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ABSTRACT

DESIGN OF INFRASOUND-DETECTION SYSTEM
VIA ADAPTIVE LMSTDE ALGORITHM

Camille S. Khalaf
01d Dominion University
Director: John W. Stoughton

A proposed solution to an aviation safety problem is based on pas-
sive detection of turbu]ént weather phenomena through their infrasonic
emission. This thesis describes a system design that is adequate for
detection and bearing evaluation. of infrasounds. An array of four sen-
sors, with the appropriate hardware, is used for the detection part.
Bearing evaluation is based on estimafes of time delays between sensor
outputs. The generalized cross correlation (GCC), as the conventional
time-delay estimation (TDE) method, is first reviewed. An adaptive TUE
approach, using the least mean square (LMS) algorithm, is then discuss-
ed. A comparison between the two techniques is made and the advantages
of the adaptive approach are listed. The behavior of the GCC, as a Roth
processor, is examined for the anticipated signals. It is shown that
the Roth processor has the desired effect of sharpening the peak of the
correlation function. It is also shown that the LMSTDE technique is an
equivalent implementation of the Roth processor in the time domain. A
LMSTDE lead-Tag model, with a variable stability coefficient and a con-
vergence criterion, is designed. This model is employed in an automatic
scheme developed for the sensor'array. The software and hardware system

parameters are derived and determined. The effectiveness of the system

is illustrated through simulation and field testing.
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CHAPTER 1
INTRODUCTION

1.1 Motivation

Current research programs have lead to significant advances in
ground-based and airborne equipment for providing information relative
to severe turbulent weather. However, most of these programs are still
in their experimental stages and very few are operational. There con-
tinues to be a serious aviation safetj problem associated with aircraft
operations in the vicinity of severe storms.

In 1981, general aviation aircraft numbered more than 200,000 and
flew more than 40 million hours [1]. General aviation operations
accounted for 662 fatal accidents from all causes, with 1,265 fatalities
(FAA, 1981). Informal accident cause/factor statistics from the Nation-
al Transportation Safety Board for 1981 indicate that weather caused, or
was a factor, in 40 percent (289 cases) of the U. S. general aviation
accidents. Earlier statistics indicated that turbulence is the largest
single cause of weather-related air carrier accidents in the U. S. From
1962 to 1974, turbulence was either a cause of or a contributing factor
in 189 of 450 weather-related cases [2].
| Tne two types of turbulence usually encountered are clear-air tur-
bulence (CAT) and thunderstorm-related turbulence. CAT, a problem for
all aircraft, cannot be seen because it usually has no cloud signature.

It may develop in a standing wave caused by air moving over mountainous



terrain, and is frequently associated with shear-induced Kelvin-
Helmholtz atmospheric waves occurring in a statistically stable atmos-
phere [3]. Accidents caused by CAT are not as serious as the ones
related to turbulence associated with thunderstorms. A CAT accident may4
result in discomfort, injuries, aircraft damage, and/or unscheduled
landing. Thunderstorms and other convective clouds are critically
important sources of Tow=altitude turbulence and wind variability. Many
produce strong downdrafts that transport air downward, which then
spreads out rapidly over the ground. This mechanism, if encountered
during take off or landing of aircraft, may result in serious if not
fatal accidents.

One of the pressing aviation safety problems is that of providing
the pilot with information needed to avoid turbulence hazards which
exceed the design capabilities of the airplane. A proposed solution to
this problem through passive detection of turbulence is presented in the

next section.

1.2 Turbulence Detection

The primary technique for detecting turbulence and storm cells is
Doppler radar. This technique requires the presence of reflective
particles such as precipitation or dust for meterological applications.
Doppler radar proved ineffective in cases of CAT or developing storm
cells due to the absence of reflective particles in these phenomena.
The proposed technique consists of passive detection of large-scale
patches of turbulence in the Earth's atmosphere through infrasonic

emissions. The infrasonic technique offers the advantages of being (1)



passive, (2) inexpensive, and (3) inherently more sensitive to atmos-
pheric disturbances than electromagnetic or optical techniques. The
assumed utilization of the infrasonic technology is illustrated in Fig-'
ure 1.1. Infrasonic emissions from the patch of turbulence are detected
at two stations, each containing an array of four sensors. By means of
real-time signal processing, the direction of the turbulent source,
based on time delays between sensors, is determined at each station.

The turbulence is then located by triangulation between the two sta-
tions. This information is relayed from a control center to a flight
services advisory, and from there to the pilots of approaching aircraft;
A serijes of such stations would provide early warning along the length
of domestic air traffic routes.

It is informative at this point to mention that the first step
toward realization of the infrasonic technique was the development of a
unified acquisition system for acoustic data [4] by Dr. Allan J.
Zuckerwar and Mr. Harlan K. Holmes at NASA Langley Research Center.
This system served an important role in understanding the detection
problem during the early stage of this research.

The delay-to-angle conversion needed in this passive approach is
illustrated in Figure 1.2. If T4 js the time delay between the
arrival of the infrasonic signal at two spatially separated sensors,

then the direction of the turbulent source is given by

(1.1)
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Delay-to-angle conversion.

Figure 1.2.



where V 1is the sound velocity (1080 ft/sec at 0°C), and £ is the
distance betweén the two sensors. For a given delay, the solution of
equation (1.1) can be interpreted in two ways as shown in the figure.
The signal associated with the false direction is usually referred to as
the "ghost" signal. The presence of the ghost-signal requires a minimum
of three sensors in the array to uniquely determine the source direc-

tion,

1.3 Research Objectives
The infrasonic technique, proposed to provide pilots with an early
warning of turbulence, was described in the previous section. The three

aspects that are essential to its success are the fo]]owing:

1. emission and propagation of infrasounds from turbulent weather
phenomena;

2. detection of infrasounds and bearing evaluation of their
sources at every station;

3. Tocating the sources by triangulation between stations via a

communication network that is also responsible for transferring
the information to pilots.

The first aspect is out of the designer's control and is based on the
theoretical predictions of infrasonic emission and propagation. The
third aspect constitutes the commercial phase of the program once the
performance of the individual stations proves satisfactory.

The goal of tnis research is the overall system design that is
adequate fbr jmplementing the second aspect of the infrasonic technique.

In this context, the system should function as an infrasonic detector,



time-delay estimator, and delay-to-angle converter. The detection part
involves the sensor array and corresponding hardware blocks while the
delay-to-angle conversion is accomplished by a simple software routine.
The main design issue is that of an appropriate signal processing tech-
nique for time-delay estimation. The GCC method and the LMS parametric
technique will both be reviewed. More specifically, the GCC method
using a Roth weighting function, and the adaptive implementation of the
LMS technique, will be examined. Design decisions, regarding the TDE
technique as well as the hardware system, will then be made according to
the anticipated Signal characteristics.

In Chapter 2, the theory behind ‘TDE techniques is reviewed. Based
on this theory and the anticipated infrasounds, the system design is
presented in Chapter 3. Chapter 4 evaluates the system through simu-
lation of the basic TDE algorithm response and discussion of the system
performance in the actual field. Conclusions and future research are

presented in Chapter 5.



CHAPTER 2
THEORY

2.1 Introduction

The problem identified in chapter one is a fundamental passive
sonar signal processing problem in which delays between the times of
arrival of the pertinent acoustic waves at four sensors are to be esti-
mated. This chapter will discuss the theory behind TDE techniques.
Section two reviews the conventional generalized cross correlation
approach (GCC) while section three reviews the Roth processor specifi-
cally. Uf particular interest is a parametric approach through Widrow's
adaptive filter. The filter structure is reviewed in section four while
its application to TDE is presented and thoroughly investigated in the
fifth section. The chapter is concluded in section six by presenting
the advantages of the adaptive least mean squared time delay estimation

(LMSTDE) method.

2.2 Generalized Cross Correlation Approach
The GCC approach to time delay estimation has been discussed by
many investigators. Well known references include papers written by
Knapp and Carter [5], and Hassab and Boucher [6]. This section only
reviews this approach through Figure 2.1. x;(t) and x,(t) are sam-
pled at two spatially separated sensors and then fed to a basic cross

correlator. The basic cross correlator, as discussed by Papoulis [7],
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Figure 2.1. Generalized cross correlation.
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computes the cross correlation function, Rxlxz(T)’ between x;(t) and
X (t) Dy means of the inverse Fourier transform of their cross power
spectrum, lexz(f). Then the delay estimate is simply the abscissa
value at which the cross correlation function peaks. In order to im-
prove the accuracy of the delay estimate, a linear filter, w(t), is
convolved with the output of the cross correlator. A peak detéctor
routine is then used to determine the abscissa value of the peak in the
filtered correlation function. In practice, a frequency weighting W(f)
= F [w(t)], where F[+] denotes the Fourier transform of [+ ], which is
equivalent to w(t), is applied to the cross power spectrum prior to
taking the inverse Fourier transform. This frequency weighting replaces
the linear filter so that all computations, except for the peak detector
routine, are done in the frequency domain. A discussion of this
weighting, after mathematically modeling the system, is presented next.
A signal emanating from a remote source and monitored in the pres-

ence of noise at two spatially separated sensors can be mathematically

modeled as
x1(t) = S1(t) + m(t) (2.1a)
Xo(t) = aSp(t + Td) +m2(t) (2.1b)

where S (t), m (t) and m2(t) are real, zero-mean, jointly stationary

random processes, T4 denotes time delay and « an attenuation factor.

