the decoupling transformation matrix was calculated. The modal amplitudes after
this time should contain a single frequency and the transformed mode shapes should
cerrespond to the excited natural modes of the structure, Thus, three modes were
extracted from the experimental data tape, These have frequencies near 0.5 Hz.
2.5 Hz, and 5 Hz. Table 3 presents the mode shape estimates obtained from the
experiment, Also presented are selected mode shape predictions taken from finite
element analyses. The modes selected were those whose frequencies bracket the experi-
mentally derived ones. The following discussion deals with the Table 3 data in order
of increasing frecquency,

A good comparison does not exist between the first or third experimental modes and
either of their bracketing finite element analysis modes. Additionally, there is some
bending in the first experimental mode as evidenced by sensors 4, 5, and 6. The
amplitude of this mode is shown in figure 5 along with its ARMAX parameters A, and
A, and their primary strip equivalents of damping and frequency, Figures 6 and 7 show
the same information for the second and third modes. respectively. For the second
mode, a good comparison does exist betwee it and the 3.07 Hz finite element analysis
mode. Note that, however, the output of sensor 4 is opposite in sign and reduced in
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TABLE 3, Comparison Betwéen the Finite Element Predictions (P) and Experimental

Tt et T et e s

tdentification (E)
Mode | Mode 2 Mode 3
Companisons Compansons Comparisons
Origin p E P P E P P E P
Frequency
(Hz)  0.364 0.5 0.625 39 33 307 4.79 5 5.93
Sensor
i ~0.54 0.26 0.43 035 ~045 =047 ~036 ~0.04 0.43
2 -0.51 0.46 0 =0.15 0.1 0 -0.34  ~038 ~-0.235
3 ~0.51 0.66 =045 0.35 0.44 048 ~03 ~0.14 0.43
4 -0.26 0.24 0.4 038 -0.08 (1 AR] 0.22 0.18 ~-.07
5 ~0.26 -0 0 ~-0.25 0.05 0 0.24 0.10 0.07
6 -0.26 041 -041 038 ~003 -0.13 0.2 ~001 -~007
7 -0.08 0.10 0.36 0.38 0.54 050 -~038 ~065 ~045
8 -0.08 0.20 0 =024 -007 0 =043 0.29 0.32
Y ~0.08 0.10 -0.26 038 ~0.54  ~051 -038 ~0.54 -0.44
" 1
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FIG. 5. Characteristics of the First Mode Identified from Experimental Tape 5,
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FIG, 6. Characteristics of the Second Mode Identified from Experimental Tape 5.

amplitude from the finite clement prediction, This means that a feedback on that sensor
based on the finite element analysis will be destabilizing near the 2.5 Hz frequency.
The validity of this deduction can be established by examining the outputs of sensors |
and 4 {4]. According to the finite element analysis, the 2,5 Hz content of the sensors

should be opposite in sign. However, they are in phase in agreement with the identi-
fication results.

Conclusion

The application of the least squares lattice filter in system identification has been
extended to a non-integral, two-dimensional grid structure made of overlapping bars.
Previous experience has been limited to an integral free-free beam, Both simulatien and
experimental data were used to evaluate the system identification capabilities of the
method, In the simulations, the least squares lattice filter gave good identification of
simulated modal frequencies, damping, and mode shapes in the presence of sensor
noise expected in the experimental apparatus. However, the spectral decoupling method
of obtaining natural modes from lattice filter inodes required a large number of data
points in the discrete Fourier transform to get adequate frequency resolution when the
modal frequencies were closely spaced, This problem can be overcome by an eigen-
vector analysis of the lattice filter's associated ARMAX model, When the lattice filter
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FIG, 7. Charactenstics of the Third Mode Identified from Experirental Tape 5.

was used for system identification with experimental data, the mode shapes identified
differed significantly from those of the finite element analysis. This has been corrobo-
rated by examination of the sensor data and indicates that on-line identification of large
structural dynamic systems may be absolutely necessary to get acceptable performance
in a high gain system that requires knowledge of mode shapes.
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EXPERIMENTAL EVALUATION OF FLEXIBLE STRUCTURE IDENTIPICATION USING LATTICE FILTERS

N+ Sundatarajan

0ld Domindon University Research Foundation, NASA Langleéy Research Center, Hampton, VA

Abstract, This paper presents the use of lesst square lsttice (filters in
idencification of the dynamics of highly flexible structures., Lattice filters have
been used extensively in the areas of adaptive signal procesing and speech synthesis,
Herein, they are used for on-line identification of the nusber of wodes, mode shapes
and modal amplitude time series from the measurement data. The theory is {llustrated
using experimental data for a simple fres=free beam and s more complex, flexible,
tvo~dimensional grid apparatus. Results presented indicate that the lattice filter
approach produces effective identification of structural dynamics for the class of

structures studied to this time.

Keyvords: Identification, Lattice
Approximation, Vibration Measuruments.

INTRODUCTION

With tche size of the structures currently
contemplated for building {n space bhecoming

“larger, identification of thu dynamic characteris-

tics of these structures i{s an important area of
research. Accurate on~orbit identification
becomes a necessity as these structurea cannot be
agsembled fully on the ground becausc of its size,
and also it is difficuit to predict an asccurate
model on the ground. As the parformance tzquive=
ments for these structures in sopace becone
stringent, however, it becomes Imperative to
identify their charecterfstics on-orbit and modify
the control system as dictated by the identified
control system deeign model (adaptive contvol).
This paper highlights the model determipation
phase of the adaptive control problem. This phase
involves not only determination of parameter
estimates for an assumed linear form, but algo the
order of the linear nodel form.

An approach for identifying the dynamics of Large
Space Structures (L55) thee estimates nodel order
in addition to model parameters is prosented in
Sundararajan and Montgomery (1983). It uses
lattice filters which provide an order as well as
time recursive algovithm for linear least square
signal estimation. A comprehensive tutorial on
the theory and applications of lattice filcters has
been given by Freidlander (1980). The main
resulte from the paper of Sundararajan and
Montgomery (1983) are: the least squarc estimate
of the measurement sequence; the wodel order
required to fit the weasurements; the associasted
lattice model (this includes mode shape estimates
that are orthonormal in the measurement space) and
the associasted autc~regressive moving average
(ARMA) model of the measurement szquence. The
node shapes obtained by the lattice filter are not
the "natural” modes but a linear combination of
theme In order to compare the identified mode
shapes to those predicted by finite element analy-
eis, a decoupling method to obtain natural wmode
shapes from the lattice mode shapes have been
developed in Sundararajan and Montgomery (1982).
Using the above spectral decoupling method to
obtain natural mode shapes, mode frequency and
damping can be obtained using an equation error
parameter identification method (Jolmson and

Filters, Space Vehicles, Least
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Montgowery (1979)) that employs a second order
ARMA model to represent the nacural wode ampli=
tudes, This procedure {s followed herein.

The objective of this paper is to present the
experience in using latticez filter theory for
identificatiun of structural dynamics of two flex-
ible atructures, They consist of a one-dimen~
sional free~-free beam and a two~dimensinnal
flexible grid spparatus, The structures are part
of an experinental facality at the Aerospace
Control Laboratory at NASA Langley Research Center
for studying advanced control concepts for large
space struccures. The bzam apparatus provides a
simple structure to test the basic concipts first,
and the grid apparactus provides a more complex
structure close to the real spacecraft, Before
presenting the results of lattice filter identifi-
cation for these structures, a brief outline of
the basic theory is given. Results are presented
for the {dentification of the dynamics of the beaw
using experimantal data. Next, the same {8
repeated for the grid appavatuu. Conclusions
based on the above study resulte are then
summarized,

Summary of Lattice Pilter
Identificarion Theory

For the application considered here, we assune
that the kth measurement sample {8 of the form

rem (11000 R0 ]

where NS represents the number of sensors, It is
assumed that y 1s generated from a model system
whetein

yk - 6qk + 0, (1)

Here, ¢ 15 an NSXNM mode shape matrix, qg 1s the

NMx! modal amplitude vector, and ny 18 a NSx)
gaussian random varfable with zero mean and &

covarfance matrix R. Typically, for structural
dynamics applications, each component of gq 18

the output of an uncoupled second order process.
The task here is to estimate the order (NM) and
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obtaln the least square estimate of gy from the
N+l messurement sauples yy shrough yy.

sundararajan and Montgomery (1981) presenc a derie
yation of the aquations that re.ste order, n, &nd
time, 1, recursions for the normalized forward and
backward residusls as vell as the least aquare
estimate of the massurement vactor., These eque=
tions are listed balows

- w ke ~1/2 -
LIRR Rt Ko C8,n = % neiEee 0

'l/Z(

2
L L TReY A T U R PRI

»

N-l
Yy " ,,EOE‘!u.n LML (2)
vherein

k >

1,0+l " <"'-'i..n' Liel)n

and £(x]y) is the othogonal projestion operator of
the vector x onto the vector y» The symmetry of
the recursion formulae are apparents, The equa~
tions are coupled by the term ky ., which ls

custowarily called the “reflection coefficient.”
The d<tructure of this equation {s depicted in

Fig, | where we have used the symbol ! o
rapresent the time shift operator, {.e.

