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ABSTRACT

This report summarizes the analysis and results developed in a fresh
approach to calculate flow induced vibration response of a flexible flow
passage., The vibration results are further examined in the frequency domain
to obtain dominant frequency information, A cumulative damage analysis due to
cyclic strains is performed to obtain number of cycles to failure for metallic
bellows of particular specifications under a variety of operational
conditions. Sample plots of time and frequency domain responses are included
in Appendix I. Complete listing of a computer program is provided in this
report as Appendix II. The program successively executes each of the analyses
needed to calculate the vibration response, the frequency response, the cyclic
strains and the number of cycles to failure. The program prompts the user for
necessary input information. Sample data from the program is provided 1in
Appendix III, The fatigue life results obtained by the computer model 1lie

within an acceptable range of previously measured available data.



I. INTRODUCTION

Project Background and Overview

This report describes all the work performed by Georgia Institute of
Technology, College of Engineering, School of Mechanical Engineering under
Grant number NAG10-0017, "Fatigue Behavior of Flexhoses & Bellows Due to Flow
Induced Vibrations"., This study was performed for the Kennedy Space Center of
the National Aeronautics and Space Administration.

The general objective of this work was to investigate the physical
phenomena associated with flow-induced vibrations of a flexible line in order
to develop a methodology to examine its fatigue life. In response to NASA
needs, much emphasis was placed on developihg a computational procedure for
calculating the number of cycles to failure for a specific bellows based on
the assumed vibration model.

Flexible expansion joints are currently being used_ in a variety of
applications, These include the nuclear reactor cooling systems, supply and |
return loading lines for submarines from the mother ship on the base, liquid
cryogenic fuel lines for the space shuttle external tanks and so forth, There
is, in fact, a manufacturer's association for expansion joints which publishes
its recommended practices for their use,

Serious difficulties are encountered when practical solutions are not
obtained to control the so-called "self-generated" sound or vibrations in flow
systems which use such corrugated lines. For the special case of the
internally corrugated flexible hoses, segements of which are utilized in the
feed lines of Space Shuttle external tanks, a qualitative mechanism was
identified in terms of the fluid flow related parameters governing the
physical phenomena [1]. Unshrouded hose vibration was attributed to an

approximate matching between the longitudinal structural frequency and the



frequency of vortex shedding at a critical fiow velocity over the first few
corrugations in the hose, This led to the computation of the modal
frequencies of vibration by representing the hose with a series of lumped
spring-mass elements and relating the amplitude of vibrations to the damping
characteristics of the system. It was found necessary to supplemenfc the
postulated model by a large number of empirical correlations obtained from a
series of experiments to relate the system geomefry, the mean flow rate and
the fluid properties with the modal frequencies and amplitudes of vibration,
the damping characteristics, the maximum alternating stress and the expected
fatigue 1ife of the hose material [2].

Experimental observations under simulated field conditions have proved
the prediéted failure results of the two cited works to be very
conservative, Furthermore, an overwhelming reliance on empirically obtained
functions to pr‘edict the fagitue 1ife of the hose in these studies has made it
cumbersome to directly utilize the suggested failure prediction procedure,
Flex 1ine flow-induced vibrations were also examined iﬁ another study [3] with
an eye to developing a methodology to assess its fatigue 1ife. The cavity
resonance model utilized in this work tends to be extra sensitive to minor
parameter variations in predicting the time to failure by fatigue stresses.
It appears that a definite need exists in developing a vibrational model for
the flexible 1ine that dincorporates the interactive dynamics between fluid
flow past cavities and the flow-induced vibration of the convolutes of the
bellows configuration.

In the context of flow past cavities, there are three types of self
generated oscillations. These are the fluid-dynamic, the fluid-resonant and
the fluid elastic types of oscillations [4,5]. The fluid dynamic oscillations

arise from some type of flow instability inherent to the flow configuration,



The fluid-resonant oscillations occur due to standing wave resonance effects
which are particularly important for compressible fluid flow. The fluid-
elastic oscillations involve a coupling of the solid boundary vibrations with
the fluid flow perturbations causing those, It is this coupling which must be
quantitatively 1included in the vibration model which predicts the convolute
deformations. Subsequent cyclic strain analysis and the fatigue damage due to
it are also examined in this work. |

Statement of Research Problem

This research concerns the development of a vibration model as well as
fatigue damage analysis to estimate life cycles of a bellows or a flexhose
with a single- or multiply wall construction, The vibration model emphasises
the coupled interactive nature of the fluid flow and structural vibrations.
The vibration response is further examined to assess the dominant frequencies
causing fatigue damage. Finally, the research adopts existing theories of
cumulative fatigue damage with the results of vibration analysis to assess the
number of cycles to failure of the bellows.

Flow Past Cavities

One of the first modifications to improve currently existing models of
flow excitation in a bellows geometry concerns the force acting on each
individual convolute, A preponderence of previously published information
concerns flow past rectangular cavities. 0f particular interest is the
pressure distribution along the walls of the cavity.

Sketches of flow patterns in a rectangular cavity based on photographs
[6] are shown in Figures 1(a), (b) and (c).

A plot of the measured pressure distribution [6] along the cavity wall
for three different values of aspect ratio, h/b (0.5, 2.0, 1.5) reveals a

trend shown in Figure 2, Similar plot [7] is shown in Figure 3. On the other
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hand, an analytical model and its results of pressure variation along
horizontal axis [6] are shown in Figure 4, It is seen that there is a
pressure maximum at an area of flow reattachment on the downstream wall of the
cavity.

On the assumption that these same trends hold for flow past a convq]ute—
shaped cavity, the expected flow patterns are as shown in Figure 5., The
maximum wall presure is shown acting near the top of the downstream wall as
demonstrated in the earlier results on cavity flow, The drop in pressure just
previous to the sharp pressure rise shown in the plots might be explained by
the vortices in the recirculating flow on the downstream wall, The vibrations
of the bellows cause these recirculating vortices to move along the wall and
be shed from the convolute tip periodically. As a vortex crosses the region
of maximum pressure it causes a drop in this pressure., After the vortex has
been shed the maximum pressure is reestablished, thus producing a fluctuating
force., This fluctuating pressure force, along with an acoustical resonance
(radial) that may exist, could produce relatively high pressure levels
resulting in a bending of the convolute.

The maximum pressure force pictured may be broken down into transverse
and axial components. Previous research has described the force acting on the
convolute as a longitudinal force. Actually, this longitudinal force is seen
in the present research as only the horizontal component of the maximum

pressure force.

11. DEVELOPMENT OF THE MATHEMATICAL MODEL
Assessment of fatigue failure of meta]li; bellows due to flow induced
vibrations requires

a. the development of a coupled fluid-structure interactive vibration
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model to predict individual convolute deformations,
b. a frequency domain analysis of the vibrational response to identify

dominant frequencies. causing the damage

c. a failure analysis based on available cummulative damage theories to
calculate the number of cycles to failure,

Flow Induced Vibration Model

The interactive dynamics of bellows vibrations due to fluid flow over a
cascade of convoluted cavities, which in turn modifies the fluid flow and
forces that excite the vibrations, is a coupled nonlinear phenomena., It is
governed by fluid flow conditioné, the bellows geometry and the material
response behavior,

The effective excitation force 1is internally generated and an analysis
must be performed to express it 1in terms of identifiable physical
quantities. The vibration of an individual convolute within a multiconvoluted
bellows in response to the excitation may be examined via lumped springs and
masses in terms of physical quantities.

The Excitation Force

A comprehensive analysis of flow induced vibration of a bellows must
consider the motion of an individual convolute in‘two coordinate directions.
These directions correspond to the longitudinal and the transverse motion of
the convolute as illustrated in Figure 6(a).

An expression for the excitation force acting on the convolute must
account for the variation of the force due to convolute motion. When the
bellows are absolutely motionless the flow geometry is that illustrated in
Figure 6(b). This flow may be represented by the velocity triangle in Figure
7(a).

In this figure, ak

o0 ? estimated from data on flow past cylinders [8],is

-9 -
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the angle between the velocity of the flow approaching the convolute tip, U,,
and the velocity of the core flow, U.. The flow configuration illustrated in
Figure 6(b) produces force coefficients on the convolute tip given by
v’
B_Z (CD cosa, + C; s1nao) 4(1a)
c
u

(]
]

and 2

(g}
o
<

]
o

(CD sinao + CLCOSaO) s (1b)

where Cp and C; are drag and 1ift coefficients, respectively, of convolute tip
in the core flow; Cp and C; are estimated from flow past cylinders [8].

When the convolute tip is displaced longitudinally, the configuration
illustrated in Figure 6(c) results. The angle made by the flow approaching

the convolute tip with the core velocity, ¥ (= g + Aa) is shown on the

velocity triangle 1in Figure 7(b) representing this situation, In this

figure, U is the velocity of the flow approaching the jth convolute tip

raX,i
relative to the convolute longitudinal velocity. The force coefficients for

this situation become

u? .

- PuX,1
Cx,i =57 (Cp

c

cosa; + CL sinai) (2a)

and UZ. ‘
r,X,1 .

C . = (CD sin a; + CL COS a:) . (2b)

y,? U 2 1
c .

These expressions show that longitudinal motion of the convolute produces a
variation in both the longitudinal and transverse excitation forces.

Therefore, longitudinal motion cannot exist independent of transverse motion.