Signal §;(t) s assumed to be uncorrelated with my(t) and my(t).
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The cross correlation between x;(t) and x,(t) is related to the
cross power spectral density function, GX « (f), by the Fourier trans-
1%2 -

form relationship

jenfr
= f) eI df :
X1X2(T) f.m GX1X2( ) y (2 2)

In practice, only an estimate G; < (f) of (2.2) can be obtained from
1%2

finite observations of x;(t) and x2(t). Consequently, the output of

the basic cross correlator, when no weighting is used, is:

: - 6 (f) 3FTT g :
Rxlxz(r) {m x1x2( ) e d (2.3)
It is informative at this point to examine the shape of the cross
correlation function RX « (t), so that the necessity of using a
1X2
weighting function can be justified. An expression for R (t) can

X1X2
be obtained from (2.1), using the expectation operator E[+], as

-

Ry, x, (T) = EDx1 (1) xa (7] = @ Rg g (T=Tg) + Ry, (F)  (2.4)
The Fourier transform of (2.4) gives the cross power spectrum

-jZIrde
f) = ab. . (f + £) . 2.5
GX1X2( ) = o SlSl( ) e Gm1mz( ) (2.5)
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If m(t) and my(t) are uncorrelated, G (f) = 0, and since
112 .
multiplication in one domain is a convolution in the transformed domain,

it follows from (2.5) that

R (t) = aR (t) =& §(t-t

X1 X2 19 (2.6)

"
‘ . ) -j2nf‘rd
where ®» denotes convolution and 6(r—rd) = F-1 Le ]. Une
interpretation of (2.6) is that the delta function has been spread or
“smeared” by the Fourier transform of the signal spectrum. If S;(t)
is a white noise source, then its autocorrelation function is a delta
function and no spreading takes place. However, for most practical
applications this is not the case and spreading acts to broaden the peak
of the cross correlation.

To minimize the spreading effect, many weighting functions have
been proposed in the literature (see Table 2.1) to operate on the cross
power spectrum given in (2.5). With a general weighting, Wg(f), the

estimate of the generalized cross correlation becomes

(1) = [ W) e (f) T

df (2.7)
X1 X2 X1X2

Wg(f) should be chosen to ensure a large sharp peak in Ri < (t) rather
1X2

than a broad one in order to obtain a good time-delay resolution.

2.3 Roth Processor

The weighting functions found in the literature are listed in Table
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2.1, where the notation y(f) has been used for the coherence function

which is defined as

(f) "
Y12 =
lexl(f) zexz(f)

The selection of Wg(f) .to optimize certain performance criteria has
been studied by several investigators (see, for example [8]). The pur-
pose of considering the Roth processor is that it is equivalent to the
time domain weighting involved in the adaptive LMSTDE approach. This
equivalence will be shown in section five and will be helpful in gaining
insight to the adaptive method.

The weighting proposed by Roth [9] is

1

%1%, ()

NR(f) =

Substituting for Wg(f) 1in (2.7) yields

Ry

© G, (f) .
O E’il_i‘z___ edanfr 4¢ (2.8)

Xlxl(f)

Equation (2.8) estimates the impulse response of the optimum linear

(Wiener-Hopf) filter [10]

6,  (f
H(f) = Sux D

lexl(f)
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Table 2.1. MWeighting Functions

Processor Name We ight , Reference
Cross Correlation 1 81, [71
Roth Processor . _t (91
- (f)
1 l
SCOT [10]
B x () By, x, (F)
2 !
PHAT (10]
lexl X2 (f) I
. 1 '
Eckart Filter ; 0 (5]
G f) G
My My m, M,
Y
ML3 | 12(6)]? [5]

16, (D 0L-hy (A2

1 snoothed coherence transform
2Phase transform

3Maximum 1ikelihood
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which "best" approximates the mapping of x;(t) to x,(t). If m(t) 2
0, then lexl(f) = Gslsl(f) + Gmlml(f), and equation (2.6) becomes for

the Roth processor

R (t) =8(x-1)) »
d w0
X1 X2 Gslsl(f) + Gmlml(f)

From (2.9) we can conclude that only when Gm 0 (f) 1is negligible or
1

when it equals any constant times Gslsl(f), the spreading does not
occur and Rxlxz(r) becomes a delta function. However, as can be seen
from the integral part in (2.9), the Roth processor has the desirable
effect of suppressing those frequency regions where qnlml(f) is large
and lexz(f) is more likely to be in error.

The generalized cross correlation approach suffers regardless of
which weighting function is used, from two basic facts. First, it
re]ies‘on a sequence of fast Fourier transform (FFT) computations that
tends to be time consuming. Second, as seen in Table 2.1, it requires a
priori knowledge of the signal and noise statistics to implement the
specific weighting. In passive detection problems, this information is
unknown and if it were to be estimated, it would increase the complexity
of the process and the time involved. The next section presents the
adaptive LMSTDE algorithm, which is equivalent to the Roth processor,

and is able to overcome both difficulties found in the generalized cross

correlation method.
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2.4 Adaptive Filters

This section will review the basic structure of adaptive filters
discussed by Widrow [11], while section 2.5 presents the application of
the filter in TDE problems.

A signal filtering approach using an adaptive filter is in some
sense a self-designing (really self-optimizing) process. The adaptive
filter described here bases its own "design” (its internal adjustment
settings) upon estimated or measured statistical characteristics of the
input and output signals. The statistics are not measured explicitly;
rather, the filter design is accomplished in a single process by a re-
cursive LMS algorithm that automatically updates the system coefficients
with the arrival of each set of data samples. Figure 2.2 illustrates
schematically the adaptive filter used in this case as a linear combina-
torial system. The filter consists of a set of variable weights (filter
coefficients) whose input are the sampled input signals, a summer to add
the weighted signals, and an algorithm to adjust the weights automatic-
ally. The impulse response of such a discrete system is completely
controlled by the weight settings. The adaptation process automatically
seeks an optimal filter impulse response by adjusting the weights using
gradient techniques to minimize the mean-square-error function.

"The analysis of the adaptive filter can be developed by assuming
that the input signals are statistically stationary random processes.

Let the nth set of input signals be a vector X(n) of length N,

K'(n) = [ (n) x(n) ... xy(n)]



17

s *WelSAS |eLJa03ReuLquOd Jedul] antydepy °Z°2 @4nbid
(u)p
asuodsad
paJ4Lsag
(WA - (u)p = ()3 N
40443 2 - (u) X
. €
e i Acv .x
(W)X (u) M= (WA
feubts anding
. ()X
I Acvﬂx
(u)m (u)x
saybLapm s|eubts

anduL pa|dues



18

where XT denotes the transpose of X. Let the set of weights, at the

nth time, be designated by the vector wT(n) = [wy(n) wy(n) ... wN(n)].

N
The nth output signal is y(n) =& wi(n) Xi(n)‘ This can be written
i=1
in matrix form as
T T ’
y(n) =W (n) X(n) = X (n) W(n). (2.10)

’

Denoting the desired response by d(n), the error at the nth time is
T
e(n) = d(n) - y(n) = d(n) - W (n) X(n). (2.11)

The square of the error is

T T

e2(n) = @(n) - 2d(n) X (n) W(n) + W (n) X(n) X'(n) W(n). (2.12)

The expected value of €2(n) is

T

T
dx (

E [e2(n)] =@ (n) - 2 V,, W(n) + W (n) V,, W(n). (2.13)
where (+) denotes the mean value of (+), or E[+]. The vector Vix 18

the cross covariance petween d(n) and x{(n) and is defined as

d
Vgx = ELd(n) X(n)] = € [d(n) xa(n) (2.14)
i
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and VXX denotes the auto-covariance matrix of X(n)

Xy (n) xp(n)  xy(n) xz{n)... 7
. T _Ixa(n) x1(n)  x2(n) x2(n) ..
Vg = E [X(n) X'(n)] =E | (2.15)
i XN(n) XN(n)

It may be observed from (2.13) that for stationary input signals, the
mean-square ekror is a second-order function of the weights. Thus, the
mean-square-error function may be viewed, as suggested by Widrow [11],
as a "performance surface" for the adaptive process that has a unique
stationary point (minimum) which can be sought using gradient tech-
niques.

The gradient at any point on the performance surface can be obtain-
ed by differentiating the mean-square-error function (2.13) with respect

to the weights. The gradient is

v{e2(n)] = -2 Vg, + 2V, W(n) (2.18)

The "optimal" weight vector, WLMS’ that yields the least-mean-square

error, is found where the gradient is zero. Accordingly,

or W (2.17)
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where [+ ]-1 denotes the inverse of [«]. Equation (2.17) is the Wiener-
Hopf equation in matrix form [12]. Solving (2.17) for the optimum
weight vector (the minimum point on the performance surface) can present
serious computational problems. However, it will be shown that the
adaptation process tries to find an exact or an approximate solution to
the Wiener-Hopf equation by using_the IMS algorithm with less computa-
tional complexity. :

When using the LMS algorithm, changes in the weight vector are made

along the direction of the estimated gradient vector. Accordingly,
W(n+l) = W(n) + K ¥ [e2 (n)] (2.18)
where

W(n) A weight vector before adaptation

W(n+l) 4 weight vector after adaptation

KS A scalar constant controlling the rate of convergence and
stability (Ks < 0)

V'[Ez(n)]g estimate of gradient of E[e2] = €2 with respect to W,

with W = W(n)

One method for obtaining the estimated gradient of the mean-square-error
function is to take the gradient of a single time sample of the squared

error. That is,
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V2 ()] =V [£2(n)] = 2e(n) V[e(n)] (2.19)
From equation (2.11),

vle(n)] =7 [d(n) - W (n) X(n)] = - X(n)
Thus,
v[e2(n)] = - 2 €(n) X(n) (2.20)

It can be shown that the gradient estimate of (2.20) is unbiased, so

that
£V [22(n)]=7 [22(n)]
Substituting (2.20) in (2.18) yields
W(n+l) = W(n) - 2 Ks e(n) X(n) . (2.21)

and the next weight vector is obtéined by adding to the present weight
vector the input vector scaled by the value of the error. This is the
LMS algorithm.