-l

2 %" Tiel,n

1t should be noted at this polnt that the lattice
filter (s a modified Gram=Schmidt procedure
involving both forward and backward residusls
wherein the backward cesiduals form an orthogonal
basis for the entire observation sequence. lience,
any least square estimate 1) the orchogonal
projaction onto this basis. Assuming at this
point the order NM has baen obtained (which is
explained below), the lattice filter has
decomposed the estimation of y into the form of
squation (1),

wherein

¢'(rl.l".r '

1Ny
and

LI Y

{se., the backward residuals ry , form the

orthonormal basis, or the mode shape matwix ¢ and
the forward residual 2y,n Tepresents the modal

anplitude time series.
The lattice filter has the following advantagec:

1. Civen & basis for order N, a basis for
order N+| cay be oabtained using the
recursion formulae.

2. Because of the wmodified Gram=Schmidt
procedure, the basis for all orders n
between 0 and N are the first n elements
of the basis of order N.

3. The estimate assuming any ocrder n
‘wewsen 0 and M+l can be computed using
v.iation (2).

model ovder betwaen 0 »snd N+l inclusive, This
inlornation provides the basis for the model order
deternination sethod described next,

Clesrly, in this spproach one may "fit the nofse”
by continually increusing the order of the system;
however, once the ordor of the estimator has
increased beyond the correct order, then the
residual errors should lie within 3 noise band
which can be predicted based on sesumed nolue
characteristics, A thrushold value can be
salected based on this predicted nofse band, and
order can be daturmined by a test of whether or
not the residuale have been reduced to lie within
the noise band, Also, the test can be made
considering several data samples when using a daca
window, Sundararajan and Montgomecry (1983) docu~
ment the experience in choosing the data window
size MW and the threshold level based on simula~
tions, Having defined the order required to ({t
the data using a linear model, for comparison with
finite element snalysis predictions, we seek &
fixed sec of basis functionas that are spectrally
decoupled, A nethod to obtain the decoupled modes
from the lactice filter modes wusing digitasl
Pourier transform (DFT) haa been presentad {n
Sundararajan and Hontgomery (1982), Essentially,
at this point we hava estimates for order NM, mode
shapes ¢ and modal amplitude time series q(k) from
the lattice filter,

Since the ultimate objective of identification is
for control system design, an ARMA model isg
identificd using the modal anplitude time series
q€k)s The method (s bszed on an wsquation error
mathod described In Johnson and Hontgomery
(1979)¢ For esch mode, the model ta described by
the equation:

q(k=l) = Alq(k-Z) * Azq(k-J) + nlu(k-z) + B

2u(k-3)'

(3}
The equation error is given by: !

e(k=1) = q(k=1) = g(k~1)
w qlk=l) = izlq(u-z> + izq(k-3>
+h«wu+g«»n}

where § is the modél amplitude estimated by the
lattice filter, u is the modal control force, k 18
the sasmple number and Apy Ay By, By are

the ARMA coefficients. The term in brackets s
the model equation. The ARMA coefficlents are
then updated bys

I ENERE aCk-2)
A (k) A, (k=1) ak=3)
Qz - _2 + al(k~1)u
8, (k) B (k=4} q(k=2)
B, (k) iz“"’J Lq{‘u-J)

The weight it assures stability {f

0<w< 2/[q2(k~2) + q2<k-3> + uZ(k-z) + uz(k-J)l

This identifier performs well in a low noise
environment, but when the i{nformation content of
the signal is small, it attempts to £ft the nolse
(Thau, et. al. (1982), Also, the {deal ARMA model
for the beam has input parameters (B's) which are
three orders of magnitude smaller than the (A's).
This causes a very high sensitivity Lo nofse in
the {dentification of the B's, and when the input

Thoa lac-ice filter provides the information force {s applied, it tends to cause the identifier
nee.leq letermine the residual sequence for any gain on the A's to decrease significantly.
21
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Athe 1gh these effects are evident in the results
prascuced here, they did not prevent successful
identificacion,

1f one 1im {nterested in determining the damping
ratios and natural frequencies of the modes, they
can be obtuined in a straightforvard manner f[rom
the equation (J)s However, it should be noted
that this 1is not unique due to the [oldover
phenomenon due to sampling. by finding the toots
of the equation (3) and ui¥ing the relation

£ » e*Y in the priwary strip, vhere 1 {a the
sampling period, the daumping ratio and natuval
frequency can be obtained,

The behavior of this overall system identification
methodology with experimental dsta a8 discussed In
the subsequent sectiona,

Experimental Studies for the
Identification of a Pree-free Beam

In this section, the lattice filter theory
developed sarlier is illustrated for the idencifi«
cation of a one~dimensional free<free beam, The
fdentitication scheme yields the structural
dynamic characteristica of the beam, The experi-
mental apparatus for the fruewfree besa is shown
in Fig, 2. It consists of a |2~foot beam of
rectangular cross~section which is suspended from
the ceiling Ly two cables snd s attached to four
electromagnntic force actuators, There are nine
noncontacting deflection sensors that measure the
translational deflection of the beam, The actua-
tors are compensated to eliminate the effects of
friction as much as possible, This cumpencation
is nonlinear, producing a force in the direction
of the beam motion at the actuator attachment
points which {s designed to equalize the effect of
fristion. Teating uas done ! mapually sueiting
the beam approximately in fts first flexible mode
and sampling the nine sensors at 64 samples per
second, A totzl of 5 seconds of data was stored
on a tape which was post processed with the
algorithm. Figure 3 shows a time history of some
of the mcasurement datsa processed by the algo-
rithm.  The innovations sequence for sensor 4,
INOV,, {48 shown just below its time hietory,

Also shown 18 ths norm of the forward estimation
residual, ENORM, which 4includes all componenta of
the measurement vector, Below the porm 18 the
estimate of model order. This was obtsined using
a data window of eight samples. Initially, the
order estimator fills the data window, and hence,
the {Indicated order estimute {increases to 4,
After this the order estimator settles to 2
indicating that, even though we attempted to
exeite wnly one mode, theve were, in fact, two
significant wmodes excited, Note also that the
norm of the forward estimation errev 13 emall
compared with the value at the start of the
process when the order estimate was settling.

The modal amplitudes obtained from the lattice
filter are spectrally decoupled, using the proce-
dure discussed earlier, after enough data are
taken to accurately take the DFT (64 time samples,
about | second). This occurs at about |,75
seconds, the first .75 seconds being used for the
identificacion of mode shapes and model order (see
Pig, 4)» Figure 4 shows the modal amplitudes for
both of the {dentified wmodes. These are the
signals that are inputs to the parameter identifi~
catfon scheme used to identify the parameters of
the ARMA model of the modes. The {dentiffed ARMA
parameters are gshown on Fig., 4 for each of the two
modes identiZieds The a priori parameter esti~
mates are {nitfally offset from the values
predicted by a finite element analyesis which are
also {ndicated in Fig, 4. These parameters track

W v e g Y MM i s .

the instantanegus value roquired to miniwire the
ouUIpuUt Rrror,  One possibdle explanation of rha
oscillatory behavior of the wode 2 parsmeter
estimates s che nonlipearity of the actuator
compensation.  Monlinearsity fis apparent in the
sensor 6 dats on Fig, 3, MNote that Jattfce filter
produces 3 linear lesast square £ft of the data to
the meawurements, snd in so doing, produces a
predoninantly linear firsc mode estimate and lumps
the nonlinear dynamics inte tha higher medes,
Thus, the parswater tracking is more stable in
wode | and produces eotimates of an undamped
(A2«=]) oscillacion at nemrly 2,7 He» If the
slgorithm {s constrained to an ovder estimate of
one, the predominant response {s lingar, however,
the it error 4s increased by an order of
magnitude,

The mode shapes estimates obteined from the
lattice (filter are shown fn Pig, 5  In this
figure we compare the estimates obtained by three
methods, one anulytic, and two experimental, The
analytic vesult is the primary mode shepe of the
beam using Euler=Bernoulll theory, The two
experimental results which are in substantial
agteement are the nonlinear least squares
algorsthe of Thaue et al. (1982) and the lattice
filcer algorithm of this paper, Again note that
there {s apparently an effect of ths four attached
actuators on the dynamice of the test article,
The lattice filter produces two modes, one neavr
the mode of Thau et sl, (19682) and snother that is
shown on Fig, 5. This other estimated mode does
not. resemble any mode analytically predicted using
linear Fuler~Bernoulli theory, rather, is required
to model cthe effect of nonlinearities in the
apparatus,

Expurimental Studies for the
1dencification of a Flexible Grid

Wexe, the lattice fiiter fdentiffcation scheme is
tested in a more coamplex structure cowpared to
that of the bean. The candidate #tructure
coneidersd {e¢ that of a two-dimensional tlexible
grid, Identif{cation results are given using the
experimental data obtatned from the laboratory
apparatus,

Figure 6 shows the flexible yrid experimental
apparatus {n the Aerospace Control Laboratory, at
NASA Langley Resgavch Center, The grid ts a
7 tt x 10 ft planar structure made by overlaying
sluninum bars of rectangular cross section., The
bars are centered avery foot so that there are
7 vertical and |l horizontal bars. As shown {n
Fige 6, the grid is suspended by a cable at two
locations on the top horizontal bar. The motions
of the grid perpendfcular to the plane of Fig., 6
are the ones of interest in this study, There are
nine noncontacting deflection sensors mounted on a
back frame which give a 9x] measurement vector,
The sensor data is linked to the main Cyber 17%
Resl Time Computer Systam at NASA Langley Research
Center so that the identificacion can be carried
out in real time,

In order to compsre the experimental results of
lattice filter identification of the flexible grid
facility with predicted values, & finite element
snlaysis of the grid was made which included the
suspension cables. Four degrees of treedom appro-
priste for motion normal to the plane of the yrié
were considered., No damping was included {in the
model,