When the convolute tip 1is displaced in the transverse direction, the

-11 -
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configuration shown 1in Figure 6(d) represents the situation, The new

angle, By made by the approaching flow with the core velocity (Bi =0, * AB)

is shown on the velocity triangle in Figure 7(c). In this figure Ur,y,i is

the velocity of the flow approaching the ith convolute tip relative to the

convolute transverse velocity. The force coefficients for this variation are

Urz‘y'i
Cx,i = U 2 (CL
(o

sinsi +C cossi) (3a)

D

and
UZ

Cy,i = -fjlfl (CL cosg; + CDsinBi) . (3b)
c

Similar to the case for longitudinal motion, transverse motion causes
variation 1in both the longitudinal and transverse forces acting on the

convolute tip. Therefore, transverse motion cannot exist independent of

longitudinal motion.

If the transverse and longitudinal displacements are allowed to occur
simultaneously, the velocity triangle becomes that shown in Figure 8. From
this figure the angle ¢3 and the relative velocity Ur,i may, respectively, be

determined as

_ U tana_ + (¥; - ¥;_q)
¢; = tan 1r 2 L _1 S (4)
UC - (xi—l - Xi)
and
W2, = [Utane + (¥; - §; )22 + [0, - (% - %;)7 (5)
r,i ¢ o i i-1 c i-1 i .
The force coefficients are given by
w2,
- r91 3
CX,'i = U—z—— [CL S1n¢1. + CD COS(’)i] (6a)
C
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and
U2

Tyt T —3_’37 [ C cos¢; + Cp sing] . (6b)
C

The excitation forces may, therefore, be expressed as

21 2 '
Fx,i 7 PU A Cx,i (7a)
and
21 2

where p is the fluid density and A is the convolute tip surface area.

Upon substituion of the expression for ¢ into the expressions for the

force coefficients one obtains

2 * L ]
Ut . U. tana_ + (y. - Y. 1)
C .= _fil { C, sin [tan’1 ( ¢ ° L 1-1 )] (8a)
X,1 u L Up - (X - %)
c C i-1 1
. U tana o+ (Y - yiog)
+ Cp cos[tan Lt 2 LS Lue SR
U By e %)
and 2 (
U .c. U.tanae, + (y. - 5’- )
- sl -1 C 1 i-1
Cy,i = —5 { C cos [tan™"( T 30 )] (8b)
C C i-1 i

+ CD sin[tan

1 Ugtanay + (y3 - ¥429)
)

Ug = (x4 - X

Upon introducing the trigonometric identities

1

sin(tan "6) =

and
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1
1+09

cos(tan‘le) = 5

the force coefficients, with some rearranging, become

2 L d L]
us . Ustana, + (y: - ¥z 4)
r,i C o} i i-1
CX:1 - -l.J-_Z-{ CL [ U - (;( - )'( ) ] + CD}
C C i-1 1
Untane  + (Vs - Ve o) -
+1 C o. i : i-1 }-1/2 (9a)
Ug = (X4op = %y)
and 2 . .
0 AR [ Ugtanay + (¥5 - ¥54) ]
T B S SRR : : }
U Ue - (Xyop = %y)
Ustana  + (¥ - ¥s 4)
(+ C o. i : 1-1 ]}-1/2 (9b)
Ug = (X41 - Xy)

Use of Equation (5) into Equations (9a) and (9b) yields the desired

expressions for the force coefficients as [9]

Cy,g = =g AL Ugtanag + (g = 35 )P+ [ - (kg - 5)FpY2

¢ (10a)
{C, LU tanay + (¥;3 - ¥5_4)3 + €y LU_ - (X4 4 - X)D
and
Cy,1 = = (Lutanag + (35 - §3_1* + LU - (y_y - %22
¢ - (10b)
(6, LU, = (kg - %01 + €y [Utanay + (5, - 35 DDy .
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The excitation forces may now be written as

Foi =% A (LUctanag + (3 = ¥3 T2 + [Ug = Gy - %122

(11a)
{c, LU tana, + (¥4 - ¥5_)3 + 6 [Uc - (kyy - %]
and
Fy.i = ,12 pA {[Uctane  + (¥; - 5(1._1)]2 + U - (%44 - >’<1-)]2}1/2
(11b)

e LUe - (ky_; - %3)1 + €y [Uctana, + (¥ - §; )03 .
It may be noted that in addition to fluctuations in the excitation force due
to convolute motion, there is also a fluctuation exressed quantitatively due
to vortex shedding that was suggested in a qualitative way previously by
others. As the vortex moves across the region of highest pressure on the
convolute tip, the pressure is reduced, After the vortex has been shed the
high pressure region is reestablished, thus producing an "on-off-on" type of
fluctuation in the force which is already varying with convolute motion,
Equations (1la) and (11b) are to be incorporated as excitation forces in

the vibration model that represents the dynamic force balance of the bellows.

The Lumped Parameter Vibration Model

The development of an expression for the excitation force acting on an
individual convolute suggests the need for a mechanical model which allows
both longitudinal and transverse motion of the convolute. In order to develop

such a model the bellows is divided into discrete mass elements such as the

- 16 -



one shown in Figure 9., By considering longitudinal and transverse motion of
this mass element and the elements édjacent to it, a two dimensional vibration
model is developed. This is i1llustrated in Figure 10, where FD,x and FD,y are
damping forces which represent such effects as sliding between plys of the
bellows and internal frictional damping. Viscous damping is not shown in the
illustration, since the damping effect produced by the fluid surroundiné the
convolute is already included in the expression for the excitation. ky and ky
are material spring constants, m, the material mass of one element and m¢ the
fluid mass of one element. These components of the lumped model are further
defined elsewhere in this report.

From the vibration model illustrated in Figure 10 a system of equations
describing the motion of the convolutions must be developed. This system must
include all of the lumped parameters and effects described above., The system,
when solved, must also provide displacement as a function of time for each of
the convolute tips.

The development of the equations governing the system behavior results in
two times the number of convolutions coupled, nonlinear, ordinary,
di fferential equations. These equations are derived by performing a force
balance on the discrete mass element shown in Figure 11(a). The force balance

gives

I Fx = Fx,i + FD,x sgn(xi) + kx(xi+1 - in + xi—l) = (mm + mF)xi .
which upon rearranging becomes
(mm + mF)Xi - FD,x sgn(xi) + kX(in - Xi41 - xi-l) = Fx,i . (12)
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The force balance in the transverse direction also may be performed on the

element shown in Figure 11(b). This gives

23

sgn(y;) + ky(ygeq - 295 * ¥4) = (Mg +meyy
Once again, rearrangement gives

(mo + medys = Fp o san(yy) + ko (2y5 - ¥549 - ¥49) =F (13)

y y y,i*

Upon substitution of the previously determined expressions for Fx,i and Fy,i

the system governing equations become-

ae

(m_+ mf)x. - F

x"1+1 1

= 3 oMLY, tana + (75 - ¥3_)T7 + [Ug (%4 - %) T23H/2 (14)

{C [uctana, + (¥ - ¥5_9)7 + CplUe - (%51 - %) 12

and

(me +melyy - Fp pson(yy) + 2kpys - kyyipg = kyyy

= 2 oA (LU, tanay + (¥; = ¥3_)17 + [Ug - (%y_y - %1512 (15)

{CL[UC - (%,

j-1 - X.i)] + CD[UCtanao + (y1 - ‘y'i-1>]} ’

where each value of 1 designates a specific convolute. This produces the

previously mentioned system of coupled, nonlinear, ordinary, differential
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equations.

The solution of this system 1is sought under the assumption that the
bellows 1is rigidly attached at each end and that the entire system is
initially quiescent.

Components of the Lumped Parameter Model

The Fluid Added Mass

As a convolute is displaced it also displaces a certain émount of the
fluid flowing through the bellows, This implies that the mass of this fluid
must be included in the governing equaiions as an inertial effect; hence, the
mg ;i and mg }1 terms. Each convolution has an instantaneous configuration
ranging between the two extremes shown in Figure 12(a). This suggests that
the fluid added mass varies with instantaneous longitudinal position much more
than transverse position, The expression for the fluid added mass will
therefore be a function of the longitudinal position of adjacent convolutes.
With the geométry defined in Figure 12(b) an expression may be developed for
- the fluid mass. Fof example, the instantaneous cavity width and length of the

straight section are given by

§ =6, + (xi - xi-l) (16)
and

8=+ (X5 - %5) . (17)

With this information the areas Aj, Ay, and A3 may be determined and swept
around the bellows to yield the volume of the fluid added mass. Multiplying
this volume by the fluid density, p , yields the expression for the fluid

added mass, Me, as

- 922 -
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mf = -"po{ % (60 + ()(_i - Xi—l))z + (60 + (X_i - X.i_l))[lo + %— 60

R s RO LA CHE RS I IS S CL
Here, Dy is the mean bellows diameter, Since this expression is multiplied by
;1 and ;i in the governing equations it 1introduces additional nonlinear
effects’into the system of governing equations.