Next, the expected value E[W(n)] of the weight vector after a
large number of iterations will be shown to converge to the Wiener solu-
tion given by (2.17). For this purpose, assume that the time between
successive iterations of the algorithm is sufficiently long so that the

input vectors X(n) and X(n+l) are uncorrelated. Taking the expected
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value of both sides of (2.21) we obtain a difference equation in the

expected value of the weight vector:

ECN(n+1)] = ECW(n)T - 2 K E { X(n) [d(n) - X"(n) W(n)]}

(2.22)

[I+2 KS Vxxj E[W(n)] - 2 KS de

where I s an identity matrix. With an initial weight vector W(0),

n+l iterations of (2.22) yield

+1 | i
ELW(n+1)] = [1+2 K, vXX]” W(0) - 2 K [1+2 KV, 7' Vg (2.23)

([ -1

i=0
Equation (2.23) can be put in diagonal form by using the normal-form

expansion of the matrix Vxx’ That is,
= -1
Vxx =" AQ

where the diagonal matrix of eigenvalues is A, and the square matrix
of eigenvectors is the modal matrix Q. Equation (2.23) may now be

expressed as

ECW(n+1) = [1+2 K, Q-1AQ1™™ W(0) - 2 K, 3 2 aAQ)’ v,
1=

n+l [1+2 KSA]iQ V,, -(2.24)

0

=]

= Q-1[1+2 K AT QW(0) - 2 Ko Q-

.i
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Consider the diagonal matrix [I+2 KSA]. As long as its diagonal terms
are all of a magnitude less than unity,

gim [1+ 2 kA" 5 0

n +

and the first term of (2.24) vanishes as the number of iterations in-

creases. The summation factor in the second term of (2.24) becomes

where the formula for the sum of a geometric series has been used. That
is,

P12k A) = 1 -

0 1-(142 KA) 2 KA

Thus, in the limit, equation (2.24) becomes

: = g-1a-1 = -1
nllmm E[W(n+1)] = Q-tA-* Q de VXx de

which is the Wiener-Hopf solution in (2.17).
Convergence of E[W(n+1l)] to (2.17) is obtained if and only if the
diagonal terms of [I+2 KSA] all have magnitudes less than unity, and

since all eigenvalues in A are positive (the auto-covariance matrix,
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Vxx’ is positive definite), the bounds on Ks are given by

-1
|1+2stm|<1 or  — <K <0

An
where Am is the maximum eigenvalue of Vxx' The convergence condition

can be related to the total input power as follows:

= 27 = 3
Ag € trace [Vxx] 111 E[xij Total input power.

-1

Therefore, < Ks < Q.

E[x3]

Hn &=

i=1

For a slow, precise adaptation KS is usually chosen such that

> K|
E[x2]

W M=
.__I

i

It is believed that the assumption of independent successive input
vectors used for the convergence proof is overly restrictive. Griffiths
[13] has shown that adaptation using highly correlated successive sam-
ples converges to the Wiener solution, but leads to higher steady-state
mean-square error. Thus, we can conclude that for short-term stationary

signals, with the feedback estimate, Kg s being bounded by (2.25), the
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weight vector, after a large number of iterations, is expected to con-
verge to the Weiner solution that best maps the input x(n) to the

desired response d(n).

2.5 Adaptive LMSTDE Approach
The LMS adaptive filter deséribed in the previous section has

been widely applied in situations where the statistics of the inputs are
either unknown or partia{ly unknown. Some applications include noise
cancelling [14], line enhancing [14], prediction [11], spectrum analysis
[13], and adaptive array processing [15]. A recent application of the
filter is time delay estimation by F. Reed, P. Feintuch and N. Bershad
[16]. This application is demonstrated in Figure 2.3, where the adap-
tive filter has a slightly different structure. The filter to be con-
sidered here has only two inputs: a primary input x(n) and a second-
ary input (desired response) d(n). The primary input is fed to a tap-
ped delay line to generate the adaptive filter input signals. In this

case, the input vector at the nth iteration becomes

X" (n)

1 (n) xg(n) .o xn(n)]

x(n) x(n-1) ... x{(n=N+1)]

(for a filter of length N)

and the weights are updated with the arrival of each new data sample

x(n).
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Let x;(t) and y,(t), in Figure 2.3, be given as in equation
(2.1) with the same assumptions. Let us consider the discrete time

version of (1) for the following analysis. That is,
x1(n) = S1(n) + m(n)

~and x2(n) = S2(n) + m2(n) =a Si(n-D) + m2(n)

where D s a positive integer less than N, representing the discrete
time delay between S;(n) and S,(n).

The adaptive filter inputs are then given by

x(n) = x1(n) = S1(n) + mi(n) (2.26a)
and d(n) = x2(n) = a S1(n-D) + m2(n) (2.26b)

The adaptive filter, with inputs given by (2.26), can be thought of as a
system attempting to insert a delay equal to the propagation delay be-
tween the two sensors in the primary filter input, x(n), aligning the
signal component in time prior to subtraction to produce the error sig-
nal. Hence, one weight of the filter corresponding to the correct

deTay would be unity and all other weights zero. In practice, due to
the fact that the filter must interpolate between its discrete taps to
provide delays that are noninteger multiples of the sample time, the

weights converge to a shape that is peaked at the correct delay.
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Therefore, determination of the delay, as in the GCC method, requires
estimation of the peak of the adaptive filter weight vector.

To examine the shape of the weight vector, let us consider the
frequency domain window corresponding to the 1east-mean—§quare set of

Y ; = | .
weights, wLMS (VXX) Vy o That is,

ips(f) = FlHy ()] =

For d(n) and x(n) given by (2.26), this becomes

(2.27)

65151( My

Converting back to time domain and using the convolution theorem, the

kth weight at the nth iteration is

i
n
i
o
—
1
[}
ny
=
-+
<
e
-]
-
1
—
[ e |
Q
[P
(V2]
—
N
iy

Wy s (K)

[
-
—
—

: ® () .
eIy g 5% ; edanfhys  (2.28)

where 0< K< N-1. Equation (2.28) is to be compared with equation

(2.9), where W __(K) 1is a discrete time version of R (t) obtained

LMS X1X2
using the Roth processor. It is important at this point to note that
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equations (2.27) and (2.28) do not depend on szmz(f)‘ Therefore, as
suggested by Ahmed and Carter [17], it is desirable in this adaptive
approach to have the signal with lower S/N ratio as the secondary 1nhut

to the filter. From equation (2.27) we can see that when

Gmlml(f) =0 (2.29a)
or, Gmlml(f) = const. x Gslsl(f) (2.29b)
we have W yo(f) =8 e-JznfD, where B is a real constant. In this

case, equation (2.28) becomes

-jZ‘T\’fD]

Wyys(K) =8 x F-1 {e (2.30)

Let us examine equation (2.30) for two types of input signals.

First, consider the case when the input signals are broad-band, i.e.

f f

-3¢ f< 2, where f, denotes the sampling rate. Evaluating (2.30)

2 2
for this type of signal yields

f .
T - s/2 . .
wLMS(K) =8 f e-JZNfD X e‘]zandf =B f e"JZ'TfD X eJZﬁdef
~ ~fsr2

8 sinc {w[K-D]1} (2.31)

]
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sin(e)
()

vector has the shape of a sinc function peaking with amplitude equal to

where sinc (¢) = and 0< K < N-1. In this case the weight

one when K-D =0 or K =D. The first zero crossing of (2.31) happens

for

n(k-D) =2t nm => K=Dz=%1
Hence, the main lobe of the sinc function is only two resolutions wide,
simulating a delta function. However, as in the Roth processor, when

the condition (2.29) on G (f) 1is not met, the main lobe of the sinc
1

mym
function will be spread outlby convolving with the integral part of
(2.28).

A second relevant case is one in which the input signals are band-
1imited in frequency. Evaluating equation (2.30) for band-limited sig-
nals leads to a slightly different form of the weight function as dis-

cussed by Ahmed and Carter [17]. Consider an ideal band-limited signal

as follows
G # 0 f < <
$,S (w) or wek |w|w;
G (w) =0 s elsewhere

35

where the conversion to the radian frequency, w, was made for the ease

of analysis only. For this type of signal, equation (2.30) becomes
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L} . . (01 .
WLMS(K) =B f : e‘J“’D erls do = 2 B f e-!'-.]u.)(l(-D)dm
= 48 wb sinc [wb(K-D)] cos [wC(K-D)] (2.32)
where wy = wj -wo and w, = w]+wo

The peak in the weight function still occurs at the correct delay, that
is, for K-D = 0 or when K=D, but the main lobe is spread out. That
can be seen by examining the first zero crossing of equation (2.32).