Experiments were conducted uging the grid
apparatus described above, The procedure for
conducting the experiments was to excite the grid
using an air shaker. The shaker was capable of
periodically exhausting a jet of afr that impinged
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on the grid ot sensor location | which wes ot the
botton left hand commer of the grid. The
frequency of the Jet was sdjustable from O te
% Ma. T™he resuiting grid excitation wvas net
purely sinuaoidal Mt was rich In harmonics.
Because of the range limite of the deflection
sensors = 0 to sppronimately 1 in. - the saxisus
pesk 1o pese defiections of the grid were limited
to sbout | In. When the peak to pesk deflection
neared this Limie, the alr shaker wvas turned off
and the grid wveas allowed to vibrate fresly with
only alr and saterial dasping. A Cyber 173 resl
Line computer systes sampled the deflection sensor
date 4* )2 “Mu. for 5 sec. Tha deta vas stored on
4 systes dats flle for further analysis. T™is
tent procedure was repeated for several shaker
frequencies In the range of | to 10 Ms. This
range has an upper Limit because of the sampling
frequency (32 Me.) The lower Lisit 1s selected to
include the predicted lowest vibration wsode
(2.2 We.) Eight data wsets corresponding to
different  shaker axcitation frequencies were
created and stored on  tapes, T™he following
discusaion pertaine to results extracted from data
set five,

Figure | presents data from sensors | and & =
well a8 the lattice fillter order estisate. L
this case the order estisate was based on & data
window of A semples and spectral decoupling was
done with &4 tise samples. From the figure, the
order estisate (s seen to converge to an oscillae~
tion between 2 and ) at about .5 sec. At about A
swe, the order estimate vas fixed at ) and dats
collection of the 64 time samples required for the
UFT was started ot )2 Ma. The OFT was accom~
plished at about 1.8 sec and then the decoupling
transforsation satrix was calculated., The wmodal
anplitudes aftur this tise should contain & single
frequency and the transforsed wmode shapes should
correspond Lo the natural wodes of the structure
which were excited, In that sanner, (hree wsodes
were extracted from experisencal data tape 5.
These have frequencies near .SHe, 2.5 MWe., and §
Me. Table | presents the wode shape estimates
obtained from the experiment. Also presented ace
selected mode shape predictions taken from finite
elument analyses. The mo’ss selected weare those
whose frequencies Dbracket the experimentally
derived ones. The following discussion deals with
the Table | datsa In order of (incressing
frequency. A good comparison does not exist with
wither bracketing finite element analysis mode and
the flrst experisental mode. Additionally, there
is some bending In the experimental wsode a s
evid d by e 4, 5, e b, The wmodal
amplitude for this sode (s shown In Fig. § along
with the ARMA paraseters A and A for the

mode and thelr primary astrip counerparts of
dasping ¢ and frequency «. For the second mode, a
¥00d comparison does exist betwen Lt and the ).07
Wz finite element analysis wsode. Note that,
however, the output of the sensor & Ls opposite in
sign and reduced in amplitude from the (finite
element predictica. This means that & feedback on
that sensor based on the finite elesent analysis
will be descablilizing near the 2.5 Mz frequency.
The validity of this deduction can be establiohed
by examining the outputs of seasors | and &
(Fig. 7). According to the finite elemsnt analy-
sis, the 2.5 Hx content of the sensors should be
opposite in sign. MHowever, they are in phase in
agrvement with the identification results.

CONCLUSTON

The application of least square 'attice filters in
fdentifying the dynamic characteristics of highly
flexible structures has been presented. The
theory has been used to (dentify the structural
characteristics of two experimental hardvare,

namely that of & free-frew beam and & flexible
$rid structure, The results Indicate that the
lottice filter con be effectively weed for on-line
fdentification of the ousber of modes, wode
shapes, wodal dasping and sodal frequencies from
the searuresent data, The experimental results
also Indicate that there s considerable disagree~
sant betwesn thes and analvtical predictions.
Based on thase experimental studies, the main
conclusion hat can be drawn (s thet for large
pace structures, on-orbit testing and identifica~
thon 1s essential before control s attespted,
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o= C rison Between the Finite Element
ctions rimenta
dentification

Mode | Mode 2 Mode )
Comparisons Comparisons Comparison)

Origin ’ | 4 1 4 [ 4 4 1 4 4 E 14
.
'.;" s .sl.e2s]2.22] 2.5[r.07fa.29) 5 .9

Sensor
v |=.51).26] .| as|-.as|-.47]-.38]-.04] .43
2 |-.51|.46] o]-.25] .11]-.00|-.34|-.38]-.35
3 |-.51].06]-.05] 38| .aa| .a8]-.30]-.16] 42
o |-.26].2¢] .a1] .3a|-.08] .13] 22| .18)-.07
s |-.26]-.1] of-.25| .08] of .24| .10] .07
o |-.26].01)=.01] .38)-.03]-.13] .22f-.01]-.07
7 |-.08).10| 36| 38| .sa] .51]-.34)-.05]-.45
8 |-.08{.20] o]-.2¢]|-.07] of-.as| .29] .22
9 |-.08).10]-.36| .38)-.54[-.51]-.28]-.54]-.44

P ~ Prediction based on finite element analysis
E - Calculation based on identification from
experimental data
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PROGRESS IN ADAPTIVE CONTROL OF FLEXIBLE SPACECRAFT USING LATTICE FILTERS

N. Sundararajan
0ld Dominion University Research PFoundation

Raymond C. Montgomery
NASA Langley Research Center

This paper reviews the use of the least square
lattice filter 1in adaptive control systems.
Lattice filters have been used primarily in speech
and signal processing, but they have utility in
adaptive control because of their order-recursive
nature, They are especially useful in dealing with
structural dynamics systems wherein the order of a
controller required to damp a vibration {s variasble
depending on the number of modes significantly
excited, Applications are presented for adaptive
control of a flexible beam, Also, difficulties in
the practical implementation of the lattice filter
in adaptive countrol are discuesed.

INTRODOCTION

For large flexible spacecraft, design wodels will
probably not be adequate. Hence, an adaptive
control system (s highly desirable. Early research
into adaptive vibration control of large flexible
structures is reported in reference 1. Therein,
adaptive control of a spinning annular momentum
contre] device (AMCD) was studied. That scheme
consisted of simultaneous identification and
control with the objective of reguleting the out~-
of-plane deflections of the spinning AMCD., Some of
the disadvantages of the method were the require-
ment of selecting rthe number of modes to be used
for controller design, the use of analytically
predicted mode shapes, and the coupling between
modes due to inhomogenities in the system. Lattice
filter adaptive control 1s a new method which
attempts to overcome these problems. It is, hence,
well suited for the adaptive control of flexible
spacecrafe,

The least square lattice filter has been used
extensively in the field of speech and signal
processing (reference 2). In these applications
the filter 1is desigued based on a predetermined
estimate of system order. Reference 3 is a compre-
hensive tutorial on this subject. Concerning
adaptive control, reference &4 proposes a self-
tuning controller configuration wusing lattice
filters. This scheme requires computing the poly-
nomial coefficients for the plant and controller at
each ({teration and enforcing a known feedback
structure for the controller. Reference 5 proposes
inverting the transfer function of the plant for
general adaptive control. This {dea, with the
least mean squares (LMS) algorithm, was utilized in

reference L] to obtain adaptive control,
Reference 7 proposes a similar approach using
lattice forms instead of the LMS algorithm,
Reference A takes this approach but uses a lattice
sodel instead of an autogressive, moving average
with exogenous variables (ARMAX) wodel where
familiar controller techniques could be used. All
of these scheaes atteapt simultaneous f{dentifica~
tion and control or direct adaptive control., For
each case stability questions are not resoclved
analytically; neither are simulation results
available in the open literature.

As opposed to simultaneous {dentification and
control, the scheme discussed herein consists of
conducting tests to obtain a design wmodel, vali-
dating the model, designing a controller based on
the validated wodel, and finally, engaging the
control system, This approach is ideally suited to
the control of large flexible spacecraft because of
the passive environment of outer space and the
potential of relaxation to a controller that (s
known to be stable - that of collocated rate feed-
back, It was originally presented in reference 9
and represented the first use of a recursive vari-
able order structure for adaptive control.
Therein, the lattice fllter was used to provide an
on-line estimate of the system order, mode shapes,
and modal amplitudes to provide a validated modal
control design model. After the {dentified model
parameters are validated through a series of test
praocedures, they are used in a modal pole-placement
ontrol law design. Figure | shows the adaptive
control scheme using lattice filters.

Figure 1.~ Mlptlvi Control with Lattice Filters.
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The purpose of this paper {s to assess progressz in
using lattice filters in adaptive control of
flexible spacecraft and to highlight problem areas
for further research., Ffirst, lattice filter theory
and order determinacion is summarized following the
original development of reference 10. Then, their
vae in adaptive control is discursed along with
applications to the vibration control of a beanm,
Finally, difficulties arising in %he practical
{mplementation are discussed,

SUMMARY OF LATTICE PILTER THEORY
AMD ORDER DETERMINATION

For application considered herein, we assume that
the {th measurement sample is of the form

YI - [yl(i)’ yz(i)v veey yNS(i)I

Jhere NS represents the number of sensors. It is
assumed that y is generated from a model systew
wherein

yi'OO '1“'V1 (1)

Here, ¢ 18 an NS x NM mode shape matrix, y; 1s
the NM x | modal amplitude vector, vy 18 a
Caussian~random variable with zero mean and
covariance matrix R. NM represents the number of
modes in the system or order of the system.