The Material Mass

Each discrete mass in the vibration model 1is composed of thé material
mass of one convolution as well as the fluid added mass. Having determined an
expression for the fluid mass added to one convolute in motion, an evaluation
of the material mass which composes one convolute may also be obtained. |

A cross-section of one convolute is illustrated in Figure 13, The area

of this cross-section is given by
AREA = [(27 + 4)a + 2h]t (19)

The volume of material may then be determined by sweeping this area around the

bellows mean diameter to yield
VOLUME = an[(Zn - 4)a + 2h]t . (20)

The material mass of one convolute, my, is determined by multiplying this

volume by the material density, Py = This gives

m =D o [(2n - 4)a + 2hlt . (21)
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The Longitudinal Spring Constant, k,

The 1longitudinal spring force 1is the force tending to restore the
convoiute to its equilibrium position when it has been deformed by a
longitudinal displacement. This force is a result of the elasticity of the
bellows material. In the vibration model the spring force is represented as a
longitudinal Spring' constant, k,, multiplied by the displacement of the
convolute relative to adjacent convolutes, |

An expression for the spring constant can be determined by using the
strain energy method along with the theorem of Castigliano. From the geometry
illustrated in Figure 14(a) and with a force applied in the longitudinal

direction the strain energy of this configuration is given by

_ S 2
e 2.7 3n a T a T a [ a-g
V=R - 2 ger * 7o 7 seR; e, R,
(22)
T SR, TTEeA YT BET, ") gEr, 7 e, -

Here, U 1s the strain energy for the 'configuration illustrated in Figure
14(a), E is the bellows material modulus of elasticity, and G is the shear
modulus. Ay, Iy, are the cross-sectional area and moment of inertia for the
section based on the bellows inside diameter. A,, Ip and A3, I3 are based on
the bellows mean diameter and outside diameter, respectively.

The theorem of Castigliano states that the derivative of the strain
energy with respect to an applied force is the displacement of the point of
application of the force 1in the direction of the force, Therefore, the
Tongitudinal displacement of the convolute tip illustrated in Figure 14(a) may

be determined as

- 26 -



_ U _ T 7 a a
S ol Uy SR ol - o
2. S 3,
a e T a 37
+ BT, +'I'BEK— 'Z‘SGK_ (= +2) 8EI3 (23)

Since the longitudinal spring constant is the force required to produce a

given displacement, the spring constant may be determined as

Fx 3n 2

- _ 1 a* T a T a
kx’?x“'f{(‘ir‘Z)EET‘I"IEEA"l*IBTT,l*sGAZ

2

a-g T a T a 37 a
*Ber; 7 EER; T 7w (= +2) BET, (24)
2 2

The Transverse Spring Constant, ky

The transverse spring constant may be determined in a manner anlagous to
the method used for determining the longitudinal spring constant. The strain

energy for the configuration illustrated in Figure 14(b) is found to be

3 : 2

- 2 m a T a T a a2 3
u="Fr, {IT‘EII"IE?A';*IWGI*B'E“‘IZ*EEA‘Z
(25)
_ 3. . o
On a T a T a
t(F-Ygrta 85A3+7‘:8GA3}‘

By the theorem of Catigliano the transverse disp]acement is given as
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3 2
13 T a ™ a T a a~g
§ =—=—=2F { <+ + = + +
y aFy y = 4 8El, 4 8EA; 4 8GA, . 8EI,
(26)
P ( In _ 4) a . m a . m_a }
EEKZ -z ISEI3 ISEK3 'I'S'G'A% .
The transverse spring constant may now be determined as
(--lyz @ a2 ok
y sy 2 '4§E11 7|7§EK1 7[§GA1 8EI2
(27)
: 3
L On a T a T a -1
+ EEIE + ('—E - 4) EFTE + 1'§EK§ +'Z'§§F§‘} .

ITI. SOLUTIONS IN THE TIME AND FREQUENCY DOMAINS

Solution of the Governing Equations In the Time Domain

The bellows vibrational response to flow excitation is obtained by
solving the system of governing equations for the displacements. Since an
analytical solution to this system is not known a numerical solution to be
executed by computer must be chosen, In problems where the range of
integration 1is considerable, the numerical method employed must be stable
and/or relatively stable to obtain an accurate solution. Also, in a vibration
problem where the motion is to be studied over a substantial number of
oscillations, a method having a small per-step truncation error should be used
in order to minimize the cumulative error.

Upon consideration of these requirements, a "predictor - modifier -
corrector" method called Hamming's Method was selected as the solution
technique [10]. Hamming's Method is both stable and relatively stable and
results in small per-step truncation errors,

The iteration algorithm for a differential equation of the form
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y' = fy,t) (28a)
may be stated as the predicted value of y at t + 1:
P(Yp41) =Ygz t ig' [2y'y - ¥'4q + ' 5) (28b)

The modified value

M(Yyeq) = P(Veyy) - Too [P(yy) - Cly,)3 (28c)
The corrected value
CYpay) =5 %) = Yy_p *+ BNIMY'(u)) + 20"y - ¥'y g1} (28d)
The final value
F(¥gap) = C0pay) + por [PWiag) = Cypay) ] (28e)

Here, h is the time step used in the iteration procedure,

As can be seen from these equations Hamming's Method also has the
advantage of being relatively efficient in terms of computing time, since
there is only one function evaluation per time step. A disadvantage, however,
is that Hamming's Method is not self-starting. It requires solution values at
the first three time sfeps in order to begin the iteration process.

To provide the necessary solution for the first three time steps, a
fourth-order Runge-Kutta procedure is employed. While being very inefficient

in terms of computing time, the Runge-Kutta procedure does have the advantage

of being self-starting.
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By starting the iteration with an initially quiescent system, the Runge-
Kutta procedure determines the longitudinal and transverse displacements of
each convolute tip for thé first three time steps. This information is then
passed on to Hamming's Method which iterates to 4096 time steps, each step
being of 0,01 millisecond duration. The displacement information for the last
2048 time steps 1is stored as a "data sample" for frequency and fétigué
calculations, By choosing the last 2048 time steps the “daté sampie" is
considered far enough from time zero where steady-state vibration is assumed.

With the 0.02048 second sample of steady-state vibration displacement
information, a frequency response analysis and strain analysis may be
performed. Plots of disp]écement versus time from this solution are shown in
Appendix 1.

Frequency Response

Examination of the displacement versus time plots reveals that both
longitudinal and transverse vibratfng of an individual convolute are made up
of several frequency components, Each of these frequency components
contribute to the damage done to the convolute during a given time period., In
order to estimate the extent of this'damage on each convolute the dominating
frequencies of vibration in both the longitudinal and transverse directions
must be determined.

With the time-dependent displacement obtained from the solution of the
governing equations, a Fourier Analysis may be performed, This analysis
yields the frequency response of each convolute 1in each coordinate
direction. The Fourier Analysis is performed by means of the Fast Fourier
Transfrom algorithm which is developed here.

By rebresenting the convolute response as a complex Fourier series one

obtains
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: > in t
x(t) = = Z X(w,)e “n (29a)
N= =

and -
fu t
y(t) = 3= Z Yw)e " (296)
n=-c
where  X(w) = j x(t)e'i“’t dt | (30a)
Y(w) = f y(t)e 1ot gt | (30b)

W is a discrete angular frequency and t is time. Recall from the solution of
the governing equations that the sampling period, T, and the number of data

samples, N, are respectively,

T = 0.,02048 second )
(31a)
N = 2048 samples
Therefore the time step size is
_T
AT =N (31b)
The fundamental frequency, Wy » is given by
_2m
mo Bl (31C)



and the maximum frequency which may abe determined, Wrax , is
_2m _ 2 _
wmax = -A—t- -(-TTN)- NU.\O . (33d)

Define a discrete set of N frequencies at which the convolute response

will be determined.
w, = Nu, = =53 N = 0,1, 2, .o., N (32)

Since x(t) and y(t) vanish for time less than zero and since they have not

been determined for time greater than T, the transform may be approximated as

t)e~Totqe (33a)

-], <o
f oty

and

. (33b)

If these integrals are approximated by summations, the expressions become

N-1 -fut
X(w) = :E:: x(t )e M At (38a)
and m=0
N-1 ~ipt
Y(w) =Z y(t e Mat. (34b)

Upon evluating these transform expressions at discrete frequencies, w, » One

obtains

N-1
x(t, exp[—i Zmmn ] (35a)

M
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and

V(oy) = Zy(t exp[-1 20 7 (35b)
Let wN = exp[-1 gﬁ-] to get
N-1
Rog) = § D x(t) (i)™ (362)
and m=0
N-1
Mo = F D sl ™ . (36b)
m=0

Each power of MWy increases the polar angle by 2n/N . After N powers the
pattern repeats so it is not necessary to compute all powers. Therefore,

define Ug such that

- k.
Uk = (wN) ; 0< k<N

and (37)

U s k>N,

k = Umod(k,N)

where MOD(k,N) 1is the modulus function. The combination of U, with the
previous transform expression yields the equations for the transformed

response at discrete frequencies as

N-1

x(tq) Uvop(mn,N) (38a)

and m=0
N-1
(38b)

y(ty) Umop(mn,N) *
m=0

- 33 -



Note that since (wn)m(-n) is the complex conjugate of (W)™, it is sufficient
to evaluate X(mn) and Y(wn) for n> 0.

The results of the Fast Fourier Transform are the frequency response
plots shown in Appendix 1. With this information the dominant frequencies of
both longitudinal and transverse vibration of each convolute may be
determined, These dominant frequencies will later be used to assess the
cumulative damage effects on each convolute,

IV. CYCLIC STRAIN, DAMAGE AND FATIGUE LIFE

Estimation of Cyclic Strains

The numerical model to calculate fatigue life of bellows is based on
obtaining strain amplitude for the cyclic deformation of each convolute. The
strain amplitude has to be evaluated at the convolute tip since this is the
location at which the bellows is known to fail. A maximum and minimum value
for the tip strain resulting from both longitudinal and transverse vibration
needs to be determined. Since the strain induced at a point by different
mechanisms is additive (same fibres damaged), the maximum tip strain resulting
from longitudinal vibration and the maximum tip strain resulting from
transverse vibration may be added to get a total maximum convolute tip
strain, Likewise, the corresponding minimum strains may be added to get a
total minimum convolute tip strain, The strain amplitude may then be

determined by the equation:
e = ———m—— (39)

where ¢ is the tip strain and Ae the strain amplitude,
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In order to determine an expression for the convolute tip strains
resulting from both longitudinal and transverse displacements the strain
energy method along with the theorem of Castigliano is used. For longitudinal
displacement of the convolute tip it 1is assumed that the strain energy
resulting from the displacemeﬁt is concentrated in the section of the
convolute illustrated in Figure 15(a). The strain energy for this

configuration is given by

3. L
_ 2,1 3w a T a 7 a
U= (o, &) 1(5~-1) LB EE TR
(40)
3 v
1 2a 1 ga
Y2, T2, s

where, as before, E is the bellows material modulus of elasticity and G is the
shear modulus, A; and I; are the cross-sectional area and the moment of
inertia based on the bellows inside diameter. A,, I, and A3, I3 are based on
the bellows mean diameter and outside diameter, respectively.