The first zero in the sinc function occurs for

mb(K-D)=t1r+ K=__ +D

while the first zero in the cosine function occurs for

w (K-d) =t T » K=Z_ +0D
¢ 2

Since ch > s the first zero in the cosine function occurs sooner

than in the sinc and yields a main Tobe width of 2 x L =T s for
2mC W

band-1imited input signals, the spreading in the peak of the weight

function is inversely proportional to the band width. For a white input

signal, w_ = T and the main lobe width is two resolutions as pointed

2
out earlier,
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Other issues that should be considered in this approach include
interpolation, dynamic behavior of the filter, and the filter length.
The time delay obtained from the estimated discrete weight function,
wLMS(K)’ is an integer multiple of the sampling period while in prac-
tice the actual delay between the input signals may not be. To avoid
the error introduced by the discrete delay estimate the weight function

should be interpolated to obtain its continuous counterpart WLMS(n,K),

that is,

(n,K) = g W,.(m,K) sinc [w(n-m)] (2.33)

W
LMS mp NS

Now, the desired noninteger sample of the estimated delay is given by
the value of n at which WLMS(n,K) is maximum. The study of the
filter dynamic behavior by P. Feintuch, N. Bershad, and F. Reed [18],
has shown a potential to track linearly changing time delays by just
observing the peak weight move through the adaptive filter tapped delay
Jine. It was also shown that the location of the peak of the weights
lags the true time delay by an amount that dépends on the delay rate,
the signal correlation function, and the adaptive filter time response.
Finally, the filter length should be chosen carefully to insure fast and
yet accurate convergence. The lower bound on the number of weights is
depicted by the maximum propagation delay between sensors. From equa-

tion (2.32) we can see that as K increases the weight function

WLMS(K) approaches zero. Thus, the filter length can be safely
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truncated in practice to the lower bound, in order to reduce the compu-
tational time. '

This section is concluded by a representative example illustrating
the capability of the adaptive filter to detect the time delay after
convergence of the weight vector. Let x;(n) be a stationary random

process with a correlation function given by

’

R(n) = aInl with -1<a<1

Assume that mi(n) = m2(n) = 0 and x2(n) = x1(n-D) where D 1is a
positive integer given by 0< D< N-1. The adaptive filter inputs are

then,

x(n) = xp(n)
d(n) = x1(n-D)
The input vector on the tapped-delay line is
K(n) = [x(n) x(n=1) o+ x(n-i+1)]
and the cross-covariance vector, V is

dx®

V= B [dmX ()] = E [d(nx(n) d(n)x(n-1) === d(n) x(n-N+1)]



() = k() x(n-1) +=+ x(n-1+1)]

«

and the cross-covariance vector, de, would be

-
1]

L= E[d(mX(m] = E [dn)x(n) d(n)x(n-1) +=+ d(n) x(n-N+1)]

[R(-D) R(1-D) ¢+ R(0) *++ R(N-2-D) R(N-1-D)]

N-2-D aN-l -D]

[
L |
V]
[«4]

.

.

e [eee 1 ese] @ases Q

The auto-covariance matrix, V of x(n) is

xx’
R(0)  R(1)+ +  R(N-1)
T R(1) R(O) «
VXX = E[X(n)X (n)] = .: S
R(N-1) o e R(0)
L R
C1 a a2 . aN'H
a 1 a 3 . .
= az .
. 1 a
LaN'lo a 1 A
_ b
1 -a 0 0 se- 0
-a  1+@ -a . ..
0 -a 1l+a 1
5
and Vi 0 0 -a . ] 1-22
L] 0 O .. L]
. 0
e+« 0 -al+a®  -a
0 0 0 + o« 0 -a 1
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2.6  Summary

The generalized cross correlation approach was reviewed with more
attention paid to the Roth processor. The adaptive filter and its
application to TDE problems was analyzed in detail. It was shown that
the adaptive LMSTDE method is equivalent to the Roth processor and that
the adaptation process using the LMS algorithm, under stated conditions,
ensures the convergence of the weight vector to the Wiener-Hopf solution
that presents the best mapp%ng petween the two inputs of the filter.
This mapping resulted in a weight vector peaking at the correct time
delay with a peak resolution that is a function of the frequency band of
‘the signals and their statistical characteristics. The advantages of
the adaptive LMSTDE over the GCC method can be summarized as follows:

- simpler implementation, since no FFT computations are involved

- no prior knowledge of the statistics of the signal and noise are

necessary

- ability to track moving sources
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- less computational time.
The advantages over the nonadaptive approach (i.e. difect'implementation
of the Wiener-Hopf equation) are
- simpler implementation, since no matrix operations are involved
- the ability to track moving sources
- the filter length can be easily increased in order to decrease

the bias in the estimate.



Chapter 3
SYSTEM DESIGN

3.1 Introduction

The theory behind time-delay estimation techniques has been review-
ed in Chapter 2. This theory can now be used in the design process of
the system. Based on the anticipated input signals and assumptions that
can be made about the statistical characteristics, the choice of a suit-
able TDE technique is made in section 2. Section 3 then presents the
implementation of this technique and relevant design issues in the
specific application on hand. The system specifications and the way
they are related, derived, or determined are the subject of section 4.

Finally, the design process is summarized in section 5.

3.2 Design Assumptions
The choice of the TDE approach and the assumptions on which it is

based are the subject of this section. Not much study has been dedi-
cated to the high frequency band (1 to 20 Hz) of infrasounds in the
past, especially for sounds related to meteorological events. Thus,
1ittle is known about the statistics of these infrasounds and assump-
tions have to be made with regard to recent investigator's predictions.
These assumptions will be listed below with a relevant discussion about

each of them.

a. Single Source. More than one meteorological event can take
place at one time producing a multiple delay between sensor

37



38

outputs. The potential to separate delays and identify the
different sources is feasible but it is outside the scope of
this study. So the design process is restricted to a single
source of sound waves.

Statjonary Signal. The stationary assumption is safely made
because the data file spans a time window that is only a frac-
tion of the eveqf's lifetime. The lifetime of a meteorological
event can be anywhere from a few minutes, in the case of a
microburst for example, to several hours in the case of a fron-
tal system [1], [19]. This time frame is to be compared with
the file time that, as will be seen later, is 20 seconds.
Uncorrelated Signal and Noise. Infrasounds emitted by a rela-
tively remote source cannot be expected to correlate with local
noise present at the microphone array.

Uncorrelated Noise at the Different Sensors. This assumption
can be justified by having a long array foot so that local
noise ai one sensor is not swept across the array.

Frequency Band. The low frequency band (10-® to about 1 Hz) of
the infrasound spectrum is more related to static pressure
fluctuations that are part of a turbulent motion. Since in
this project, the intention is to detect acoustic (propogating
wave) energy and as little as possible of the turbulent pres-
sure field, the frequency band should be in the higher part of
the spectrum. The 1-to-16-Hz band has been experimentally
studied by Eric S. Posmetier [20]. He concluded that "the

1-to-16-Hz infrasound may be radiated by clear air turbulence
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and may be a basis for a remote passive detection system."
Based on the physics of infrasounds and Posmetier's prediction,
a signal frequency band of 1-to-20-Hz is anticipated.

f. Spectral Shape of Signal and Noise. Based on past experience,
the signal and noise spectra are expected to peak in the range
.5-to-3 Hz.

Now that the assumptions about the data have been estab]ished,‘the
choice of a suitable time-delay estimation approach can be made. The
data statistical characteristics required for the Generalized Cross-
Correlation method have been assumed in a, b, ¢, and d. Thus, the GCC
method is applicable in this passive,detectign problem. As was shown in
section 2.2, the basic cross-correlation has an undesirable spreading in
its peak, which can be improved by a frequency weighting. The weighting
proposed by Roth Teads to a weighted correlation given by

abSl S§f) e Jzﬂf’fdf

Gslsl(f) ¥ Gmlml(f)

RXIXZ(T) = § (T-Td) B f_m

For the assumption made in f, about a similar spectral shape for sig-

nal and noise [i.e., Gmm(f) = const. GSS(f)], this correlation

becomes

Rxlxz('t) = § ('r-'rd)

Thus, the Roth processor is appropriate for the assumed data, since its

output is a delta function with a magnitude equal to one at the correct
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delay. Implementing the Roth processor in the frequency domain, how-
ever, has the disadvantages discussed in section 2.3. On the other
hand, the advantages discussed in section 2.6 make the choice of imple-
menting this processor in the time domain, using the LMS adaptive algo- -
rithm, evident. The choice of the TDE approach has been made. The
question now is wheth;r the adaptive filter discussed in section 2.5 is
totally suitable for thig application. This is the subject of the next

section.

3.3 Filter Design
The filter structure discussed by F. Reed, P. Feintuch, and N.
Bershad [16], and presented in section 2.5, requires prior lead-lag
information about the monitored signals in order to successfully esti-
mate the delay. The delay estimate can be made only if the leading
signal is fed as the primary input to the filter. This can be seen by

examining Figure 2.3 where the input vector

X'(n) = [x(n) x(n-1) x(n-2) e+ x(n-N+1)]

component of the second sensor output, d(n) must lag x(n) so that
the delay estimate can be made.

In acoustic detection problems, the lead-lag information is
unknown. This fact results in the necessity of applying the algorithin
twice to the same data, swapping channels the second time, in order to
get the lead-lag information as well as the delay estimate. This

difficulty can be solved by introducing an N point delay in the
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secondary filter input as illustrated in Figure 3.1. Introducing this
delay in d(n) leaves enough leading as well as lagging information in
X(n) to be compared with d(n) to eventually produce the estimate.
In this implementation, the filter inputs will have a slightly

different form than before. With discrete time signals given as in

Chapter 2,

?

x1(n) = S1(n) + m(n)
x2(n) = S2(n) + m(n) =a S3(n-D) + m(n)

the filter inputs are now given by

x(n) =x1(n) = S (n) + m(n) (3.1a)
and d(n) = x2(n-N') =a S1(n-N'-D) + m2(n-N") (3.1b)

where 0 < n< record length, |D| < N', N' = integer (ﬁb, and N s an

odd positive integer equal to the filter length. If, as assumed
earlier, m (n) and m,(n) are uncorrelated, having m,(n) delayed by
N' points have no bearing on the analysis. All the analysis, presented
in Chapter 2, of the weight vector is still applicable here except that
D must be replaced by D+N' everywhere in the derivations. Equation

(2.31) becomes in this case
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wLMS(K) = g sinc {m [K - (b+N)]} (3.2)

As can be seen from (3.2), the weight vector now peaks at K = D+N'. So
when D=0, the weights peak at N' (the middle weight), and the peak .
is shifted right or left with positive or negative values of the delay,
respectively. | ’

In section 2.4, it was shown that convergence of the weight vector
to the Weiner-Hopf solution can be obtained only if the stability con-

stant K is bounded by equation (2.25), that is,

-1 -1
Input power

H

<Kg <0
E[x2]

n ™M=

i=1
However, maintaining a constant KS through the adaptation process can
lead to instability in situations where a rapid change in the power
level of the signal may occur. For this reason, Ks is updated in tnis
design with évery iteration of fhe algorithm. An estimate of the input
power of the signal, based on the signal components in the tapped delay
line, is made with the arrival of each data sample. The value |K | is
then chosen to be less than the inverse of the power estimate by a fact-
or to be experimentally determined. Updating KS in this fashion en-
sured a fast, stable convergence of the weight vector regardiess of the
power level of the input.