Reference 10 presents a derivation of the equations
that relate any order, n, and time, {, recursions
for the normalized forward and backward residuals
as well as the least square estimate of the
measurement vector. These equations are listed
below:

2 ) 1/2 (e

= (=ky a1 &4 o7y ne1Ei-1 0

E!.,M‘I

(-2, )M

1’ ol ~k

Linn © Eiep e, nb124,0)
wherein

- N
kit ™ €10 Liegn

and < » represents an inner product. The symmetry

of the recursion formulae is apparent, The equa-
tions are coupled by the term k':i.,n+1 which {s

customarily called the "reflection ccefficient.”
The estimate of the measurement (reference 10) at
sample 1 for a model of order n is

n

n-=1
Yin " Jgoé“i,ﬁ'x—x.ﬁ

)N

where é represents an orthogonal projection
operator. Hence,
v. =[x r eesy T ] k0
i,n n=1,0" n-1,1° ' "o~1,n-1 '
1,2
ki,n
so that

yp Y teg (2)
where ¢;, 48 an orthonormal NS X n matrix
(.’Ea-l,O' veey -r-n-l,n-ll generated from the
lattice filter, ond ¢; I8 the n dimenslonal
vector of reflection coefficlents and 2,n is the
NS dimensional estimation error vector.,

Clearly, in this approach one may "fit the noise"
by coatinually increasing the order of tha system;
however, once the order of the estimator has
increased beyond the correct order, then the
residual errovs should lie within a noilse band
which can be predicted a priori based on assumed
noine characteristics, A threshold value can be
selected based on this predicted noise band and
order determined by a test of whether or not the
restduals have been reduced to lie within the noise
band, The residuals will generally consist of
signal and noise parts =~ the signal part being
vreduced as the correct order is reached until the
residuals essentially consist only of noise. This
test {s carrted out based on a data window of NW
samplus, Thus, assuming that the data can fit a
linear model and that the noise process is
Gaussian, for { large enough,

™ r T
BC LS n 8,0 = W B(vyvy)

T NS 2
= W tr E(v,vy) = ijzlcj (3)

where E is the expectation operator, This can be
ugsed as the one sigma threshold Ffor the order
determination test. In the last equation o is
the standard deviation of the noise process
for the jth sensor, Reference 10 documents experi~
ence in choosing the data window size NW and the
threshold level based on simulatlons.

ADAPTIVE CONTROL USING LATTICE FILTERS

Independent Modal Space Coatrol ( IMSC)
(referene 11) 18 a control scheme specifically
designed to deal with flexible spacecraft in a
modal form amenable to control law design.
Unfortunately, it requires natural modes and not
the orthonormal basis provided by the lattice
filter. Consequently, in ovder to interface the
lattice filter outputs with the target adaptive
control acheme (figure 1) and to wake comparisons
with finite element analysis predictions of natural
modes, a method 18 needed to obtain natural mode
shape estimates from the lattice filter basis. The
filter updates th: NM basis vectors at every sampl:
instant, While the order estimate NM remains
constant, the updated basis vectors are related by
a mere rvotational transformation. The assumption
of the target adaptive control scheme 1is that the
system motions can be modelled by a constant and
finite set of natural modes and their associated
modal amplitudes over a reasonably long time
interval., Hence, when the est{mated system order
is constant, the basis elements used to derive the
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model amplitude time series required by the target
adaptive control scheme are not changed.

The transformation from the lattice Ffilter to &
natural mode basis should setisfy

yeah W

wherein the subscript 1 referas to the lattice
filter and N refers to the natural modes, A non-
singular wmatrix T, will sacisfy this condition
provided

"7 oNrN - (4)

Since the order estimate is assumed constant, this
matrix can be approximately determined on-line
using the digital Fourier tranaform (DFT). Herein,
this 1s accomplished as follows. Since the luttice
filter uses the current measurement sample as its
first basis element, the corresponding modal ampli-
tude time serics contains NM frequencies. Hence,
the DFT specttum of this series will contain NM
peaks corrésponding to these frequenciea. The
frequencies (wy, Wy, +esp wyy) can thus be
identified by searching this spectrum for these
peaks., Assuming that the motion 18 comprised of
undamped structural vibrations, the matrix T, which
produces the desired transformation can be calcu-
lated as

RG(Y:‘(UI)] " s 4 e s e 0 RE[YII‘(W

T = : :

)

S LUTIP) IR N CALCIY

wherein, [wi(w). coey w%# (w)] 1is an NM dimen-
sional vector of the modal amplitude tranaform,
Using this matrix, the digital Fourlar t{ransfotm of
each component of vy wil’ be zero at the discrete
frequencies, w;, J#i. Gue item which degrades
this approximation s the error in wusing DFT
instead of the true Fourler transform. seill
another is the assumption that the motion is made
up of undamped structural oscillatiuns. 1In spite
of these {items, reference [2 shows that this
approach produces good estimates of the natural
modes for the beam used herein.

The decoupled modal amplitude time series, »y(1),
as obtained above in equation (4), 1is then ana-
lyzed, for each mode, to identify the parameters of
its autoregressive, moving average (ARMA) model.
The {inputs to each ARMA modal mwodel are the
generalized forces and hence, each model takes on
the form:

YN(i) = Al‘l’N(i-l) + AZYN(i-Z)
+ Blf(i-l) + Bzf(i-z) (5)

where the f represents the generalized forces.
Given the ¥y and f's, the parameters A and B
above are identified and used in the control law
design process, Thus, the ARMA model output error
is

e(1=1) = T (2=1) = [A,(1=1)¥ (1-2) + Ay(4=1)¥)(1=3)
+ 31(1-1>f(1-z) + 52(1-1>f(x-3)] (6)

The gradient technique of reference | is used to
identify the parameters p = (Ag, Bi) using the
iteration sequence

P(L) = p(i=1) + e(1=1) [W ¥ (1-2), W, ¥ (1-3),

Wyf(1-2), W, £(1~3)] (7

As indicated in reference 1, the weights W must be
selected conasistent with the relation

2 2 2
WY (1-2) + W, (1-3) 4 Wof (1-2)

+ W, £5(1-3) < 2

and the fnputs to the algorithm, ¥y and f, must
be sufficiently varying and large L{f the parameters
are to converge to their correct value,

Por the identification and control scheme explained
above to work eatisfactorily in a closed loop
environment, it 1s necessary to validate the design
nodel, Three tests are suggested herein which
check the following: 1) model fit error; 2)
parameter convergence; and, 3) signal {informa~
tion. These tests have been used successfully in
simulation and experimental work, The fit errvor
test uses a fixed parameter get to calculate an
estimated modal displacement for the past NT
samples,

NT
%t >n§0¢~(1=a> - {Aplimn=1) + Ay (1-n-2)

+ By f (1-n-1) + B,f(1-n=2)}, k > NT

If the absolute sum of the error between the
modeiled displacement and the displacement calcu-
lated by the lattice filter exceeds a given thresh-
old, the fixed parameter set is updated with the
present identified parameter set. This process is
repeated until the parameter set fite the data.
The convergence test runs concurrently with the fit
test. It simply checks the magnitude of the
changes in successive estimated parameters,

NT
c'c;onv >n§0'pn - pn-ll for pT = [Al’ A2’ Bl’ BZJ

If the absolute sum of ten successive parameter
estimates changes 1is above a specified level, a
logical switch 1is set to indicate faillure. The
third and final test is on information content of
the estimated modal amplitude signals from the
lattice filters, The purpose of this test 1is to
check whether enough information i{s present in the
aignal for proper identification of the
parameters, If this test fails, the controller
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gains are not updated based on the ldentified
parametevs, but are frozen at the last values
before the teat fafled, Hers, the estimated modal
amplitudes and velocities from the lattice filter
are checked for sufficfent excitation by sumaing

ovaer ten samples,
ol * o = e

%

£ n=0
The second term in the above equation represents a
measuyre of velocity estimates, If the suw s below
a threshold, 0on¢s the updating of the control
gains based on the {dentifled parameters is
stopped, The information and fit ervor tests
constitute one test €or each mode and the coaver-~
gence and reasonability tests constitute four tests
for each mode, Thus, s8ix tests wmust be paassed
before control is applied to a given mode. The
actual stability and performance of the controller
is directly affected by the criteria chosen for
passing a test. 1f the test criteria are too
stringent, system nolse and nonlinearities may
preclude initi{ation of control., However, {if the
tests are not adequate, it {s posgible cthat an
error in the estimated parameters could result in

qtn

gatn calculations which produce an uastable
system,
Now, consider the philosophy to be used when the

tusts described above pass or fail. When all the
rests for parameters of a glven mode have passed,
control gains are calculated according to a
previously  developed pole placement scheme
(reference 1), The control force commands are then
calculated using these control gains. Considering
the philosophy used when the tests fail, two cases
were studied. 1In the firat case, chen the tescs
faitled, control was turpned off and the control
forces were made zero. In the second case, when
the tests failed, updating of the control gains was
stopped and they were frozen at thelr values prior
to the test failure, In this case, the control
forces were not made zero and were computed using
the frozen control gains. From a detailed study of
both cases, it was found that the performance of
the adaptive coantrol gystem in the first cagse was
superior to that of the second case.