By applying the theorem of Castigliano the longitudinal displacement of

the tip, xj, may be determined as

= 5y = 2o AU -1 B D2
i aicx iﬂl; x,i 1 8 T, 'B'K;E—
(41)
+T_a +lza +_1_2a ).
§'GA1 2 EI2 2 GA2
Since Oy 4 = Eex i the displacement may also be expressed
x; = 2(e, JEA)(( 3’"-1)'a3 + 32+ 28
1 ®x,i- 17\ 78 ] T BAE T BEA
(42)
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1 2a 1 2a 1 2a
*’zmq*?n‘z"*zm\;}

and the convolute tip strain may be written as

s 3 _
_ 1 3n a n T
x,i ~wk (- VI terr e m

w

1 1 1. ga
'ZEA'l'+'Z'EI—2'+’2"]ﬁ£} .

Since the transverse displacemenﬁs are smaller than the longitudinal
displacements the strain energy resulting from transverse displacements is

considered to be concentrated in a smaller section of the convolute, Figure

15(b) is an illustration of this section. Once again the strain energy for

this configuration is given by

.3 .
U= (o, A B+ "o b (44)

e

oy,iM)

and application of Castigliano's theorem gives

o 3 .
_ 2 _ ™ a a a
Yi = 20K ‘2(°y,iA1)§{'Eq+ENI+EA;}- (45)

Upon substituting o . = e, -E and solving the resulting expression for ¢ . ,
Y1 y,1 Y,1

the equation for the convolute tip strain resulting from transverse vibration

is obtained as

{33
%)

fy,i " EA]

g{ + m“‘q 3L (26)

+

A
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As described earlier, the maximum values of €y i and €y.1 which occur during
3 >

the sampling period are added to get a total maximum tip strain, € max

are also added to yield a total minimum tip

. The

mini values of . and .
inimum u EX,T €y, i

strain, €.

i.min ° The convolute tip strain amplitude, Aey , may then be
s

determined by

-1
hey = 2'(ei,max - si,min) . (47)

Estimate of Cycles to Failure

A modern approach to characterize the fatigue behavior of materials is to
focus on the cyclic strain 1ife [12]. The total strain, € , is considered as
having an elastic €o » and a plastic, ep s components, Expressed as strain

amplitudes, this implies

: Ae Ae
Ae _ e p
2" "7 - (48)

The elastic strain-1ife can be expressed as

, (49)

where Oa and Of respectively, represent the true stress amplitude and the
fatigue strength coefficient, E is the modulus of elasticity, b is the fatigue
strength exponent (typically, b varies between -0,05 and -0.12) and Ne is the
number of cycles to failure. The plastic strain-life is related by a power
function as

Ae. 1

P =

L= (2n)? (50)
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where € ¢ is the fatigue ductility coefficient and d is the fatigue ductility
exponent (typically, d varies between -0.5 and -0.7). The total strain

amplitude may thus be expressed as

-2 angP el (. (51)

[~
[ae Ro N

This equation is called the strain-1ife relation and forms the basis for the
strain-1ife approach to predicting fatigue behavior of such material as
wrought metals. For thin-walled shells, such as the bellows, Ng¢ is typically
taken to be the number of cycles to initiate a crack.

With the strain amplitude for each convolute in hand it is possible tp
compute the number of cycles to failure for each convolute. For the types of

steels from which bellows are commonly made, the equation constants are given

by
b~ -0.,1
of' = 150 kpsi

0.5 < af' <1 (52)

and d = -0.7
The strain-life relation obviously requires an iterative solution, To

accomplish this, simple Newton-Raphson Method has been employed. Since the

slope of the strain-life relation is always negative, there should be no
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problems with convergence so long as Ng is initially relatively small in the
iteration procéss.

Cumulative Damage and Fatigue Life of Bellows

By estimating the cummulative damage done to each convolute during the
sample period an estimation can be made as to which convolute will fail
first. The assumption made here is that the convolute undergoes cyclic strain
of amplitude Ae; for the time of the sampling period at each ofkthe dominant

frequencies determined by the Fourier Analysis. For example:

0 convolute #3 vibrates with strain amplitude he; at a frequency f;
for a time equal to the sampling period.
0 convolute #3 then vibrates with strain amplitude Aeq at frequency fo
for a time equal to the sampling period
0 etc.
From this approach the cumulative damage done to each convolute during
one sampling period can be determined. This is done by use of the Palmgren-

Miner linear-cumulative-damage rule [12] which may be stated as

2Ny ) (Reversals applied at o)

¢ - , (53)
2Nf’1 (Reversals to Tatlure at o,,)

where d = damage. Failure will occur when

2N.
....—1:1

. 54
2N, (54)

In the present model the damage for each convolute during the sampling

period may be determined by
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_ 2T(fyq + Fip + ovv * Fu)
1 2 Nf,i

d (55)

Here T is the sampling period, Ng; is the cycles to failure for the ith
convolute, fi"-'fi,n are the dominant frequencies of vibration, and dj is the
damage for the ith convolute. Since steady stafe vibration is assumed to
exist, the largest value of dj corresponds to the convolute which is 1ikely to
fail first.

The number of cycles to failure for this convolute is also the cycles to
failure for the entire bellows. A failure time window may be determined by
dividing the bellows cycles to failure by the maximum and minimum dominant
frequencies of the convolute which is first to fail, This defines a minimum

time to failure as

’Nf ,
t . = (56)
min i,max
and a maximum time to failure as
S (57)
t = . 57
max i,min -

This tmin and tgnax then establish a failure time window.
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V. CLOSING REMARKS

In testing the bellows computer program it became apparent that the best
results are obtained for bellows with up to five convolutions. For bellows
with greater than five convolutions the cycles to failure begins to decrease
considerably. Therefore, it 1is recommended that program BELLOWS be used for
bellows with up to five convolutions, |

The limitation of the program to give resonable vibration aﬁplitudes for
bellows with less than five convolutions is attributed to cumulative
displacement effects in the springs connecting the discrete masses of the
mechanical model, For more than five convolutions the displacements in each
consecutive spring adds to eventually produce unreasonable convolute tip
displacement. Rather than introducing artificial damping into the governing
equations to control these amplitudes, it was decided to limit the model to a
five convolution model. Additional effects due to stress wave propagations in
bellows with large number of convolutions need to be examined further in
future reseérch.

For bellows with differing number of convolutions the interaction between
the convolutes results in the strain energy being concentrated in a smaller or
larger volume of the convolute., Fewer convolutions result in the strain
energy being concentrated in a smaller volume near the convolute tip. To
incorporate this effect into the model a factor multiplying the equations for
strain calculation has been introduced., The strain multiplying factor varies
linearly with the number of convolutions and its determination is internal to
the computer program,

A thorough literature search into the effects of sliding damping between
plys and internal frictional damping did not yield sufficient information to

explicitly incorporate these effects into the model, Just the same such
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effects do exist and were 1included in the model via damping forces. A
comparison of calculated fatigue 1ife cycles with measured values [2] indicate
very encouraging agreements,  The computer calculations were made for
equilvalent test conditions and bellows specifications to those used in the
experiments, except that the number of convolutions used in the model was less
than or equal to five. The agreement between the two indicated in TaBles 1
and 2 is within an order of magnitude, It is concluded therefohe that within
the scope of its application, the model presented in this study is quite

satisfactory.

~ Table 1 Computer Results

Bellows # Convolutes Flow Cycles Min, Time Max. Time
Number  in Model Velocity (ft/s) to Fail (10°) to Fail to Fail
T (sec) (sec)
5028 5 35 2.9 . 979. 11,747,
5028 5 50 210. 77,851, 856,362,
5028 5 65 6.7 2482, 27,301,
5013 3 35 0.67 651, 4556.
5013 3 50 0.056 63.8 383,
5005 3 35 0.33 285, 1708.
5005 3 50 0.025 24.5 171.2

Table 2. MSFC Tests [2]

Bellows Flow Cycles tg Time to
Number Velocity (ft/s) Fail (10°) Fail (sec)
15028 65.8 0 eeeee- , 787.
5028 66.6 .16 150,
5013 50 1.3 2007 - 2027
5013 45 A7 - .48 749 - 760
5005 33.2 .78 - .79 1841 - 1863
5005 65.2 o wee=- . I5- 100
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APPENDIX 1

SAMPLE PLOTS FOR TIME AND FREQUENCY DOMAIN RESPONSES

In the time reéponse plots, the core velocity, U., is taken as 45
ft/sec. The horizontal axis indicates time in seconds and the vertical axis
indicates displacement in inch. x and y, respectively, indicate longitudinal
and transverse vibrations displacements. Subscripts on x and y indicate the
data for the particular convolution number,

In the frequency response plots, the vertical axis indicates the Fourier-
transformed displacements and the horizontal axis incidates frequency 1in

radians/second. The core velocity, U., for all plots is 45 ft/sec.
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APPENDIX II
LISTING OF PROGRAM BELLOWS
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PROGRAM BELLOWS (INPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT)

kdkddkdkdddkkdkdhhdhdkddhdkkdkhdkhkhdkhhhdkhhkdhhddhhhhdikik

BELLOWS FATIGUE PROGRAM
1/28/86

INVESTIGATOR: DR. P. V. DESAI
ASSISTANT: L. D. THORNHILL

%% % % % % % % %
B % % % % % % % %

FedkRkdkhkdkdhdhhhhdhhdidkdkkhhkidkhddhkdhhhihidhhdkkdhkdhikiidkkik

THIS PROGRAM COMPUTES AN ESTIMATE OF THE FATIGUE
LIFE OF BELLOWS UNDER A VARIETY OF OPERATIONAL
CONDITIONS.