The final design issue is the convergence criteria. Due to the

fact that our sampled data records may not contain any coherent signals
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all the time, and due to the fact that the shape of the weight vector is
unpredictable in these situations, a convergence criterion must be de-
rived to distinguish between coherent and noncoherent input data before
attempting to estimate the delay. This criterion is proposed as
follows. Let us monitor the peak of the weight vector at every iter-
ation as the data record is processed through the algorithm. By storing
the abscissa value (corresponding to the discrete time delay) of the
peak with every iteration, a data sequence is produced that can be plot-
ted to produce a TDE vs. time plot. A variance criterion can then be
applied to this TDE vs. time plot to determine whether a convergence
has occurred or not. The data sequence representing tne abscissa values
of the peaks is as long as the data record itself. Thus, for short-term
stationary data, the variance criterion should be applied to a sliding
window, of length less than the data records, through the sequence in-
stead of computing the variance for the whole sequence at once. When-
ever the variance criterion is met, the delay estimate is made based on
the abscissa values contained in the window where the convergence has
occurred. This provides a better estimate of the delay, compared to
taking the abscissa value of the peak in the last iteration, especially
in noisy environments.

A detailed description of our implementation of the adaptive LMSTDE
algorithm is presented next in Figure 3.2, Figure 3.3, and Figure 3.4,
by means of flowcharts. In Figure 3.2, it is assumed that the sampled
data records have been stored in arrays x and d of length L, where
L is the data record length. W is an N point array, where N is

the filter length, storing the weight vector components. The abscissa
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N-1

Initialize: n =0, u=2_  x2(i), w(i) =0 for 0 ¢ i ¢ N-1

1=

Update p as u = u + x2(n) - xz(n-N+l)
-1

Compute Kg = T

y

N-1
Compute sum = 5 x{(n-i) w(i)
i=0

i

Compute ¢ = sum - d(n-N3

¥

Update the weights as w(i) = w(i) - 2 Kg e x(n-i), 0 <1 s N-1

“ 4

Apply peak detection routine & store abscissa of peak in p(n)

v

n=n+l T

Compute delay l

Figure 3.2. LMSTDE algorithm's flowchart.
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Compute ul = ul + P(i), w2 = w2 + P2(i) for 0 5 i 5 K-1

VR = uZIK - (ul/K)z
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R<Least ' Least = VR, Pt

i

{

X,

ul = ul + P(i) = P(i-K), u2 = u2 + P2(i) - P2(i-K)

Figure 3.3.

Variance computation.
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4

A

Compute D = D + P(i) for (Pt-K < i ¢ Pt-1)

D = D/g

End

Figure 3.4. Delay estimate computation.
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values of the peaks will be stored in an L point array P. VR and
VT denotes the variance and the variance threshold, respectively. The

estimate of the stability constant, Ks’ is computed with every iter-

ation as

K = -1 (3.3)

T

s

where C 1is a predetermined factor and

N-1 N
w= I EDA(MI = Nx EDE(n)] -
i=0 '

1

x2 (n-1)

u

i=0

The peak detection block in Figure 3.2 is a simple search routine, wnile
the variance computation is described in Figure 3.3 and the delay compu-
tation in Figure 3.4. The variance computation is made, as described
earlier, over a sliding window of length K, where K < L. The equa-

tion used for the variance estimate is

;K1 ; K-l
VR=2 5§ P2(i) -[~ 3§ PGP (3.4)
K i=0 K 1i=0

Finally, the delay estimate is made by simply averaging the delay values
contained in the window that yielded the minimum variance level.

By inspecting the algorithm flowcharts, it is easily seen that the
computational complexity is proportional to L x N. In practice L is
the minimum number of iterations necessary for the convergence of the

weight vector to the Wiener-Hopf solution. Therefore, for a specific
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statistical type of data, L 1is a constant and the complexity becomes
of order N. This design, accommodating positive and negative delays,
implies a Tower-bound on N of twice the maximum propagation delay
between two sensors. Compared to the filter discussed in section 2.5,
the filter length now is twice what it was before. With the complexity
being of order N, it appears as if no speed improvement has been
established over the previous design, where two passes were needed to
obtain the delay estimate. Actual implementations, however, proved
about 10% time saving. The time saving was mainly obtained oy avoiding
the overhead computation involved in every pass as can be seen in the

flowcharts.

3.4 Specifications and Hardware

This séction presents and justifies the specific parameter values
in the algorithm implementation as well as in the hardware system used.
These specifications are summarized in Table 3.1. They can be divided
into three categories. The first category includes parameter values
derived from the assumption made in the previous section about the sig-
nal frequency band. The second consists of parameters that were experi-
mentally determined, while the ones related to hardware make up the
third category.

The starting point in the first set of parameters is the frequency
band that was specified as 1 to 20 Hz. An immediate result of this band
is the sampling rate. A sampling rate of 40 Hz, satisfying the Nyquist

rate, will not be adequate, the reason being that the signal has to be
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Table 3.1. Parameter Specifications

PARAMETER NOTATION VALUE
Frequency Band —_ 2 Hz - 20 Hz
Sample Rate fe 51.2 Hz
Array Foot 2 800 ft.

A/D S 12 bits
Quant. Level ' —_ 2.4 mV/bit
File Length M 1024 points
Record Length L 128 points
Filter Length N 77 points
Scale of Feedback

Estimate C 10

Variance Threshold VT 1
Variance Window K 48

Tow-pass filtered at 20 Hz with a non-ideal roll-off filter. To elimi-

nate any alias effects produced by attenuated frequencies above 20 Hz, a

sampling rate of 51.2 Hz was chosen. The exact value of 51.2 Hz is
desirable because it produces a rounded frequency resolution of .2 Hz on
a 256-point FFT spectrum. Given the sampling rate, the array foot
length (distance between two sensors) becomes a compromise between
computational speed and bearing resolution. The shorter the array foot,
the less the (maximum) delay, and the lower the resolution. The filter
length, and hence the speed is directly proportional to the maximum

propagation delay as was seen in the previous section. The bearing
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resolution is related to the array foot as

48 = 90°-cos-1

(At x speed of sound (3.5)

array foot length

where A48 is the bearing resolution and At is the sampling period.
To develop insight for the range of values involved, we can compute the
filter length and bearind resolution for three different values of the

array foot. (At = 1/51.2 sec, sound speed = 1080 ft/sec, filter

length = 2 0. +1)
Array foot 2000 ft. 800 ft. 100 ft.
Filter length 200 ’ 77 10
Bearing resolution .6° 1.5° 12°

The first set of values implies a good resolution at the expense of slow
speed while the third set implies a high speed computation at the ex-
pense of poor bearing resolution. The compromise is obtained in the
middle set. Note that the chosen distance between sensors is not likely
to violate our assumption of uncorrelated noise across the array. This
is true since infrasound noise produced mostly by local wind fluctu-
ations and small eddies are not expected to propagate over an 800 foot
distance.

Experimentally determined parameters are the record length (number
of iterations), scale of stability constant, variance window, and vari-
ance threshold. The first two parameters, and the second two, are re-
lated. The record length, L, should be the minimum number of iter-

ations that leads to convergence in the weight vector to tnhe Wiener-Hopf
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solution. The rate of convergence is controlled by the stability con-
stant, Ks’ as was seen in equation (2.21) in section 2.4. Keeping one
of the two constant and varying the other, the system performance was

observed and the values were chosen as

128 iterations

[ T
] W

scale of KS = 10

The system performance, as L and C vary, is simulated in section
4.2. The variance window, K, and the variance threshold, VT, were
used in the convergence criteria to determine whether the data is coher-
ent or not. Ideal response would have a zero variance across a 128-
point (record length) window, but obviously that is too tight a criteri-
on in practice. Based on the response of the algorithm to some experi-
mental data gathered, including space-shuttle launch noise, moderate
values of 48 points and 1 were chosen for K and VT, respectively.

It is worth mentioning at this point, that although the algorithm
computation is based on 128 iterations, the data files sampled are 1024
points each. This file length is necessary for subsequent spectral
analysis.

A block diagram of the system hardware and most of its specifica-
tions is presented in Figure 3.5. The type of sensors used in the array
is the GLOBE 100 C Capacitor Microphone by GUS Manufacturing Inc. The
high sensitivity (.2 volt/dyne/cm?) and the low frequency response (.1 to
(.1 to 500 Hz) on these Microphones make them very adequate for this

application. Their dynamic range is 74 dB, .004 to 20 volts peak-to-peak
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peak. This dynamic range implies an electrical noise amplitude of
(upto) 4 m volts p-to-p. To avoid any electrical noise in the sampled
data, the analog-to-digital converter should have a quantization level
of at least 2 mV/bit when no amplification is used. But since a large
dynamic range A/D is obviously desirable, a 12-bit, 2.4 mV/bit A/D con-
verter was chosen. An analog input range of -5V to +5V corresponds to a
digital output range of 0 to 4095. Therefore, as long as no amplifi-
cation is used on a microphone's output, the data are free from electri-
cal noise. Tne specifications on the remaining hardware blocks are

. totally independent. The array configuration was intended to provide
symmetry between the microphones so that delay-to-angle conversion can
be made easier. Uue to the experimental nature of this project and due
to the lack of knowledge about the sound pressure level of infrasounds
generated by meteorological events, the amplifier/attenuator block was
necessary. Even though a signal frequency band of 1 to 20 Hz is antici-
pated, the input is high-pass filtered at 2 Hz in order to eliminate the
strong wind noise in the region of .1 to 2.Hz. Finally, the choice of
the APPLE computer, as the system processing unit, was made to meet the

economical, portable system requirement.