APPLICATION 710 A FLEXIBLE BEAM

The closed-loop adaptive control scheme of figure |
has been tested in the digital simulation for the
12~foot, flexible free-free beam located at NASA
Langley Research Center. The simulation contains
the mathematical model of the beam apparatus in
modal form. For this study, the simulation
contains one rigid-body mode, the firast three
flexible modes, nine deflection sensors, and Cfour
actuators for control purposes. The initial
conditions on the modal displacements were set to
+05 in. and the modal velocities were set to zero.
The modal damping was also set to zero, A digital
sampling rate of }2 Hz was selected for the simula-
tion, and the standard deviation for all measure-
ment nolse was assumed to be .005 based on obaerved
noise {n the available hardware. The lattice
filter estimates were based on a data window size 4

B i T e et

(reference 10). The testing procedures were all
carried out based on data window (NT) of ten
ssmples, Initial parameters estimates were offset
from the mathematically correct values to test and
verify the rapid convergence of the fdentification
algorithm, An arbitrary delay of 2 seconds was
added batween the tima identiffcation starts and
when the control would be applied to show the
behavior of the identification achene,

At the start of the simulation, the lattice filter
determines the number of modes in the simulation
along with the mode shapen, Modal amplitude time
histories are then generated, Prom the lattice
filter mode shapes and modal amplitudes, natural
modes and modal amplitudes are obtalned through a
linear transformation explained in the earlier
section. The application of the transforuation fs
delayed for 2 @econds because the online
transformation technique of reference 12 requires
2 seconds of data for a digital Fourier transfocm
data base to obtain the required transformation.
The natural modal amplitudes are {input to the
equation-error parametear {dentifier which
identifies the ARMA parameters. The ldentification
results are then tested using the test procedures
degcribed above. When the tests are passed, the
coptrol is turned on. Results of the simulations
are presented {n figures 2-4.

Figure 2 shows the esti{mated modal displacement for
the Elrst lattice filter mode., The order estimate
plot shows that the correct order of 4 is obtained
in .J seconds. After the parameter identification,
wvhen all the tests are passed, thé control is
turned on at 5,5 seconds and the modes are damped.
The vesult of the adaptive control on the natural
modes 18 shown fn figure 3, It {s evident that
when the fdentification ie validated by passing the
tests and control turned on, the vibration
suppression is achieved., When the modes are damped
out the lattice €ilter order estimate drops from 4
to | indicating the flexible modes are damped out.
Although the lattice filter order decreased, the
control design ovder was maintalned at 4 throughout
the time interval when control was on. Allowling
the ovder to vary {in real ctime and updating the
control order is a tople for further studies,

Nedar determination

' Lacelce filtar docoupling

: Paramater {deatillcation and cescing
A ’__A :nnnnl redesign and applicagion
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Figure 2.~ Typical time history of an adaptive
control run  using identification,

testing, and control design.
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Figure ).~ Time histories of three natural modes
with the lattice filter order indicated.

The main results of the identification and the test
procedures are summarized in figure &, For the
first flexible mode, the fig re shows the time
histories of ({dentiffed (frecuency parameter A,
the fit error, a parameter that indicates algorithm
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Figure 4.~ Time histories of the test variables for
one mode with the test thresholds and
logic sum of the tests indicated.

convergence, and & parameter that indicates
information content of the measurements, When all
the tests are passed, the corresponding pass
paranmeter (plotted as & binary logical varaible) is
set to one, ' The various thresholds for the tests
are also marked to indicate when the tests pass.
These thresholds were determined based on detailed
sensitivity studies of the modal control scheme for
the beanm (reference 13). An error was intentionlly
put on the initial estimate of A, %0 that the
convergence of the estimates to the correct value
could be observed, When the identifier is turned
on, the estimate converges to the true value of |.8
from 3. The thresholds indicate that the fit error
test is passed first and then the convergence
test, With enough signal in the measurements the
information test is alwvays passed. When all the
tests are passed at 5.5 sec, the control i{s turned
on., When control {s fully effective, that is when
the modes are damped out, the measurement dats will
contain only the noise and the information test
will fall, This is {mmediately seen from the
history of A, as it starts oscillating with large
amplitude (indicating that the wmodal amplitude
signal contains wainly noise. Also, 1f the
parameter excursions are large, the convergence
tests will also fail indicating a failure for the
binary variable pass. Once this happens, the
control gain updating 1is stopped, and control
forces sere made curo.

PROBLEMS IN PRACTICAL INPLEMENTATION

The adaptive control scheme of figure | 1is good
from the engineering point of view since only vali-
dated models are used for control system design., A
natural question arises as to the course of action
wvhen validation tests fail. The operating environ-
ment for large flexible spacecraft is, fortunately,
benign and a system designed to suppress vibrations
can be shut down at the expense of having to
conduct relatively long term maneuvers. Another
saving feature of large flexible spacecraft (s that
collocated rate feedback is stable and relaxation
of the system to this mode of operation is also
possible, again, with corresponding degradation in
performance, Therefore, two options that can be
evoked are; one, to shut down the control system
and the other, to revert to a robust control system
design which insures stability.

At first glance one may wish to use the ARMA model
generated by the lattice filter directly in the
design process rather than using IMSC with ({ts
requirement of generating natural modes. Unfortu-
nately , the current online design capability for
controllers of vector ARMA processes {s not ade-
quate. Having selected IMSC, one must obtain
natural modes from the vector ARMA model or from
the measurement time series. Kere the same problem
arises, that s, the ~current capability of
eigenvalue/vector analysis for vector ARMA
processes 1is inadequate for online {implementation.
Hence, a time teries analysis using a DFT has been
selected. The accuracy of the process of
extracting natural modes s diresctly affected by
the number of data points processed. Hence, there
18 a tradeoff to be made between the higher
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complexity in control computations versus the error
in the natural modes using the OFT approach. Also,
significant computational saving results Lf the
approximation of zero damping can be evoked, If
this approximation cannot be made, then one must
work with complex modes.

Since several approximations are required by the
system, a method of validating the models used In
the online controller design 1is essential,
Analytic maethods of validating models based on
statistical error analysis (e.g. Cramer~Rao bounds)
ate not adequate., Currently, tests on fit error,
algorithm convergence, information content of the
measurements, and reasonability have deen urad,
The thresholds and design constants for these tusts
can be determined only by exhaustive simulation

and/or hardware tests and {s not an online
procedure.

CONCLUSION
This paper veviews the use of the least square
lattice f€ilter 1in adaptive control systems.

Emphasie s placed on the integration of the
lattice filter i{nto a practical parameter adaptive
control system, One novel feature of the
recommended system 1is the lInclusion of a design
model validation scheme based on model fit error,
algorithm convergence, and signal {nformation
content, An application 1is presented for adaptive
control of a flexihle heam. These results indicate
that the lattice ¢€llter adaptive acheme I8
practical for vibration contrel of large flexible
spacecraft, Difficulties in the practical
tmplementation of the lattice filter in adaptive
control are also discussed, These centered around
the computational burden of transforming lattice
filter modes into natural modes and the selection
of the thresholds for online validation tests.
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ROBUST CONTROLLER SYNTHESIS FOR A LARGE
FLEXIBLE SPACE ANTENNA

Ne Sundararajan*_, S+ M. Joshi, and E. S, Armstrong »
NASA-Langley Research Center
Hampton, Virginia 23665

SDMMARY

This paper investigates the application of the linear-quadratic-
Gaussian (LQG)/ loop transfer recovery (LTR) method to the problem of
synthesizing a fine~pointing control system for a large flexible space
antenna., The LQG/LTR approach of synthesizing a multivariable controller
in the frequency domain is selected because large flexible structures can
be moc+lled with elastic mode transfer functlons as additive perturbations
on the rigid body model and the LQG/LTR approach uses this formulation
naturally for robust control desién. The study is based on a finite

element model of the 122 m Hoop/Column antenna, which consists of three

rigid-body rotational modes and the first ten elastic modes. A robust

compensator design for achieving the required pointing performance in the

presence of modeling uncertainties is obtained using the LQG/LTR method.
For the Hoop/Column antenna, a satisfactory controller design meeting the
desired bandwith of .1 rad/sec and ensuring stability with unmodelled high
frequency modes was obtained using only a colocated pair of 3-axis
attitude sensors and torque actuators. This study also indicates that to
achieve the desired performance bandwidth of 0.l rad/sec. and to ensure
stability against higher frequency elastic modes, the design model should

include the first three flexible modes together with the rigid body modes.

* 0ld Dominion University Research Foundation, Norfolk, VA
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’ INTRODUCTION

One of the planned activities of the NASA's Space Trangportation
System is the placement in earth orbit of a variety of large space
antennas, Potential space missions will require antennss and structures
ranging from 30m to 20km in size. Applications include communications
(mobile), remote sensing (soil moisture, salinity, etc,), deep space
network (orbital relays), astronomy (x~-ray, observatsry, optical array,
radio telescope, very long baseline interferometry, etc.), energy and
space platforms. Specific missions have been pinpointed and fuiure
requirements have been identified for large space antennas for
communications, earth sensing and radio astronomy [1). Particular emphasis
is plaéed on mesh-deployable antennas 4in the 50-120 meter diamecter
category. One such antenna is the Maypole (Hoop/Column) antenna, shown
schematically in Figure 1, basically consisting of a deployable central
mast attached to a deployable hoop by cables held in tension [2]). The
deployable mast consists of a number of telescoping sections, and the hoop
consists of 48 rigid segments., The reflective mesh, which is made of knit
gold-plated molybdenum wire, is attached to the hoop by graphite fibers.
The mesh is shaped using a network of stringers and ties to form the radio
frequency (RF) reflective surface. In order to achieve required RF
performance, the antenna must be controlled to specified precision in
attitude and shape. For example, for missions such as land mobile
satellite system (LMSS), which 1is a communication concept for providing
mobile telephone service to users in the continental United States, it is
necessary to achieve a pointing accuracy of 0,03 degree RMS (root mean

square) and a surface accuracy of 6 mm RMS. It is also necessary to
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have stringent contrnl on the motion of the feed (located near one end of

the mast) relative to the mesh. Because of its large size and relatively
light weight, the antenna 1s highly flexible, with a large number of
significant elastic modes. Its dynamics can be represented by partial
differential equations, or by very large systems of ordinary differential
equations. The resulting equations have many resonant frequencies, some
of which may be very low, and possibly closely spaced. The natural
damping is usually very small. For these reasons, control of large space
structures is a challenging task [3). Since the system is inherently of
high order, a practical controller has to be based on a reduced-order
"design" model. Furthermore, the parameters (l.e., frequencies, mode
shapes, and damping ratios) of the” system are known imprecisely. This
introduces additional modeling errors. Typically, the modeling errors for
finite element models increase substantially with increasing modal
frequency.