CALL ENTER
CALL RUNGE
CALL HAMM
CALL STRAIN
CALL FFT
CALL CYCLE
CALL DAMAGE
CALL RESULT

STOP
END

SUBROUTINE ENTER

ENTER GEOMETRIC, MATERIAL AND FLOW PARAMETERS AND
CALCULATE EQUATION CONSTANTS.

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N
COMMON/BLOK2/ XK, YK,FDX,FDY,DENSA
COMMON/BLOK5/ Al,E,BOTX2,BOTY2

DIMENSION FDX(9),FDY(9)

PRINT*, 'ENTER CONVOLUTE PITCH IN INCHES.'
READ*, PITCH
PRINT*, 'ENTER CONVOLUTE HEIGHT IN INCHES.'

READ*, HI -

PRINT*, 'ENTER PLY THICKNESS IN INCHES.'
READ*, TPLY

PRINT*, 'ENTER NUMBER OF PLYS.'

READ*, NPLY

PRINT*, 'ENTER INSIDE BELLOWS DIA. IN INCHES.'
READ*, DIN :
PRINT*, 'ENTER NUMBER OF CONVOLUTES.'

READ*, N

PRINT*, 'ENTER FLUID DENSITY IN LBM/ (IN**3).'
READ*, DENF

PRINT*, 'ENTER FLOW VELOCITY IN FT/S.'
READ* , UFEET

PRINT*, 'ENTER THE ELASTIC MODULUS IN PSI.'
READ*, El
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PRINT*, 'ENTER THE MATERIAL DENSITY IN LBM/ (IN**3),

READ*, DENM
(o
TE=TPLY*FLOAT (NPLY)
UC=UFEET*12.
E=E1%*12.
G=E/(2.*(1.+1./3.))
c
PRINT*, 'CONVOLUTE PITCH IS ',PITCH,' IN.'
PRINT*, 'CONVOLUTE HEIGHT IS ',HI,' IN.'
PRINT*, 'PLY THICKNESS IS ',TPLY,' IN.'
PRINT*, 'NUMBER OF PLYS IS ',NPLY
PRINT*, 'INSIDE BELLOWS DIA. IS ',DIN,' IN.'
PRINT*, 'NUMBER OF CONVOLUTES IS ',N
PRINT*, 'FLUID DENSITY IS ',DENF,' LBM/ (IN**3)'
PRINT*, 'FLOW VELOCITY IS ',UFEET,' FT/S'
PRINT*, 'ELASTIC MODULUS IS ',El,' PSI'
PRINT*, 'MATERIAL DENSITY IS ',DENM,' LBM/ (IN**3)'
C .
DO 3 J=1,N
FDX (J)=8.
FDY(J) =2,
3 CONTINUE
c
C CALCULATE EQUATION CONSTANTS
C
IF (UC .GT. 0. .AND. UC .LE. 180.) ALPHA=1,3
IF (UC .GT. 180. .AND. UC .LE. 300.) ALPHA=1.,2
IF (UC .GT. 300. .AND. UC .LE. 420.) ALPHA=1.0
IF (UC .GT. 420. .AND. UC .LE. 540.) ALPHA=0.6
IF (UC .GT. 540. .AND. UC .LE. 660.) ALPHA=0.4
IF (UC .GT. 660. .AND. UC .LE. 780.) ALPHA=0.1
IF (UC .GT. 780.) ALPHA=0.05
R= PITCH/4. -
PI= &4,*ATAN(1.)
DOUT=DIN+2.*HI+2,*TE
DM= (DIN+DOUT) /2.
SIGMA= (2.*R)+TE
DELO= (2.*R)-TE
ALO= HI-(2.*R)
PIDEN= PI*DM*DENF
EM= PI*DM*DENM* (R* ((2.%*PI)~4.)+2.*HI)*TE
C
AMOM1= (PI*DIN*(TE**3.))/12.
AMOM2= (PI*DM* (TE**3.))/12.
AMOM3= (PI*DOUT* (TE**3,))/12.
C
Al=PI*DIN*TE
A2=PI*DM*TE
A3=PI*DOUT*TE
B=HI-2.*R
C .
BOTTOM= (PI/32.)*((R**3.)/(E*AMOM1) + R/(E*Al)
$ + R/ (G*Al) + R/(E*A3) + R/(G*A3)) + 0.125*%(((R**2.,)/
$ (E*AMOM2))*B + B/ (E*A2)) + ((9.*PI-16.)/32.)*((R**3,)/
$ (E*AMOM3))
BOTY2=(PI/32.) *((R**3.) / (E*AMOM1) +R/ (E*Al) +R/ (G*Al))
C .
YK= 1./BOTTOM
(o}
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C1=(3.*PI)/8.-1.
C2=P1/8.
C3=1.+(3.*PI)/8.
C4=1.+PI/2.
C5=P1/4.

BOTX=C1* (R**3,) / (E*AMOM1) + (C2*R* (A1+A3) * (E+G) ) / (A1*A3*E*G)

+((R**2,)*B) /(2. *E*AMOM2) +B/ (2. *G*A2) +C3* (R**3.) / (E
*AMOM3) + (C4* (R**2.) *B) / (E*AMOM3) + (C5*R* (B**2.)) / (E
*AMOM3)
BOTX2=BOTX-C3* (R**3,) / (E*AMOM3) ~C4* (R**2,) *B/ (E*AMOM3)
—-C5%R* (B**2,) / (E*XAMOM3) ~C2*R/ (E*A3) ~C2*R/ (G*A3)

XK=1./BOTX

A=(R+TE/2.) *(P1**2,) *DIN
DENSA= 0.5%DENF*A

UCT= UC*TAN (ALPHA)

RETURN
END

SUBROUTINE RUNGE

CALCULATE STARTING VALUES FOR HAMMINGS METHOD.

W NN w

TIME

COMMON/BLOK1/ PI,DELO,PIDEN,ALO, TE,EM,UC,UCT,N
COMMON/BLOK3/ X,Y
COMMON/BLOK35/ XP,XP1,XP2,XP3,XP4,YP,YP1,YP2,YP3,YP4,
XPP,XPP1,XPP2,XPP3,XPP4,YPP, YPP1,YPP2, YPP3, YPP4,
CD,CL
DIMENSION X(0:6,0:2048),Y(0:6,0:2048) ,XP (0:6) ,XP1(0:6),
XP2(0:6) ,XP3(0:6) ,XP4(0:6) ,YP(0:6) ,YP1(0:6),
YP2(0:6),YP3(0:6),YP4(0:6) ,XPP(0:6) ,XPP1(0:6),
XPP2(0:6) ,XPP3(0:6) ,XPP4(0:6) ,YPP(0:6),YPP1(0:6),
YPP2(0:6) ,YPP3(0:6),YPP4(0:6) ,CD(5) ,CL(5)
COMMON/BLOK4/ TX,TXP,TY,TYP,K,Q,H,L,J,I
REAL K
DIMENSION TX(3),TXP(3),TY(3),TYP(3),K(4),Q(4)

STEP, H, AND CONSTANTS.

H= 0.00001
Al= H/6.
A2= 1,/6.
A3= H/2.
Ab= H/4,

INITIAL CONDITIONS

DO 10, J=0,N+1

X(J,0)=0.0
Y(J,0)=0.0
XP(3)=0.0

XP1(J3)=0.0
XP2(J3)=0.0
XP3(3)=0.0

XP4(3)=0.0 _ 68 -
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C.
C BOUNDARY CONDITIONS

c

oo

20
30

31

32

YP(1)=0.0

YP1(J3)=0.0
YP2(J)=0.0
YP3(3)=0.0
YP4(J)=0.0
XPP1(3)=0.
XPP2(J)=0.
XPP3(J)=0.
XPP4 (J3)=0.
YPP1(J)=0.
YPP2(J)=0.
YPP3(J)=0.
YPP4(J)=0.

CONTINUE

QOO0 O0OOO0OO0O

DO 30, J=0,N+1,N+1
- DO 20, I1=0,2048
X(J3,1)=0.0
Y(3,1)=0.0
. CONTINUE
CONTINUE

RUNGE KUTTA STARTER.
DO 50, I1=0,3

Do 31, J=1,N
XP4 (J3)=XP3(J)
XP3(J)=xP2(J)
XP2 (J)=XxP1(J)
XP1(J)=XP(J)
YP4(3)=YP3(J)
YP3(3)=YP2(J)
YP2(J3)=YP1 (D)
YP1 (3)=YP(J)
XPP4 (J)=XPP3 (J)
XPP3 (J)=XPP2(J)
XPP2 (J)=XPP1(J)
YPP4 (3)=YPP3(J)
YPP3 (J)=YPP2(J)
YPP2 (J3)=YPP1(J)

CONTINUE

DO 40, J=1,N

DO 32, M=1,3
IND= J+(2-M)
TX(M) =X (IND, I)
TXP (M) =XP1 (IND)

CTY(M)=Y(IND, I)

TYP (M) =YP1 (IND) 4

CONTINUE

L=1
CALL KRQ

DO 34, M=1,3
IND=J+ (2-M)
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N AD 0

TX (M) =X (IND, I) +A3*XP1 (IND)

TXP (M) =XP1 (IND) + (K(1) /2.)