3.5 Summary
The design process started by evaluating the anticipated signal and
noise. The main assumption made was that of similar spectral shape for
signal and noise over a frequency band of 1-to-20-Hz. This assumption
led to the choice of the Roth processor which, in this case, produced a

sharp peak at the correct delay in the weighted correlation function.
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Examining the facts of section 2.6, proved that implementing the Roth
processor in the time domain (rather than frequency domain as in the &GC
method) using the LMS adaptive filter is advantageous. The specific.

filter design for this application was then presented. An-% -point

delay in the secondary filter input was necessary to accommodate for
positive and negative delays. Updating the stability constant, Ks’

with every iteration was made for fast stable convergence of tne weignt
vector when the power level of the signal may change rapidly. To dis-
criminate against non-coherent input signals in the automatic detection
mode of the algorithm, a convergence criterion was devised. This crite-
rion was based on the variance level of the delay estimate with time.
The design phase ended by schematically presenting the exact implementa-
tion of the design and specifying the software, as well as the hardware,

parameters values.



Chapter 4
SIMULATION AND RESULTS

4,1 Introduction

Aided by the theory of TDE techniques reviewed in Chapter 2, the
system design has been described in the previoﬁs chapter. This chapter
presents an evaluation of the foregoing design. The response of the TUt
algorithm, as presented in section 3.3 is evaluated in section 2. Its
responée for deterministic data sequences is simulated as the different
parameters are individually varied. Its effectiveness in tracking time
delays between real, long-range, infrasounds is also illustrated. Sec-
tion 3 describes the complete software package, with the TDE algorithm
being its central processing element, used in the actual field operation
of the system. Its routine operation and general results over the
period of June to September 1984, are also discussed. The system is
evaluated with respect to man-made and weather-related infrasounds. The

man-made infrasounds are discussed in section 4, with an illustrative
example using signals from jet-powered aircrafts, while the weather-

related infrasounds are the subject of section 5.

4.2 System Behavior
This section is dedicated to the study of the system response for
deterministic input data as well as real infrasound waves generated oy a

far-field source. Deterministic data are used to study the system

56
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penavior as the different parameters, with effect on the response, ére
varied one at a time. The type of data used in the simulation and the
response for a nominal set of parameters are discussed in sub-section 1.
The set of parameters can be divided into two groups. The first group
consists of the adaptive filter parameters that were experimentally
determined in the design. This group is the subject of subsection 2.
The second group, containing the signal parameters (signal characteris-
tics), is discussed in subsection 3. Finally the response for real
signals consisting of the space shuttle launch noise is illustrated in

the fourth subsection,

4.2.1 Nominal Response

The data used in this simulation are white data sequences generated
on an Apple II computer using a random number generator function. White
data are used for both signal and noise. Even though data with decaying
spectra seem more appropriate for the simulation, white sequences were
chosen for the ease in which they are generated. As explained in sec-
tion 2.5, both types of data are expected to produce the same response
since the weight vector, for signal and noise having the same spectral
shape, is a sinc function regardless of what the spectral shape is. A
256-point sequence and its corresponding auto-power spectrum, represent-
ing the type of white sequences used, are plotted in Figure 4.1. The
auto-power estimate is obtained by a 256-point FFT, andvrepresented by
the first 129 components since the last 127 are a mirror image of the
first. The spectrum is expected to be completely white, in contrast to

the one in the figure, as the number of overaged 256-point periodograms
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Figure 4.1. Type of random data sequences used for simulation.
(a) 256-point sequence. (b) Its auto-power spectrum.
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approaches infinity.
The nominal response of the algorithm for positive and negative
delays is presented in Figure 4.2 and Figure 4.3, respectively. The

positive delay in Figure 4.2 was generated in the input sequences as

follows:

x(n) =Ri(n) + Ra(n) (4.1a)

d(n) = Ry (n+d) + R3(n) (4.1b)
where x(n) is the primary input to the filter, d(n) is the secondary
input, Ry(n), Ry(n) and Ry(n) are uncorrelated random sequences. The
embedded delay is four samples while the other parameters are set to
their nominal values as specified in the figures. The negative delay

was obtained by simply swapping the adaptive filter inputs, i.e.:

x(n) = Ri(n+4) + R3(n)

d(n)

0

Ri(n) + Rz(n)

The fact that x(n) now lags d(n) by four samples leads to a negative
delay in the output of the filter as illustrated in Figure 4.3.

Tne first plot in both figures was obtained by monitoring the
abscissa value of the peak in the weight vector at every iteration of

the algorithm. The second plot is the final set of weights. The
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capability of tracking positive and negative delays is evident from the

figures. The "steady-state" delay has shifted from +4 to -4 in the TDE

vs. time plot, while the peak in the weight vector has shifted right and

then left by 4 units as expected. These plots are to be compared with

the response obtained in the next two subsections where the various

parameters are varied.

4.2.2 Filter Parameters
The filter parameters include the filter length (N), stability

constant scale factor (C), and the record length (L). In the design

process, a lower bound on N was set while C and L were experiment-

ally determined. This simulation verifies the necessity of tnhe lower

bound on N and explores the basis on which C and L were deter-

mined. The input sequences used in this subsection are the ones previ-
ously given in section (4.1).

The lower bound on the filter lTength (number of weights) was de-
Twice the maximum delay was neces-

A

rived in section 3.3 as (2xDmax+l).
sary since the filter accommodates positive and negative delays.

number of weights less than the lower bound will obviously give no esti-
mate. A very large number of weights, on the other hand, will not
improve the response since the sinc function (the shape of the weight
vector) approaches zero as the number of weights is increased. This
behavior is exemplified for D=4 in Figure 4.4 with N=7 and in Figure

4,5 with N=33. The remaining parameters are set to their nominal

values in both figures. The response in both cases is to be compared
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with the nominal response in Figure 4.2 where N=17.
The effect of varying C on the stability of the system is demon-

strated in the next two figures. It was seen in section 3.3, the bounds

on KS are given by:

-1
< KS <0

N-1
T x2(1)
'i=0

The value used in this implementation is given as

-1 -1

N-1 Cu
C = x2(1)
i=0

where C 1is a positive scale factor that has to be greater than one to

satisfy the stability condition. The output of the filter is plotted in
Figure 4.6 and Figure 4.7 for (C=.5 and (=200, respectively. Having

C less than one led to an unstable system as predicted by Widrow [11],

while increasing its value behind ten hardly affected the response.

The record length (number of iterations) was chosen as 128. The
purpose of this simulation is to show that a 128-iteration process is
sufficient for the convergence of the weight vector to the Wiener-Hopf
solution. This is illustrated in the next two figures in comparison

with Figure 4.2. Figure 4.8 illustrates the ambiguity in the filter

output caused by too small a number of iterations. The expected
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response, after a satisfactory convergence, was obtained for L=128 in
Figure 4.2. A larger number of iterations produced sligntly improved
results, though not appreciable, for the additional computation. This

aspect is shown in Figure 4.9 for L=512 points.

4.2.3 Signal Parameters

This subsection illustrates the system response as the characteris-
tics of the filter inputs are changed. The characteristics considered
here are signal-to-noise power ratio (SNR), signal frequency bandwidth,
and time varying delays.

The signal to noise ratio used in the nominal response of Figure
4.2 was SNR=1. The response is evaluated in the next two figures for

SNR =.5 and SNR=2. The input sequences were generated as

]

x(n) = SxR1(n) + R2(n)

d(n) = SxR1(n+4) + R3(n)

where x(n) s the primary input to the filter and d(n) is the sec-
ondary one. R;(n), R,(n), and Ry(n) are uncorrelated random sequences
with the same amplitude. The scale factor S equals .5 in Figure 4.10
and 2 in Figure 4.11. 1In all three cases, the response of tne system
was satisfactory after 128 iterations. However, as can be seen from
the figures, the lower the SNR the slower the response (convergence).

The next simulation demonstrates the dependency of the main lobe
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width of the weight vector on the signal frequency band. The expression
for the weight vector for an ideal band-limited signal and white addi-

tive noise was derived by Ahmed and Carter [17] as

WLMS(K) = 4Bwb sinchb(K—D)] cos [wC(K-d)]

where 8 1is a real constant, w, = Wlwo oy =Wl=W0 |y and o

are the signal frequency limits, i.e. Gss (w) =0 for w <wy and g
> w; , where w; >uwy. It was shown in section 2.5 that the width of

the main lobe of the weight vector is given by 3_3 which becomes o

w
U)C 1

for wg = 0. The input sequences were generated as
x{(n) =S x R (n) + Ra(n)
d(n) = S x Ri(n+4) + R3(n)

where x(n), d(n), R2(n), and R3(n) are the same as before, S is a

scale factor used to obtain a SNR=1, and R (n) is an ideally filtered

sequence specified by its amplitude spectrum as

1l for 0< w <w
fil) = {5 for wp S w < W

In Figure 4.2, the frequency band of Rj(n) was given by wo =0 and

w, =g, i.e. white sequence. The main lobe in that case was 2
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resolution QEE = 2) wide. For the simulation in Figure 4.12, the
w)

bandwidth of R;(n) is limited to 1;- i.e.

As seen in the figure the main lobe width now is a_ . 8 resolutions.
’ ™

——

4

Finally, wg =0 and w; = T ere used in Figure 4.13. Producing a
8

main lobe that is 16 resolutions wide.