Reduced-order control synthesis for the Hoop/Column antenna using the
standard LQG theory was investigated in [4,5]. The standard LQG procedure
yielded satisfactory control, i.e., rigid-body bandwidth of up to 0.25
rad/sec, satisfactory time constants for the elastic modes, and acceptable
root mean aquare (RMS) pointing errors in the presence of sensor noise,
It should be noted that the 1QG approach in reference 4 used a large
number of actuators and sensors (four 3-axis torque actuators and four
3~axis attitude and rate sensors). It was found in [4) that the first

three flexible modes had to be included in the "design" model (in addition
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to the three rigid modes) to obtain satisfactory performance, The main

problem with the LQG method was that a large number of weighting
parameters had to be simultaneously adjusted to obtain a good design. In
addition, the stability robustness property with respect to inaccuracies
in the modal parameters could not be properly evaluated because it was
difficult to effectively characterize the bounds ¢n modeling errors in a
time~domair setting. In order to reduce these difficulties, normally one
checks the control design for robustness after the control design is
completed using LQG or any other method. Such an approach in the
frequency domain using singular value measures was presented in (6] for a
large space structurp using. different control design methods like LQC,
gtc. Unlike the above methods;
the LQG/LTR approach provides a means of including the robustness-to-
uncertainities, in the control design process itself. Since it iz in the
frequency domain, it extends the basic frequency domain design guidelines
like bandwith, cross-over frequency, etc. from a scalar system to a
multivariable system.

The newly emerging robust control synthesis methodology which uses
frequency domain matrix norm bounds (i.e., singular values) has received
considerable attention in the recent literature [7-9]. The Dbasic
framework for frequency domain synthesis using the LQG/LTR methodology was
developed in [7-9]. It has been applied to diverse wystems such as power
systems [10] and aircraft engine control [11]. The LQG/LTR design

philosophy uses a low-frequency "design model” of the plant and a
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high-frequency characterization of the modeling errors. This method,

which characterizes unstructured uncertainty with singular value bounds,
appears to be particularly well suited for the control of large flexible
spacecraft due to the considerable uncertainty that inherently exists in
the mathematical models.

The purpose of this paper 1is to investigate the use of LQG/LTR
multivariable frequency domain methodology in the design of an uttitude
control system for the Hoop/Column antenna. A low order compensator is
obtained by treating a sequence of finite element design models ordered
with increasing modal frequency and chooiing the final design mndel as the
first one which allows the performance/robustness objectives to be met.
In this sequence of design models,.the'firsc one consists of the rigid
body modes only. Subsequent design models are obtained by the successive
addition of flexible modes. The designs use 3-axis torque actuators,
colocated attitude sensors, and attitude feedback.

The organization of this paper 1s as follows: The matliematical model
of the system is described in section 2. The control objective 1s briefly
discussed in section 3, followed by a brief description of the LQG/LTR
technique in seciion 4. The reduced order (low frequency) design model
and the high frequency model uncertainty barrier are also di;cussed in
this section. Section 5 presents the results of synthesizing the
controller based on the above procedure using only attitude feedback.
Some of the problems and limitations observed are also highlighted. Based

on the study results, the conclusions are summarized in section 6.
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2. MATHEMATICAL MODEL

As a consequence of its large size and light weight, the Hoop/Column
antenna is a highly flexible system having a Jlarge number of significant
structural modes. A finite element model of the antenna [Ref. 2] is used
in this paper, The mathematical model considered consists of rotational
rigid-body dynamics (about the three axes) and the elastic motion. We
assume that the control will be accomplished by using np three-axis

torque actuators. The linearized equations of motion are:

L §TT 0
o =

S =1 j

n . T -

q+Dg+ Ag= %u (2)

where Ig is the 3 x 3 inertia matrix, 13 is the 3-axls torque applied

by the jth actuator, ag =(¢g» 85, Yg)T denotes the rigid-body
% 1 modal amplitude vector {(for nq structural
modes), D = 2 diag(pjwys PoWwgs e+, ppwy) is the inherent
damping matrix, (where py; 1s the dawping ratio for the ith mode). ¢ is
the m x ng "mode~-slope” matrix (where m = 3nT), u = (TF, Téa cvey
T};T)T is the m x 1 vector of actuator torques, and A = diag(w%»
mg, . m%q) where w4 is the frequency of the ith elastic mode.

The rigid-body parameters and the first ten elastic frequencies are given

in Table 1. Each value of py is assumed to be 0.01 for i=1,2, «.c,n .
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Normally, the sensors used include attitude and rate sensors. A

3~axis attitude y, a8t a sensor (e.g. a star tracker) output is given

by:
LT R N RS (3)

where ¢ 1s the 3 x Ng mode-slope matrix at the sensor location, and w
is the sensor nolse. If an attitude rate sensor (e.g. a rate gyro) is
used, the sensor output y, is given by an equation similar fo 3,
except that ag and q are replaced by &s and é, respectively. Torque
actuators and attitude sensors are assumed to be located near the top of
the mast at the antenna feed (Fig. 1.)

Defining x = (ag, &:, qT,- éT)T an n x 1 vector, the state
space model can be written in the form:

X v Ay X + By u (4)

y = CF X+ w (5)

The sensor noise w 1s not used 1in the design process in this paper;
however, it will have tn be included when computing the RMS pointing
errors., Ignoring the noise, the transfer matrix between the input (3-axis

torque) and the outpat (3-axis attitude) is given by:

G(s) = G,(s) + G,(s) ‘ (6)
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where
G,(s) = 1;1/52 (7)
"q
2
6, (s) -i§1<¢i¢f>/<52 + 20, 0.8 + ul) (8

(y; and ¢; represent the mode-slope matrices at the sensor and

actuator locations corresponding to the ith mode).
3. DESIGN OBJECTIVES

The basic design objectives for the control systems are: (1) To
obtain sufficiently high bandwidth (i.e. closed 1loop frequencies
corresponding to the rigid body modes) and satisfactory closed loop
damping ratios for the rigid body and structural modes; and (2) To obtain
satisfactory RMS pointing errors, feed motion errors ang surface errors.
The first design objective arises from the need to obtain sufficiently
fast error delay when a step disturbance{such as sudden thermal distortion
caused by entering or leaving Earth's shadow) occurs. The second design
objective arises from the RF performance requirements. These two
objectives may not necessarily be compatible, and may even be
conflicting, For example, the wuse of increased feedback gains for
obtaining higher bandwith and damping ratios will, in general, resulf in
higher r.m.s errors (because of the amplified effect of sensor noise)
beyond a certain point. Therefore, it 1s necessary to carefully consider
the trade-offs between the speed of response and lower RMS error. In this

study, the main control system specification is that a minimum bandwith of
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0.] rad/sec for the closed loop system is to be ensured. The upper limit
on the.low frequency gain is not sgpecified, but it 1s desired that iE
should be as high as possible. Also, for this sc¢udy no specification on
RMS errors was made and this aspect along with measurement noise will be

considered in the future.
4. 'THE DESIGN PROCEDURE

The LQG/LTR method has been described in detail in [7-~9]. Here, the
main steps are summarized first and then each step is discussed in detail.
(1) Define a "design"” model of the nominal plant which 1s an acceptable

low frequency representation. Define the high frequency uncertainty

(robustness) barrier, and the 1low frequency performance barrier.

(2) Design a full state feedback compensator based on the steady state
Kalman-Bucy filter (KBF), This assumes that the loop is broken at
the output. Adjust the weighting matrices in the KBF design until
its frequency response meets the robustness specifications at high
frequencies and bandwidth specification at low frequencies.

(3) Design a LQ regulator to asymptotically "recover” the frequency
response obtained in step 2.

(4) Verify stability, robustness, and performance for the entire
closed—~loop system.

The first step, which consists of the definition of the plant and the
uncertainty (robustness) barrier, is often the most important one. The

basic problem in controlling a flexible structure is the presence of a
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large number of lightly damped structural modes. Practical limitations
necessitate the use of reduced~order controllers. Therefore, the
uncontrolled modes, as well as the error in the knowledge of the
controlled modes, represent uncertainty. Since the number of structural
modes 1is usually large and finite element modeling accuracy typically
decreases with increasing model frequency, the design model should consist
of the rigid-body plus the first few elastic modes. The remaining
structural modes then (partly) constitute the plant uncertainty. In order
to obtain an acceptable low-frequency representation, the design model
must include at least the three rigid body modes. The uncertainty
barrier is a measure of the plant uncertainty at high frequencies. The
plant uncertainty can be representéh as either multiplicative or additive

uncertainty (Fig. 2). Additive uncertainties are of the form
G' = G + AG

while multiplicative uncertainties are of the form
G' = (I+A)G

Multiplicative uncertainty form is the preferred form in the literature on
robustness studies as the compensated transfer function has the same
uncertainty rupresentation as the raw model. However, since flexible
structure models exhibit naturally the additive uncertainty form of the
transfer function matrix, this will be used in the following studies. The

LQG/LIR approach requires the characterization of the uncertainty in terms
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of a frequency-dependent upper bound. Frequency domain sufficient
conditions are used to test the robustness in the presence of
uncertainties within that bound.
For the case of multiplicative uncertainty Lp(s) of figure 2a, the

closed-loop system is stable if
- -1
o[, Gu-1] < g [1 + (6,(3u)G (Ju))™"] (9)

where Gp(s) and G,(s) are the design model (plant) and compensator
transfer matrices, and ¢ and g denote the largest and the smallest
singular values of the argument matrix, respectively. At high
frequencies, assuming I[Lp(jw)]l ?? 1 and |[Gp(jm)Gc(jm)]n <« 1, (9)

approximately yields

1

- (10)
o (Lp)

o (Gch) <
The “uncertainty (or robustness) barrier” is an upper bound 1 (w) on
c(Lp). The system 1s stable in the presence of such unstructured
uncertainties if o[Gch] < 1;}(m) at high frequencieé.