TY (M) =Y (IND, I) +A3*YP1 (IND)

TYP (M) =YP1 (IND)+(Q(1) /2.)
CONTINUE

L=2
CALL KQ

DO 36, M=1,3
IND=J+ (2-M)
TX (M) =X (IND, I) +A3*XP1 (IND) +A4*K (1)
TXP (M) =XP1 (IND) + (K (2) /2.)
TY () =Y (IND, I) +A3*YP1 (IND) +A4*Q (1)
TYP (M) =YP1 (IND)+(Q(2) /2.)

CONTINUE

L=3
CALL KRQ

DO 38, M=1,3
IND=J+ (2-M)
TX (M) =X (IND, I) +H*XP1 (IND) +A3*K (2)
TXP (M) =XP1 (IND) +K (3)
TY (M) =Y (IND, I) +H*YP1 (IND) +A3*Q(2)
TYP (M) =YP1 (IND)+Q(3)

CONTINUE

L=4
CALL KQ

X(J,1+1)=X(J, 1) +H*XP1 (J) +A1* (R (1) +K (2) +K (3))
XP (1) =XP1 (J)+A2* (K (1) +2.*K(2)+2.*R(3)+K(4))
Y(J,1+1)=Y(J,I)+H*YP1 (J)+A1*(Q(1)+Q(2)+Q(3))
YP (3)=YP1(J)+A2* (Q(1)+2.*Q(2)+2.*Q(3)+Q(4))

CONTINUE
CONTINUE

RETURN
END

SUBROUTINE KRQ

COMMON/BLOK1/ PI,DELO,PIDEN,ALO, TE,EM,UC,UCT,N
COMMON/BLOK2/ XK,YK,FDX,FDY,DENSA
DIMENSION FDX(9),FDY.(9)
COMMON/BLOK3/ X,Y
COMMON/BLOK35/ XP,XP1l,XP2,XP3,XP4,YP,YP1,YP2,YP3,YP4,
XPP,XPP1,XPP2,XPP3,XPP4, YPP, YPP1,YPP2, YPP3, YPP4,
cD,CL
DIMENSION X(0:6,0:2048),Y(0:6,0:2048) ,XP(0:6),XP1(0:6),
XP2(0:6) ,XP3(0:6) ,XP4(0:6),YP(0:6),YP1(0:6),
YP2(0:6),YP3(0:6) ,YP4(0:6) ,XPP(0:6) ,XPP1(0:6),
XPP2(0:6) ,XPP3(0:6) ,XPP4(0:6) ,YPP(0:6),YPP1(0:6),
YPP2(0:6) ,YPP3(0:6) ,YPP4(0:6) ,CD(5),CL(5)
COMMON/BLOK4/ TX,TXP,TY,TYP,K,Q,H,L,J,I
REAL K
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c

DIMENSION TX(3),TXP(3),TY(3),TYP(3),K(4),Q(4)

DIFF=DELO+TX (2)-TX(3)

XMAS= PIDEN* ((P1/8.)* (DIFF*¥*2.)+DIFF* (ALO+0.5*DELO+TE
+0.5%(1.-PI) *(TX(2)-TX(3)))+0.5* (4.-PI) *((0.5*DIFF
+TE) **2,))+EM

YMAS=XMAS

CcD(1)=-0.5
CL(1)=0.2

DO 10 KOUNT=2,N

CD (ROUNT) =0.085
CL (KOUNT) =0.08

CONTINUE

TERM1=UCT+TYP (2) -TYP (3)
TERM2=UC+TXP (2) -TXP (3)

XPP1 (J)=FCN1 (XMAS, TERM1, TERM2, TX (1) ,TX(2) ,TX(3) ,TXP (1),
TXP(2) ,TXP(3) ,TYP(2),TYP(3),CD(J),CL(J),FDX(J),FDY(]))
K (L) =H*XPP1 (J)

YPP1 (J) =FCN2 (YMAS, TERM1, TERM2, TY (1) ,TY(2) ,TY(3),TYP(1),
TYP(2),TYP(3) ,TXP(2),TXP(3),CD(J),CL(I) ,FDX(J) ,FDY(I))

Q(L)=H*YPP1(J)

RETURN
END

FUNCTION FCN1 (XMAS,TERM1,TERM2,X1,X2,X3,VX1,VX2,VX3,VY2,
'vY3,CD,CL,DX,DY)

COMMON/BLOK2/ XK, YK,FDX,FDY,DENSA

DIMENSION FDX(9),FDY(9)

FCN1= (DENSA* (SQRT ((TERM1%**2,) + (TERM2**2,))) * (CL*TERM1
+CD*TERM2) +DX*SIGN (1., VX2) +XK* (X1-2.%*X2+X3)) /XMAS

RETURN
END

FUNCTION FCN2 (YMAS,TERM1,TERM2,Y1,Y2,Y3,VYl,VY2,VY3,VX2,
vX3,CD,CL,DX,DY)

COMMON/BLOK2/ XK, YK,FDX,FDY,DENSA

DIMENSION FDX(9),FDY(9)

FCN2= (DENSA* (SQRT ( (TERM1**2,)+ (TERM2**2,))) * (CL*TERM2
+CD*TERM1) +DY*SIGN (1.,VY2) +YK* (Y1-2.*Y2+Y3)) /YMAS

RETURN
END

SUBROUTINE HAMM

C TIMPLEMENTING HAMMINGS METHOD FOR SOLVING GOVERNING EQUATIONS.
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COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,ENM,UC,UCT,N
COMMON/BLOK2/ XK, YK,FDX,FDY,DENSA
DIMENSION FDX(9),FDY(9)
COMMON/BLOK3/ X,Y
COMMON/BLOK35/ XP,XP1,XP2,XP3,XP4,YP,YP1,YP2,YP3,YP4,
XPP,XPP1,XPP2,XPP3,XPP4,YPP,YPP1,YPP2,YPP3, YPP4,
cp,CL
DIMENSION X(0:6,0:2048),Y(0:6,0:2048) ,XP (0:6) ,XP1(0:6),
XP2(0:6) ,XP3(0:6) ,XP4(0:6) ,YP(0:6) ,YP1(0:6),
YP2(0:6) ,YP3(0:6) ,YP4(0:6) ,XPP (0+6) ,XPP1(0:6),
XPP2(0:6) ,XPP3(0:6) ,XPP4(0.6),YPP(0:6) ,YPP1(0:6),
YPP2 (0:6) ,YPP3(0:6) ,YPP4(0:6) ,CD(5),CL(5)
DIMENSION PX(0:6),PX1(0:6),PXP(0:6),PXP1(0:6),PY(0:6),
PY1(0:6),PYP(0:6) ,PYP1(0:6),CX(0:6),CX1(0:6) ,CXP(0:6),
CXP1(0:6),CY(0:6) ,CY1(0:6) ,CYP(0:6),CYP1(0:6) ,MX(0:6),
MXP (0:6) ,MY (0:6) ,MYP (0:6)
REAL MX,MXP,MY,MYP

w N Ww w W WUy O

C TIME STEP, H, AND EQUATION CONSTANTS.

H=0.00001
A=(4.*H) /3.
B=112./121.
c=1./8.
D=3.*H
AB=9./121.

INITIAL VALUE LOOP.

a0

DO 3, J=0,N+1
I=3
PX(I)=X(J,I)
CX(N=XJ,D)
PXP (3)=XP1(J)
CXP (3)=XP1(J)
PY(J)=Y(J,I)
cY(M)=Y(J1,I)
PYP(3)=YP1(J)
CYP(3)=YP1(J)

3 CONTINUE

C
'C BOUNDARY VALUE LOOP.
C N
DO 9, J=0,N+1,N+1
MX(3)=0.0
MXP (J)=0.0
MY(J3)=0.0
MYP(J3)=0.0
9 CONTINUE
C
C **% HAMMINGS METHOD *%*
c
DO 60, K=1,2
c
C REESTABLISH INITIAL CONDITIONS.
C

IF (K .EQ. 1) GO TO 14
Do 12, 1=0,3

IND=2048-3+1 - 72 -



DO 10, J=0,N+1
X(J,1)=X(J,IND)
Y(J,I)=Y(J,IND)

10 CONTINUE
12 CONTINUE
o
14 DO 50, I=3,2047
Do 20, J=1,N

PREDICTOR

s NeNe

PXP1(J) =XP4 (J) +A*(2.*X2P1 (I} -XPP2 (J) +2.*XPP3(J))
PX1(J)=X(J,I-3)+A*(2.*XP1(J)-XP2(J) +2.*XP3(J))
PYP1(J)=YP4(J)+A* (2.*YPP1(J)-YPP2(J)+2.*YPP3(J))
PY1 (D) =Y(J,I-3)+A*(2.*YP1 (D) ~-YP2(I)+2.*YP3(J))

MODIFIER

eNeNe]