It was mentioned in section 2.6 tnat one of the advantages of the
LMSTDE algorithm over other methods is that it nas the apility to track
moving sources. The routine is tested here for this ability by linearly
varying the delay between the input signals in a noisy environment. The

input sequences were generated as
x(n) = Ry(n) + Rz(n)
d(n) = Ri(n+D(n)) + R3(n)
where R;(n), Ro(n) and R3(n) are uncorrelated random sequences as
before, and D(n) 1is a time varying delay. The signal-to-noise ratio

used here is 2. In Figure 4.14, with D(0) = 0, 0D(n) was increased by

one every 64 points in 896-point input sequences. The solid line
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represents the actual delay embedded, while the dashed 1ine represents
the instantaneous estimate of the delay as the abscissa value of the
peak in the weight vector during 896 iterations. Figure 4.15 di%fers
from Figure 4.14 in that D(h) is varied at the rate of 1 point every
128 points instead of 64. The adaptive filter tracked more closely the
actual delay in the second case. This is to be expected, since the
weights were given more -time to converge. In both cases however, D(n)
represents a relatively fast varying delay simulating a fast moving
source. Considering this fact, one can conclude that the system
response is acceptable and that the time lag, predicted by Feintuch,
Bershad, and Reed [18], between the estimate and the actual delay is not

as severe as it appears.

4.2.4 Shuttle Launch Noise

Long-range infrasound signals produced by a large rocket launch
have been recorded and studied by several investigators [22]. These
signals are similar in their statistical characteristics to weather-
related infrasounds. Thus, they can be used to simulate the anticipated
infrasounds generated by a far-field meteorological event. In this
subsection, the adaptive filter a]gorfthm is applied to the space
shuttle launch signals and the overall response is evaluated.

Space Shuttle VIII was launched from Cape Canaveral, Fiorida, at
2:31 a.m. EST on 30 August 1983. About 52 minutes later the launch

signal arrived at Wallops Island, Virginia, and was sampled on an array
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of four infrasonic microphones at the rate of 14 Hz. The array configu-
ration is illustrated in Figure 4.16. Time histories and auto-power
spectrums, of one channel before, during, and after the event, are pre-
sented in Figure 4.17 and Figure 4.18, respectively. The§e two figures
represent a verification of the event and show the background of the
signal that can be considered as the uncorrelated noise on the different
microphones. The adaptive filter algorithm was applied to three pairs
of channels during a 9.14 sec. (128 points) time frame. The output of
the microphones during this time frame is plotted in Figure 4.19. The
adaptive filter output for C2 x C3 (channel 2 cross channel 3), C3 x C4,
and C4 x C2 is shown in Figure 4,20, Figure 4.21, and Figure 4.22,
respectively. Making the estimate of the delays based on a 48-point,
zero variance, window in the TDE vs. time plots yields the following

results:

C2 leads C3 by .455 sec. (+7 resolutions)
C3 lags C4 by .780 sec. (~12 resolutions)

C4 leads C2 by .325 sec. (+5 resolutions)

Based on these delays and on the array configuration, a source direction
of about 210° from north can easily be obtained using trigonometric
identities. This estimate of the bearing is to be compared with the

true direction of 207° as illustrated in Figure 4.23. The error in the
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Figure 4.16.
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estimate is within the bearing resolution. In this case, the bearing

resolution (for fg = 14 Hz and array foot of 650 ft) is about 6.8°.

4.3 System Operation and Results

The previous section demonstrated the effectiveness of the LMS
adaptive filter algorithm in estimating the delay between the outputs of
two sensors. The algorithm, as discussed in section 3.3, can now be
used as a subroutine in a larger software package for a complete, actual
field operation of the system described in section 3.4. This section
presents a description of this software package, the mode in which it is
operated, and the way the results are evaluated.

The software package is depicted>in Figure 4.24. It consists of an
automatic detection routine, as well as a bearing coﬁputation, of infra-
sonic sound waves. The whole process is automatic in the sense that no
user intervention is needed after the program is started and the param-
eters are set. However, this automation is limited by the data storage
capacity of tne computer. The process is started by simultaneously
sampling three 1024-point files from the three sensors* in the array.
~ The data files are stored in temporary buffers until they are analyzed
by the LMSTDE algorithm. The algorithm, as described in section 3.1, is
then applied to each pair of data files at a time, considering only the
first 128 points as the filter data record. If the convergence test,
using the variance criterion, fails for any pair of sensor outputs, the

process will be stopped and a new set of data files is sampled. When

*Only three out of the four sensors in the array are at this stage.
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all three pairs of files show good coherent data through acceptabie
variance levels, the data files are transferred to a floppy disk for
permanent storage.

As the detection phase ends, the spectral content of the signal,
the bearing, and the nature of the source are then evaluated. The
analysis begins by testing the delays, obtained from the LMSTDE algo-
rithm, for consistency assuming plane wave propagation and 0° elevation.
If the consistency test is not passed the delays are printed for later
analysis; otherwise three angles, corresponding to the three delays, are
evaluated using simple trigonometric relations. The delays and angles
are then printed for the record, and the whole process is started over
again.,

The consistency test discriminates between plane waves and cylin-
drical, or spherical propagating waves. The later category may occur if
the source is in the near field of the array (within one mile from the
center of the array). Since the intention of this research is the early
detection of far-field events, this category is neglected by the soft-
ware., The delays obtained in such cases are only printed for direct
analysis by the user. The trigonometric relations used to evaluate the
bearing in case of a plane wave were formulated for horizontally incom-
ing waves only. In this case, the three computed angles will be the
same while they will differ from each other for a plane wave propagating
with a non-zero elevation. The difference among the angles can be
easily related to the value of the incident angle. The software does

not produce this calculation. For further discussion see Appendix A.
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The software has been applied since early June 1984 at NASA Langley
Research Center. An average of ten data files héve been stSred daily,
about half of which indicate plane wave propagation with printed delays
and angles. This printed data is then compared with the weather re-
ports, obtained from the meteorology center at NASA, on a daily basis.
Finally, the data files stored on floppy disks will undergo a comprehen-
sive spectral analysis, mainly for signature identification and power
law verification. The software used for the spectral analysis is, or
has stemmed from, DAISE (Digital Analysis of Infra-Sound Experiments)
[23], that was developed previous to the course of this research.

Daily evaluation of the data proved that most files stored by the

system can be grouped into four categories, with their typical sources,

as follows:
Man-made Weather-related
Near-field* Heavy machinery Microbursts
Far-field Military aircrafts Severe storms

*Within one mile from the center of the array.

Man-made infrasounds were to be expected since the microphone array is
located in Langley Research Center where a wide range of activities take
place on a regular basis. These include operating all sorts of machin-
ery, wind tunnels, etc. Future plans for near-field (both categories)
signal analysis exist but they are not of interest at this point.

Infrasounds produced by far-field events are discussed in the next two
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sections., The man-made category is discussed in section 4.4 while the

weather-related category is discussed in section 4.5.

4.4 Man-Made Signals

This section discusses the man-made signals with long-range propa-
gation detected by the automatic detection routine described in the
previous section. This category of infrasounds is of interest to this
study for two reasons. First, it verifies the capability of the system
to detect infrasonic signals and to locate their sources. Second, it
j1llustrates the necessity of more sophisticated signal processing tech-
niques to distinguish between these events and the meteorological ones.

Among others, the non-weather related signals detected include
single-component infrasounds (for example 7.2 Hz, 10 Hz, 16.8 Hz), sonic
booms generated by supersonic vehicles, and infrasounds from jet powered
aircraft. Single component infrasounds have been detected daily. The
system estimate of their directions places their sources in the main
research center of Langley. _Thus, it is believed that they are mostly
related to the different activities in the Center. Few sonic booms were
detected during the summer of 1984. They were mainly associated with
flights of supersonic military aircraft such as the Air Force F-15 which
are stationed nearby at Langley Air Force Base. The high altitude of
these sonic booms was indicated by elevation angles of 25° to 40° evalu-
ated from the data. The third type of man-made signal was found in
several files over a period of about three months. The common charac-

teristics between these infrasounds include a sound pressure level of
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about 90 dB, frequency band of about 1 to 6.5 Hz, and a source direction
ranging from 130° to 150°, relative to true north. The consistency of
these values between files, the relatively strong amplitude, and the
directions found all have led to the belief that these infrasounds are
generated during the take-off of military jet powered aircraft from
Langley Air Force Base. The location of the runway at the base relative
to the microphone array-is shown in Figqure 4.25.

One of the jet data files is considered here for illustration. The
file was stored on August 28, 1984, by the automatic detection routine.
The parameters of the software and the hardware were set to their nomi-
nal values as specified in Table 3.1. The signal on one channel before
and during the event is shown in Figure 4.26 in the time domain and in
Figure 4.27 in terms of its auto-power spectrum. The signal on micro-
phone 1, 2, and 3 during a different time frame, of the same file, is
shown in Figure 4.28. To demonstrate the convergence of the algorithm
for this type of data, the filter response was recomputed for Cl x C2 in
Figure 4.29, C2 x C3 in Figure 4.30, and C3 x Cl in Figure 4.31. This
response was recomputed by feeding alternative data points of the time
histories to the adaptive filter. This effectively reduced the sampling
rate to 25.6 Hz (51.2 Hz originally). A 25.6 Hz sample rate is adequate
in this case since the signal has a narrow frequency band as can be seen
in Figure 4.27. Keeping this rate in mind, examining the filter

response yields the following results

Cl lags C2 by 0.742 sec. (-19 resolutions)
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Figure 4.25. Location of the runway in Langley Air Force Base relative
to the microphone array.
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C2 Teads C3 by 0.625 sec. (16 resolutions)
C3 leads C1 by 0.117 sec. (3 resolutions)

Based on these delays, a source direction of about 145° can be found.
The estimate of the bearing places the source roughly on the middle of
the runway as seen in Figure 4.25. This result among others obtained
from similar files presents a reasonable assurance that the system is

indeed capable of detecting and locating the sources of infrasounds.