When the additive uncertainty formulation (Fig. 2b) is used, a
sufficient condition for stability robustness 1s given by [12]

g (1I+ Gch)

—~ > o (AG) (11)
a(Gc)
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At high frequencies, assuming leGcl <<'1, (11) (approximately) yields

o (c,) < 1/ o (AG) (12)

That i1s, the compensator must roll off sufficiently rapidly at high
frequencies. The main objective of the LQG/LTR approach 1s to first
design a full state compensator (based on KBF) which has the behavior of
the desired loop transfer matrix (i.e.,, the 1loop gain Gch)'
Therefore, (from step 2) any loop shaping should involve the product

G,G. rather than G, alone as in (11) and (12). Assuming that G

p ¢ p
is a square matrix,
-1 -
6, =G, (G, 6.) (13)
- - ..1 -
o(G) <o (Gp ) o (Gp G.)
or
- -, =]\ = '
o (G,) < © (Gp ) o (Gch) . (14)

Using (12) and (l1), the following sufficient condition for stability

robustness is obtained:

9 (1+66) 0(6)

[

> 0 (AG) (15)

o (Gpcc)

The second step in the design procedure is %o design a full state

feedback compensator having desirable singular value properties, The
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performance of the closed-loop system depends on the low frequency gain
and the crossover frequency of the loop transfer matrix Gch; that is,
on the behavior of ¢ [Gch]- Larger low frequency gain and crossover
frequency indicates better tracking performance. Thus, .g[Gch] should
lie above the performance specification as shown in Fig. 3a. ‘The other
requirement 1is the stability robustness in the presence of model
uncertainties. If the multiplicative upcertainty formulation is used,
according to (10), the ¢ [Gch] plot should pass under the robustness
barrier o -l(Lp) at high frequencies (Fig. 3a). On the other hand, if
the additive formulation is used, the robustness condition (15) should be
satisfied (Fig. 3b). The advantage of an LQG-based full state design is
that it has excellent classical properties, and its frequency response can
be shaped in the desired manner by varying the weighting matrices [8].
As discussed in [7], this design can be accomplished using the LQR
Riccati equation if the loop is broken at the plant input, or the KBF
Riccati equation 1if it is broken at the point where the residual signal
enters the KBF. Herein we select the latter because the objective is to
control the attitude output. This selection is also consistent with

[9~11]. The KBF equations are:

AL + ZAT + 1T --% rccr =0 (16)

= -

IC (17)
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where L and p are the design parameters, L being an p % m matrix, and p a
scalar. The matrix H is the KBF gain and I is the corresponding Riccati

matrix. The KBF loop transfer matrix is given by:

Gyg(8) = € (s1 = A)71H | (18)
Generally, the irequency response 0(Gyp(jw)) would shift higher as y
decreases, and the crussover frequency can be adjusted by changing L [6].

Having obtained satisfactory éingular value behavior of KBF, the next
step 15 to design a LQR to "recover” the desired frequency response. This
is accomplished by solving the algebraic Riccatil .equation

T

ATp + pAT- PBBTP + q CT

C=0 - ' (19)

t

where P is the Riceati matrix and q is a positive scalar. The control

gain matrix G is given by

¢ = R 13T

It has been proven in references 7 and 8 that the loop transfer matrix

Gch for the overall system (consisting of the plant, the KBF and the
LQR) tends to GKF(S) as g+w, provided that the open-loop plant has no
transmission zeros in the right half plane. The compensator Gc(s) after

recovery is given by:

G.(s) = G (s - A+ BG + 1e) 'y
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Since the compensation obtained has no guaranteed robustness
properties, the last step will consist of testing the eigenvalues of the
entire closed-loop system to ensure stability and robustness. 1f
instability is discovered, it will be necessary to return to step 2 and
redesign the KBF for lower bandwidth and the LQR for robustness recovery.
1f this does not produce satisfactory results, it would then be necessary
to return to step 1 and include more elastic modes in the design model.
Application of the foregoing LQG/LTR procedure for the Hoop/Column antenna

is described in the following section,
5. CONTROLLER DESIGN BY LQG/LTR METHOD USING ATTITUDE FEEDBACK

The foregoing procedure has been applied to the Hoop/Column antenna
model. The computations of singular values of various matrices (e.g.
loop transfer, return difference, inverse return difference matrices) were
carried out using a recently developed multivarable frequency domain
analysis software package (FREQ), and the LQG designs were carried out
using ORACLS [13]. The nominal plant includes three rotational rigid-body
modes and the flrst ten elastic modes. We assume three torque actuators;
hence, the order of B matrix is 26x3. Assuming three attitude sensors
(one for each axis) at the same location as the actuators, C is a 3 x 26
matrix. The plant,'input, and output matrices were obtained from a finite

element analysis of the antenna.
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Before starting the controller design, the maximum and minimum
singular velues (0 and g) of the full, nominal, open-loop plant transfer
matrix were obtained and are shown in figure 4. The g plot clearly shows
the peaks at the elastic mode frequencies (i.e. the poles), the most
prominent being the first mode near .75 rad/sec. The dips in g indicate
the presence of transmission zeros for the multivariable plant at those
frequencies. The controller synthesis studies are performed using the
design model consisting of:

a) rigid-body model (n = 6, = 0)

fq
b) rigid-body and the first flexible mode (n = 8, ng = 1)

c) rigid-body and the first three flexible modes (n = 12, ng =3)

The measurements available are the three attitude angles at the feed

location. One 3-axis torque actuator 1s used at the same location. The

compensator is designed based on these sensors and actuators.

5.1 Rigid Body Model:

In this section the controller design i1s carried out based only on

_ the rigid body design model. The largest and the smallest singular values

of the rigid-body transfer matrix (n = 6) are of the form 1/s2.  The
corresponding additive uncertainty AG, which consists of the (20th order)
flexible dynamics, 1s plotted in figure 5. Figure 5 indicates the
presence of poles at the undamped flexible mode frequencies of 0.75
rad/sec, 1.35 rad/sec, etc. Also, the pole of the first mode frequency of

0.75 rad/sec produces the highest peak since it is most lightly damped.
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(The dimportance of this fact will be seen later when the stability
condition is violated at this point).

For this sixth order design model, a compensator design was carried
out using the Kalman filter design methodology to achieve satisfactory
performance (i.,e., large gain and bandwidth) at low frequencies, and
robustness at high frequencies. This design was carried out using the
Kalman filter Riccati equation (16). The Kalman-Bucy filter (KBF)
transfer matrix Ggp(s) 1s given 1in equation (18). Appr;priate
loop-ghaping can be accomplished by proper choice of the weights u and L
in equation (16). Since the controller design model 1s of the form
1/52, one can analytically evaluate the singular values of I+Gyp
using equations (16) and (17). Assuming p = 1 and L = (Ll,Lz)r the
left hand side of (15) can be solved. For L} = 0 and Ly = kp I, it

can be chown that equation (15) is satisfied by:

k, < 1077

This implies that the Kalman filter gain computed using (17) will be very
low. Figure 5 shows plots for condition (15) with two L matrices, with
Ly = 0 and k, = 1070 and 10™7. The right hand side of (15) is
also plotted in figure 5. It 1s evident that condition (15) is satisfied
for k2=10"7. As ko 1is decreased further, the curve shifts upward

thus increasing the margin.
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The next step consists of LQ regulator design. Having obtained an
acceptable compensator .through Kalman-Buecy filter equations, the LQ
regulator is realized via the loop transfer recovery method [8]. Figure 6
presents the singular value plots of the complete loop transfer matrix
cpcc(s) (which consists of the plant, the KBF and the LQR) for
different weighting parameter q (Eq. 19). The q selected was q-lO6 and
107, It is easy to check condition (l1) in this case. As q 1is
increased, the plots approach those of thé compensator obtained from the
Kalman filter design approach. The LQ design for q-106 was considered
to be satigfactory.

The g¢tandard LQG/LTR procedure rteguires the definition of the
"desired” loop transfer characteristics (see step two in section three.)
That 1s, 0(Ggp) must satisfy the low-frequency performance
specifications, and o (GKF) must satisfy the high~frequency robustness
specifications, Thus, in the presence of additive uncertainty AG, the
procedure states that the robustness condition

g (I +6G,..) 0 (G.)
= KF” = P > 3 (AG)

0 (Gyp)

should be satisfied. However, in the case described above, it was found
that the above condition makes the “desired” design (Ggy) extremely
conservative, From f. ure 6, it is seen that the closed loop bandwith is

quite low and nowhere near the desired value of .1 rad/sec. Therefore,
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. recov:zring this conservative loop gain yields a compensator with poor
o performance. This fact led to a modification of the LQG/LTR procedure,
In particular, the above robustness test on Gyp 15 omitted in the
modified procedure. Instead, the recovz:, 1s carried out first, and then
the (less conservative) stabillity test (11) is applied directly for the
compensator Gge The Kalman filter transfer matrix Gy 1s based only
on the desired performance and not on satisfying the stabllity test of
equation (15).