MXP (J) =PXP1 (J)-B* (PXP (J)~CXP (J))
MX (3)=PX1(J)-B* (PX (J)-CX(J))
MYP (J)=PYP1 (3)-B*(PYP (J)-CYP (J))
MY (D) =PY1(J)-B*(PY (D) -CY(I))
20 CONTINUE
C
C FUNCTION EVALUATIONS
C
Do 30, J=1,N
DIFF=DELO+MX (J)-MX (J-1)
XMAS=PIDEN* ((P1/8.) * (DIFF**2,)+DIFF* (ALO+0.5*DELO+0.5% (1.
S ~PI)*(MX(J)-MX(J-1)))+0.5*(4.-PI) *((0.5*DIFF
S +TE) *%*2,) ) +EM
YMAS=XMAS
TERM1=UCT+MYP (J) -MYP (J-1)
TERM2=UC+MXP (J) -MXP (J-1)

XPP (J) = (DENSA* (SQRT ((TERM1**2,) + (TERM2**2,))) *(CL (J)
*TERM1+CD (J) *TERM2) +FDX (J) *SIGN (1. ,MXP (J))
+XK* (MX (J+1) ~-2.*MX (J) +MX (J-1))) /
XMAS

W NN

YPP (J) = (DENSA* (SQRT ( (TERM1**2,) + (TERM2**2,))) * (CL (J)
*TERM2+CD (J) *TERM1) +FDY (J) *SIGN (1. ,MYP (J))
+YR* (MY (J+1) ~2.*MY (J) +MY (J-1))) /
YMAS
30 CONTINUE
c

o - »

DO 40, J=1,N

CORRECTOR

e XoNe]

CXP1(J)=C*(9.*XP1 (J)-XP3(J)+D* (XPP (J)+2.*XPP1 (J)
-XPP2(J1))) '
CX1(3)=C*(9.*X(J,1)-X(J,I-2)+D*(CXP1(J)+2.*XP1(J)

-XP2(1))
CYP1(J)=C*(9.*YP1(J)-YP3(J)+D*(YPP (J)+2.*YPP1(J)
-YPP2(1)))
CYL1(I)=C*(9.*Y(J,1)~Y(J,1-2)+D*(CYP1(J)+2.*YP1 (J)
$ -YP2(J1)))

w » W»

C
C FINAL VALUE - 73 -
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XP (J)=CXP1(J) +AB* (PXP1 (J)-CXP1(J))
X(J,I+1)=CX1(J)+AB*(PX1 (J)~-CX1(J))
YP (J)=CYP1(J) +AB* (PYP1 (J)-CYP1(J))
Y(J,I+1)=CY1(J)+AB*(PY1(I)-CY1(]))

40 CONTINUE

DO 45, J=0,N+1

PX(J3)=PX1(J)
PXP (J)=PXP1 (J)
PY(J)=PY1(J)
PYP (J)=PYP1(J}
CX(J)=CcXx1QJ)
CXP (3)=CXP1(J)
CY(I)=CY1(J)
CYP(J)=CYP1(J)
XP4(J)=XP3(J)
XP3(J3)=XP2(J)
XP2 (J)=XP1(J)
XP1(J)=XP(J)
YP4(J)=YP3(J)
YP3(J)=YP2(J)
YP2 (1) =YP1(J)
YP1(J)=YP(J)
XPP4 (J)=XPP3 (J)
XPP3 (J)=XPP2(J)
XPP2 (J)=XPP1(J)
XPP1 (J3)=XPP (J)
YPP4(J)=YPP3(J)
YPP3 (J)=YPP2(J)
YPP2 (J)=YPP1(J)
YPP1 (J3)=YPP (J)

45  CONTINUE

50
60

‘THIS
EACH

w n

CONTINUE
CONTINUE

RETURN
END

SUBROUTINE STRAIN

SUBROUTINE COMPUTES THE STRAIN AMPLITUDE FOR
OF THE CONVOLUTE TIPS.

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N
COMMON/BLOK3/ X,Y
COMMON/BLOK5/ Al,E,BOTX2,BOTY2
COMMON/BLOK6/ SAMP
DIMENSION X(0:6,0:2048),Y(0:6,0:2048) SAMP(S),
EXMAX (5) , EXMIN(S) EYMAX(S) EYMIN(S)
SMAX (5), snrn(s)

IF (N .GT. 1) GO TO 2
AMULT=0.1

GO TO 4
AMULT=0.13+0,29*FLOAT (N-2)
BOTX2=AMULT*BOTX2

BOTY2=AMULT*BOTY2 74
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10

20
30

35

40

50

TERMX=E*A1*BOTX2
TERMY=E*A1*BOTY2

DO 10 J=1,N
EXMAX (3) =X (J,0) /TERMX
EXMIN (J) =EXMAX (J)
EYMAX (J)=Y(J,0) /TERMY
EYMIN (J)=EYMAX (J)
CONTINUE

DO 30 I=1,204%

DO 20 J=1,N
EPX=X (J,I) /TERMX
EPY=Y (J, I) /TERMY
EXMAX (J) =AMAX1 (EXMAX (J) ,EPX)
EXMIN (J)=AMIN1 (EXMIN (J) ,EPX)
EYMAX (J) =AMAX1 (EYMAX (J) ,EPY)
EYMIN (J)=AMIN1 (EYMIN (J),EPY)

CONTINUE

CONTINUE

DO 35 J=1,N
SMAX (J) =EXMAX (J) +EYMAX ()
SMIN (J) =EXMIN (J) +EYMIN (J)
CONTINUE

DO 40 J=1,N
SAMP (J) = (SMAX (J) -SMIN(J)) /2.
CONTINUE ‘

RETURN
END

 SUBROUTINE FFT

THIS SUBROUTINE TRANSFORMS THE SYSTEM RESPONSE
PREDICTED BY THE MODEL INTO THE FREQUENCY DOMAIN
SO THAT THE DOMINANT FREQUENCIES MAY BE DETERMINED.

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N

COMMON/BLOK3/ X,Y

COMMON/BLOK7/ XMAG, YMAG,OMEG

DIMENSION X(0:6,0:2048),Y(0:6,0:2048) ,U(0:2048),
$ XMAG(0:2048) ,YMAG(0:2048) ,0MEG (0:2048)

COMPLEX POWER, U, SUMX, SUMY, TERMX, TERMY, XT, YT

NUM=2048
H=0.00001
T=H*NUM

DO 50 I=0,NUM
OMEG(I)=(2.*PI*FLOAT(I)) /T
CONTINUE

DO 1000 J=1,N

DO 100 I=0,1

A=FLOAT (1) _ 75 -



POWER=CMPLX (0., (-2.*PI*A) /FLOAT (NUM))
U (I)=CEXP (POWER)
100 CONTINUE

DO 200 I=2,NUM
u(D)=u(-1)*u(1)
200 CONTINUE

DO 400 K=0,NUM-1
SUMX=CMPLX (0.,0.)
SUMY=CMPLX(0.,0.)
0 300 M=0,NUM-1
TERMX=X (J, M) *U (MOD (M*K,NUM) )
TERMY=Y (J,M) *U (MOD (M*K,NUM) )
SUMX=SUMX+TERMX
SUMY=SUMY+TERMY
300 CONTINUE
XT=H*SUMX
YT=H*SUMY
XMAG (K) =CABS (XT)
YMAG (K) =CABS (YT)
400 CONTINUE

CALL FINDFRQ (J)

1000 CONTINUE
c
RETURN
END

a0

SUBROUTINE FINDFRQ (J)

THIS SUBROUTINE SEARCHES THROUGH THE FREQUENCY RESPONSE
DATA AND DETERMINES THE THREE MOST DOMINANT FREQUENCIES
IN BOTH THE LONGITUDINAL AND TRANSVERSE DIRECTIONS.

[2XEeNesE2Ke!

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N

COMMON/BLOK7/ XMAG, YMAG,OMEG

COMMON/BLOK8/ XFRQ, YFRQ

DIMENSION XFRQ(3,5),YFRQ(3,5),XMAG(0:2048) ,YMAG(0:2048),
S OMEG (0:2048) ,PK(3)

P=2,%PI

DO 10 R=1,3
XFRQ(K,J)=0.0
YFRQ (K, J)=0.0
PK(K)=0.0

10 CONTINUE
C

DO 30 I=2,60
IF (XMAG(I) .LT. XMAG(I-1)) GO TO 30
IF (XMAG(I) .LT. XMAG(I+1)) GO TO 30

IF (PK(1) .GT. XMAG(I)) GO TO 22
PK(3)=PK(2)
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22

24

30

35

c

ann

36

38

40

45

PK(2)=PK (1)

PK (1) =XMAG(I)

XFRQ (3, J)=XFRQ(2,J)
XFRQ(2, J)=XFRQ(1,J)
XFRQ (1, J)=OMEG(I)
GO TO 30

IF (PK(2) .GT. XMAG(I)) GO TO 24
PR (3)=PK(2)

PK (2) =XMAG(I)

XFRQ (3, J)=XFRQ (2, J)
XFRQ(2, J) =OMEG (I)

GO TO 30

IF (PK(3) .GT. XMAG(I)) GO TO 30
PK(3) =XMAG(I)
XFRQ(3, J)=OMEG(I)

CONTINUE

DO 35 K=1,3

PR(K)=0.0

CONTINUE

DO 40 I=2,60

IF (YMAG(I) .LT. YMAG(I-1)) GO TO 40
IF (YMAG(I) .LT. YMAG(I+1)) GO TO 40

IF (PK(1) .GT. YMAG(I)) GO TO 36
PR (3)=PK(2)

PK(2)=PK(1)