With the revised test on G,, the following cholces on L and y

R 4 Sl )

. matrices were made.

O *
L= J====1 3 p=l - :
1071
i
Using the recovery procedure, the compensator is obtained for this e

case wth q = 104, The resulting stability test (Eq. 11) is shown in

figure 7. It 1is seen that the stability margin 1s lowest at the first |
mode frequency (0.75 rad/sec). Any increase in the gain (obtained by "
q > 101‘) resulted 1n violation of stability condition at that point, *
The overall loop bandwidth 'is obtained from the singular values of the

loop transfer function Gch shown in figure 8. It is seen that the

bandwidth (i.e., the frequency ;lt which _q_(Gch) = 1) is far short of

the required 0.1 rad/secs In order to increase the bandwidth, the gain

pn Y
.
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[4
has to be dincreased by dincreasing q. However, this results in the
violation of the stability condition (11). Thus it is evident that, with

a rigid-body design model, it 1is not possible to meet the performance

specifications.,

5.2 1 Flexible Mode Design Model:

To overcome the above problems, the next alternative that was
considered was whether the inclusion of the first flexible mode (0.75
rad/sec) in the design model would improve the performance. The inclusion
of the first flexible mode, which 1is predominantly a torsion mode, results
in a design model of order 8. The singular values of AG shown in figure 9
are an order of magnitude lower~ than those in figure 5 (wherein AG
consisted of all the flexible modes). The first peak of o(AG) occurs at
1.35 rad/sec, which is the frequency of the second mode. This is the
critical point in the'stability test (Eq. 11). After a number of trials,

the following choice of L and u was made to obtain the desired performance

GyF*
i 0 "\
-1
L = 1071, sop =1
-1 |
1071, ; 0
L o

The recovery 1s obtained for q = 10° and the stability test is shown in

figure 9. Fig. 9 indicates the critical point to be at about 0.28
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rad/eeé. There is a good margin at the peaks of AG due to upward sloping
of the upper curve. The resulting loop transfer function (Gch) plots
are shown in figure 10. The plots indicate that the required 0.1 rad/sec
bandwidth is not obtained (although it is much higher thar. the rigid-model
case), Any increase in the gain (for q > 105) was found to result in
the violation of the stability condition (11). Figure 10 indicates the
presence of an open-loop invariant zero near 0,082 rad/sec, which was also
confirmed by independent ccmputations. This zero is almost on the
imaginary axis (i.e., the transfer matrix is close to being nonminimum
phase). Therefore, (as would be expected) the recovery procedure is not

very effective for making Gch approximate Ggpe

5.3 3 Flexible Mode Model:

In order to improve the performance further, the next step was to
include the first three flexible modes in the design model. It 1s logical
to do this because they represent the first modes about each axis, i.e.,
the first torsion mode, and the first bending modes in the XZ and YZ
planes. Thus, the order of the design model was 12. The singular value
plots for Gp

seen from figure 11 that Gp has zeros near 0,082 and 0.22 rad/sec, and

poles near 0.75, 1.35, and 1.7 rad/sec. It is seen from the AG plot

and AG are shown in figures 11 and 12, respectively. It 1s

(Fig. 12) that o is considerably lower than that in figures 7 and 9.
After numerous trials, the following choice of the L matrix and the scalar

py was made for a suitable Cgy
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oo T
-1
10771,
-, |
L~ 1071, 4 0 spo= 1
-4
1071, |0
-4 |
i 1071, : 0
J

The recovery was accomplished with q = 1019, The stability test 1is
shown in figure 12. It can be seen that condition (l11) is satisfied with
a wide margin. Also, at the peak for AG (at 8 rad/sec) the upper curve
slopes wupward, indicating good tolexance of high-frequency uncertainty.
The limit for increasing the gain (indicated by the lowest point in the
upper curve in figure (12) occurs at about 0.3 rad/sec. The resulting

compensator G, is shown in figure 13. The gain of G, is wuch higher

c
than that obtained in the previous cases. Generally, the LQG/LTR
technique attempts to choose G, in such a way that the product Gch

is replaced by Ggp (1.e. G, 1s attempting to invert Gp in the
frequency range of interest). The 3-mude design plant shown in figure 11
has elastic mode eigenvalues at -~,0075 * j.75, ~.0135 * jl.35, and -.0170
£ j1.70. Figure 13 shows that G, has zeros with frequencies near these
locations. The design plant also has transmission zeros at -.9 x 1074

j.082, =-.37 x 1073 # 3.22, and =-.29 x 1073 t j.22, Ideally, G,

should have poles with frequencies near .,082 and .22. However, the design
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plant‘zeros are too near the jw-axis and tend to numerically behave as
nonminimum phase. Some attenuation ig obtaineé by the compensator pole
near .4 rad/sec. The plots for the loop transfer matrix Gch are
given in figure 14, It is seen that a bandwidth of 0.1 rad/sec. is
obtained except for the presence of the invariant =zero near 0.082
rad/sec. which causes some deterioration of performance. At frequencies
past .4 rad/sec., GpGe behaves 1like Gygp and eventually rolls off at
60db/decade. Also, ¢ and o are closely spaced, indicating good system
behavior. Thus it is seen that the inclusion of the first three modes in
the design model yields a robust compensator which also Mneets the
bandwidth specifications.

The final step is to check -the stabllity of the complete nominal

system when the compensator G.(s) designed above is used. The overall

closed-loop system is:

Ae

- AF -BFG X

HCF A-BG-HC X

% e

where the subscript F 1s used to denote the full-order nominal plant, and
x denotes the state estimate for the design model. The eigenvalues of the
overall closed-loop system using the 3~mode controller are given in Table
II. It can be seen from Table II that the overall closed-loop systen is

gtable.
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6. OJONCLUDING REMARKS

The LQG/LTR multivariable frequency domain technique was employed in
the design of an attitude control system for a large flexible space
antenna, The LQG/LTR method was noted to be especlally attractive for
overcoming spillover effects common to large space structures control
problem modelled from finite element data. The design objective of
avoiding excitation of higher order modes while satisfying performance
criteria was met by including these modes in the robustnecs uncertainity
barrier.

Design was based on a reduced order model chosen as the rigid body
dynamics plus the fewest number of low frequency vibrational modes

necessary to meet a desired closed loop bandwith. Inclusion of the first
three vibrational modes (corresponding to the three'axes) was found to be
necssary to meet a 0.1 rad/sec bandwith., For wider bandwidths, design
models width greater than three modes may be needed. A satisfactory
control design was obtalned using only a colocated single pair of 3-axis
attitude sensor and torque actuator for the Hoop/Column antenna problem.

Performance degradation was observed due to the presence of invariant
zeros within the design bandwith. These zeros were unavo’dable given the
prescribed sensor/actuator locations and emphasized the fact that
consideration should be given to control aspects when building large space
structures.

A modification of the standard LQG/LTR procedure was introduced in

which the robustness test was performed with the full 1QG compensator
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H

instead of the intermediate Kalman filter design. Tﬁis approach was found

to produce higher gain compensators and helped overcome the basic

conservativeness shortcoming of the LQG/LTR approach.

1.

2.

5.
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Singular values of GG, for 3 mode model. %é
£
61 .
NG

- 1




S i dtate o el s st 2 SL T RS

e e i ST Y

B

T AN W  — R — - - B

27

Table 1. Antenna Parameters

Rigid~body parameters
Mase=4544,3 Kgo

Inertia about axes through center of mass (Kg-mz)

6 6

I = 5.724 x 10

xx Iyy = 5.747 x 10

6
Izz = 4,383 x 10

Ty, = Tep = Ly = 0

Structural Mode Frequencies (rad/sec)

0.75, 1.35, 1.7, 3.18, 4.53, 5.59, 5.78, 6.84, 7.4, 8.78
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Table 1I.

Eigenvalues of the Full Closed-Loop system

Real part Imaginary Part
-8.535 (1072) 8,054 (1072)
-8.535 (1073)  -8.054 (1072)
=7.557 (107%)  1.250 (107})
-7.557 (1072)  ~1.,250 (107})
-7.604 (1072)  1.248 (1071)
-7.604 (1072) -1.248 (107})
-2,237 (1071 2.23 (107h)
-2.237 (1071 -2.236 (1071)
-2.330 (1071 2.154 (1071)
~2.330 (1071)  ~2.154 (107%)
-2.379 (1071 2.113 (107Y)
-,379 (107} -2.113 (107)
~7.466 (107%)  7.466 (1071
“7.466 (1073)  -7.466 (1071)
-1.346 (107%)  1.346
~1.346 (1072)  -1.346
-3.076 (10°1y  1.373
-3.076 (107%)  -1.373
~1.016 1.267
~1.016 ~1.267
-1.702 (10”3  1.702
-1.702 (107%)  -1.702
4,028 (10°1)  1.737
~4.028 (1071)  -1.737
-3.181 (10723  3.181
-3.181 (107%)  -3.181
-4.422 (107%) 4,529
~4.422 (107%)  =4.529
-5.579 (1072)  5.590
-5.579 (1072)  -5.590
~5.731 (107%)  5.776
-5.731 (107%)  =5.776
-6.685 (1072)  6.841
-6.685 (1072)  —6.841
-6.390 (1072y  7.401
-6.390 (1072)  =7.401
-8.326 (1072)  8.782
-8.326 (107%) -8.782
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