PK (1) =YMAG(I)

YFRQ(3, J)=YFRQ(2,J)

YFRQ(2, J)=YFRQ(1,J)

YFRQ (1, J) =OMEG (I)

GO TO 40

IF (PK(2) .GT. YMAG(I)) GO TO 38
PK(3)=PK(2)

- PK(2) =YMAG(I)

YFRQ(3, J)=YFRQ(2,J)
YFRQ (2, J) =OMEG (1)
GO TO 40

IF (PR(3) .GT. YMAG(I)) GO TO 40
PK(3)=YMAG(I)
YFRQ (3, J) =OMEG (1)

CONTINUE

DO 45 K=1,3

XFRQ (K, J)=XFRQ(K, J) /P
YFRQ (K, J)=YFRQ(K, J) /P

CONTINUE

RETURN
END

SUBROUTINE CYCLE
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C THIS SUBROUTINE CALCULATES THE NUMBER OF CYCLES
C TO FAILURE FOR EACH CONVOLUTION.
C
COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N
COMMON/BLOK5/ Al,E,BOTX2,BOTY2
COMMON/BLOK6/ SAMP
COMMON/BLOK9/ CFAIL
DIMENSION CFAIL(5),SAMP(5)
REAL NF

B=-0.1
C=-0.7
D=(12.%150000.) /E

Do 30 J=1,N
NF=10.
NUM=1
10 FNF=D* ((2.*NF) **B)+ ((2. *NF) **C) -SAMP (J) /2.
FNF1=2, *B*D* ((2,*NF) ** (B-1.)) +2.*C* ((2.*NF) **(C-1.))
DELNF=FNF/FNF1
IF (ABS(DELNF) .LE. 0.5) GO TO 20
NF=NF-DELNF
NUM=NUM+1
IF (NUM .GT. 50000) GO TO 40
GO TO 10
20 CFAIL(J)=NF
30 CONTINUE
GO TO 45
40 PRINT*, ' CONVERGENCE PROBLEM IN CYCLE.'
45 RETURN
END

e NeNe!

SUBROUTINE DAMAGE

THIS SUBROUTINE COMPUTES THE DAMAGE DONE TO
EACH CONVOLUTION DURING SAMPLING PERIOD WHICH
INDICATES THE CONVOLUTION MOST LIKELY TO

FAIL FIRST.

a0 n

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N
COMMON/BLOK8/ XFRQ, YFRQ

COMMON/BLOK9/ CFAIL

COMMON/BLOK10/ NFAIL,FMAX,FMIN

DIMENSION XFRQ(3,5),YFRQ(3,5),CFAIL(5),D(5)

DO 20 J=1,N
SUM=0.0
DO 10 K=1,3
TERM=XFRQ (K, J) +YFRQ (K, J)
SUM=SUM+TERM
10 CONTINUE
SUM=0.02048*SUM
D(J)=SUM/CFAIL(J)
20  CONTINUE

DTEST=0.0
DO 30 J=1,N - 78 -
IF (D(J) .LT. DTEST) GO TO 30



DTEST=D(J)
NFAIL=J
CONTINUE

XFMAX=0.0
XFMIN=1000000.0
YFMAX=0.0
YFMIN=1000000.0
DO 40 K=1,3
IF (XFRQ(K,NFAIL) .EQ. 0.0) GO TO 40
XFMAX=AMAX1 (XFRQ (K,NFAIL) ,XFMAX)
XFMIN=AMIN1 (XFRQ (K,NFAIL) ,XFMIN)
CONTINUE
DO 50 K=1,3
IF (YFRQ(K,NFAIL) .EQ. 0.0) GO TO 50
YFMAX=AMAX1 (YFRQ (K,NFAIL) , YFMAX)
YFMIN=AMINI1 (YFRQ (K,NFAIL), YFMIN)
CONTINUE

FMAX=AMAX1 (XFMAX, YFMAX)
FMIN=AMIN1 (XFMIN, YFMIN)

RETURN
END

SUBROUTINE RESULT
THIS SUBROUTINE PRODUCES THE DESIRED OUTPUT.

COMMON/BLOK1/ PI,DELO,PIDEN,ALO,TE,EM,UC,UCT,N
COMMON/BLOK9/ CFAIL

COMMON/BLOK10/ NFAIL,FMAX,FMIN

DIMENSION CFAIL(5)

TMAX=CFAIL (NFAIL) /FMIN
TMIN=CFAIL (NFAIL) /FMAX

PRINT*, '**% NUMBER OF CYCLES TO FAILURE:'
PRINT*, '**% ' CFAIL(NFAIL)

PRINT*, ‘'¥*!

PRINT*, '** MINIMUM TIME TO FAILURE:'
PRINT*, '** ' TMIN,' SEC.'

PRINT*®, '¥%!

PRINT*, '** MAXIMUM TIME TO FAILURE:'
PRINT*, '** ' TMAX,' SEC.'

RETURN
END
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APPENDIX III
SAMPLE DATA FROM PROGRAM

The following charts show the cycles to failure, (N¢), taken from several
test runs of the computer program, In each case the fluid flowing through the
bellows is taken to be water with a density of 0,036 1bm/in3. No is the
number of convolutes and U, is the flow velocity in ft/s,

Bellows 1
Convolute pitch = 0.34 in,
Convolute height = 0,492 1in,
Ply thickness = 0,015 in,
Number of plys = 1
Bellows inside diameter = 4,55 in,
Elastic modulus = 29 x 100 psi

Material density = 0.286 lbm/in3

Cycles to Failure

Ue 2 3 4 5
10 1.9 x 107 1.3 x 10° 2.1 x 109 5.9 x 109
20 1.6 x 100 8.0 x 100 4.5 x 10° 2.0 x 10°
30 4.4 x 108 1.4 x 108 1.7 x 108 4,1 x 10°
40 4,7 x 107 2.9 x 109 3.5 x 107 4,2 x 100
50 8.8 x 106 6.0 x 107 | 3.6 x 108 8.6 x 106
60 2.4 x 105 1.2 x 106 6.2 x 10° 2.5 x 10°

- 80 -



Bellows 2
Convolute pitch = 0.3 1in,
Convolute height = 0.395 in,
Ply thickness = 0.01 in,
Number of plys = 2

Bellows inside diameter = 4.47 in.

Elastic modulus = 29 x 106 psi

Material density = 0.286 1bm/in3

Cytles to Failure

2 3 4 5
10 3.3x 108 4.0 x 1010 | 8.9 x 1010 2.3 x 1010
20 3.3 x 107 3.4 x 108 5.5 x 107 8.3 x 10°
30 9.7 x 107 2.3 x 109 6.1 x 107 7.8 x 108
40 1.8 x 108 5.0 x 1010 1.4 x 109 2.2 x 108
50 2.8 x 107 8.9 x 108 1.8 x 108 3.3 x 107
60 4,0 x 106 1.6 x 107 2.1 x 107 8.4 x 100
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MSFC TEST BELLOWS

BELLOWS | Vp | TIME TO CYCLES TO MATERIAL |ACTUAL || VARIATION

NO. (vpsy | FAILURE FAILURE STRESS

(SEC) (X107) (PSI)

5002-1 62 |[148-158 .17-,18 321 29,800 ELBOW
5002-2 72 |525-535 .70-,71 321 28,300 ELBOW
5002-3 48 |313-333 34,36 321 29,000 ELBOW
50024 56 |2255-2309 | 2.5-2.6 321 |27,800 ELBOW
5002-5 70 |10460-10585 | 16.0-16.1 321 26,500 ELBOW
50026 70 |730-736 .95-,96 321 28,100 ELBOW
5005-1 33.2 |1841-1863 .78-.79 321 28,200
5005-2 65.2 | 75-100 —— 321 433,000 ELBOW
5006-10 77.7/1500-1530 1.7 321 27,900
5009-1 40,5 2728-2743 1.8 321 27,900
5011-1 49.4| 3107-3133 1.9 321 27, 600
5013-2 50 |[2007-2027 1.3 321 28,000
5013-3 45 |749-760 47=,48 321 28,800
5028-1 65.8| 787 — 21-6-9 33,000 ELBOW
5028-2 66.6]150 .16 21-6-9 | 37,000 ELBOW
5034-1 82.5|1672 2.3 21-6-9 | 31,200 A
5034-2 84 |1427-1467 1.9-2.0 21-6-9 | 31,200
50343 - 86,2|3391-3402 5,0 21-6-9 |31,000 0.
5034 ~4 84.4]| 3683 5,3 21-6-9 | 31,000 A
50345 65.5|353-373 .37-.39 21-6-9 | 34,000 A
50346 85.5(226-256 .28-.32 21-6-9 | 34,200 rd
5034-7 85 2199 2.9 21~-6-9 | 31,000 A
5034-8 85.8|560-590 74-.78 21-6-9 | 31,900
5034-10 70.9|3580-3760 3.9-4.1 21-6-9 | 31,000
503413 79.5|1375-1495 1.6-1.8 21.6-9 | 31,200
5034-15 69 |4180 4,5 21-6-9 | 31,000
AGHL 57.8|1604-1634 1.7 21-6-9 | 31,400
AGH2 74.8]20099-20124 | ——mn 21-6-9 | ==mm
AGH3 80.5{11248-11278 | —--- 21-6-9 | ==-m
5035-1 113 |1976-1996 b.bbs.S 21-6-9 | 31,000
5035-2 110 |437-477 .98-1.1 21-6-9 | 31,800
5035-3 9% |7916-8036 16.3-16.6 21-6-9 | 31,000 ~

FROM REFERENCE 2.
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