4.5 Weather-Related Data

As was mentioned in Chapter one, the far-field meteorological
events of interest in this research dre clear-air turbulence and severe
storms. There has not been clear evidence of clear-air turbulence
detection on the system since it has been in operation. It is also
believed that only a few storms were recorded. The uncertainty govern-
ing their detection is high in all cases except for one severe storm.
This storm was the hurricane "DIANA." It was relatively close (200
miles) and stationary for at least one day. The data files stored by
the system during that day, and their evaluation, present enougn neces-
sary and reasonably sufficient conditions to identify the data with the
hurricane. An overall evaluation of the system, including a discussion
of the various factors that might have contributed to the lack of mete-
orological data, is discussed in the conclusion chapter. This section
will concentrate on the hurricane and the issues surrounding its detec-

tion.
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A tropical storm developed into a hurricane over the coastal water
of North Carolina during the period of September 10 to September 12,
1984. It reached its full strength by September 12 with recorded wind
~ velocity up to 110 mph. The location of its "eye" on that day was rela-
tively stationary about 200 miles away from NASA/Langley Research Center
at latitude 33.8 and longitude 77.3. During the afternoon and evening
of the same day, the system recorded eleven files, four of which pointed
toward the site of the hurricane with a calculated sound pressure level
of 85 dB. The first three files, were stored within approximately a 40
minute time frame. This raises the possibility of having all three
files associated with the same event. Examination of the spectral shape
and contents of the signal on one channel through all four files sup-
ports this possibility. For reference, information in the signal sam-
pled on one microphone is presented in Figure 4.32 as time history, in
Figure 4.33 as auto-power spectrum, and in Figure 4.34 as Tog-amplitude
vs. log-frequency auto-power plots.* Compared to other data files re-
corded, these data present three, somehow unique, features. First, the
signal has a wide frequency band. This can not be seen on the linear
scale of Figure 4.33, because of the difference in the dynamic range of
the components on both ends of the spectrum. But it is clear on the
log-scale of Figure 4.34 where the band plotted is 2-to-16 Hz. Second,
the rdl]-off of the spectrum is consistent with the prediction of

Meecham and Ford [21]. They predicted a roll-off proportional to w'3'5,

*Software used to obtain these plots was developed at NASA/Langley
Research Center, by Dr. Allan J. Zuckerwar and David Katzoff.
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2.41 -3.05

while the ones computed in Figure 4.34 range between w’ and w
Third, the frequency band as well as the roll-off were consistent
through all the files even though the fourth file was sampled hours
after the first three.

To illustrate the consistency between the microphones outputs, the
signal on all three microphones during the same time period was plotted
in Figure 4.35. Its auto-power spectrum is plofted in Fiéure 4.36 on a
linear scale and in Figure 4.37 on a log-scale.* The adaptive filter
algorithm was reapplied to the data in Figure 4.35 to demonstrate the
type of tonvergence obtained for this signal. The response is shown in
Figure 4.38, Figure 4.39, and Figure 4.40 for Cl x C2, C2 x C3, and C3 x
Cl, respectively. As can be seen in the figures, the TDE vs. time plots
reflect the noisy (actually windy) environment in which the signal trav-
eled and was then sampled. The directions evaluated from the different
four data files were, with respect to the bearing resolution, within an
acceptable tolerance from each other. A mean direction of 187°, from
north, was obtained. This bearing is to be compared with the actual
value of 193° as illustrated in Figure 4.41.

The foregoing analysis and results clearly constitute the necessary
conditions for true detection of the hurricane. The sufficiency, how-
ever, is lacking a higher detection rate, on behalf of the system, over
a longer period of time. This issue, among others, will be discussed in

Chapter 5.

*Software used to obtain these plots was developed at NASA/Langley
Research Center, by Dr. Allan J. Zuckerwar and David Katzoff.
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NASA Langley Research Center.
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4.6 Summary

Tﬁe response“of the basic LMSTDE algorithm-was evaluated for deter-
ministic data sequences. The simulation justified the specific choice
of the filter parameters. The effect of varying the signal character-
istics on the response was demonstrated. A direct proportionality be-
tween the SNR and the rate of convergence of the weight vector was ob-
served. The dependency of the main lobe width of the weight vector on
the frequency band of the signal, as predicted by Ahmed and Carter [17],
was verified. The ability of the algorithm to track time-varying delays
was also illustrated in the simulation. A steady state time-lag between
the actual varying delay and the estimate of about 64 samples was ob-
served for SNR=2. The algorithm was then tested using Space Shuttle
VIII launch noise. The response was satisfactory in the sense that the
launch site was pin-pointed within the bearing resolution. The specific
software used in the field on a daily basis was described. [t consisted
of an automatic detection and bearing evaluation routine. The operation
of the system over the period of June to September 1984 was evaluated
with respect to the rate and type of signals detected. Data evaluation
proved that man-made signals dominated the data files stored by the
system. A sample of detected signals from jet-powered aircraft was
presented. This sample verified the capability of the system to detect
infrasounds and locate their sources. The system detection of weather-
related infrasounds was not conclusive. Only one severe storm was de-
tected with reasonable assurance. The assurance of the detection was
based on the consistency of the signal characteristics and bearings

through several files sampled on the day of the storm.



CHAPTER 5
CONCLUSION

5.1 Remarks

The goal of this research was the design of a system for detection
and bearing evaluation of infrasounds. Based on the results presented
in Chapter 4, it is believed that this goal has been achieved. The
adaptive LMSTDE algorithm employed in the design was evaluated in sec-
tion 4.1. Simulation results were in total agreement with theoretical
expectations. The response of the algorithm to the shuttle noise clear-
1y demonstrated its ability to estimate delays in cases of long-range
infrasonic propogation. The automated-system performance, in the actual
field, proved effective through detection and bearing evaluation of man-
made signals. This class of signals consisted of several types of
infrasounds including that of jet powered aircraft, whose signature is
similar to what is anticipated in meteorological events. Acceptable
performance of the system, as an infrasonic detector and bearing evalu-
ator, was also achieved for large-scale weather events such as the
hurricane “DIANA."

This work, however, is faced with the difficulty of evaluating the
system as a turbulence detector for two reasons, both of which are
beyond the designer's control. First, the data obtained in this case is
poorly defined. That is, it is not repeatable, nor is it unambiguously

verifiable. The second reason is the Tack of a large number of weather-
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related data files needed for the evaluation. As pointed out earlier,

few meteorological events were detected on the system. Only the hurri-

cane was identified with reasonable assurance. Some of the factors that

might have contributed to the low detection rate of events, or of files

within the same event, are listed below.

1.

Low sound pressure level of weather-related infrasounds. A
minimum level of 54 dB, derived from the system calibration, is
required at the site of the array for the signal to be detect-
ed. The fact that the hurricane, despite being a powerful
event, produced only 85 dB, raises the question of how big and
how close the event should be in order to be detected. This
question is left open for acoustical investigators.

Noisy environment. The presence of strong man-made signals at
the array location makes it difficult for the system to identi-
fy small-scale weather events.

Wind effects. Small wind fluctuations at the array can be
considered uncorrelated noise and usually do not affect tne
system response. However, this is not the case in windy con-
ditions. Strong wind may correlate at two or more microphones,
destroying the coherence property of the turbulence signal.
Multiple delay. In situations of scattered thunderstorms or
large frontal systems, the signal sampled at the array is the
superposition of infrasounds from more than one event. The
multiple delay pattern embedded in this type of signal creates

an ambiguity problem that can not be solved on the existing
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system.

5. Short-term stationary signals. A]thoughpthe lifetime of a
meteorological event is relatively long (several hours in some
cases), the period over which the turbulence, and hence the
infrasonic emission, exists is virtually unknown. Therefore,
the event may be easily missed in the case of turbulence that
is stationary over a short time relative to the computational
speed of the system; 1i.e. 20 seconds worth of data are sampled
every 7 minutes (average computational time), so infrasonic

emission for less than 7 minutes can be missed.

5.2 Future Work
More work is needed to improve the system performance for turbu-
lence identification purposes. One work area is the investigation of
signal processing techniques that are appropriate for elimination of
non-weather data and removal of wind effects from the signal before

applying the adaptive LMSTDE algorithm. Once enough knowledge is

obtained about the infrasonic signature of turubulence, pattern recog-
nition methods can be used to discriminate against non-weather data.
Removal of wind effects may require the development of a wind-measure-
ment system that is synchronized with the infrasonic detection scheme.
The purpose of this system would be to provide the wind information
needed for compensation in the system input.
Another future research consideration is.the study and modification

of the LMSTDE algorithm for supressing the side lobes in the weight

vector and processing of multiple delay signals. Both issues are
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important for avoiding any ambiguity in the weight vector peak that may
be caused by the characteristics of the input signal.

Future work also needs to consider implementing the LMSTDE algo-
rithm in nardware using dedicated signal processing cnips. Hardware
implementation would dramatically improve the computational speed, and
hence, the detection rate, of the system in the case of short-term

stationary signals.
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APPENDIX A

This appendix represents the derivation of a relationship between
the source bearing and source elevation, and the delays obtained for an
arbitrary sound wave. A general relation is first derived for one pair

of microphones. The specific relations for the array used in this work

’

are then discussed.

Figure A.1 illustrates the elevation effects on the delay between

two microphones, where
® 1is the source direction relative to the line joining the
microphones
¢ is the source elevation angle
D' is the delay due to the elevated-source signal
D 1is the projection of D' on the horizontal plane (delay for ¢=0)
V is the sound velocity

£ is the distance between microphones.
Inspection of the figure yields the following two relations,
D'xV

CoS ¢ = = EL. (A.1)
DxV D

Dx
and cos 9 —_—

1]
—
=
n
S
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Elevation effect.

Figure A.1l.
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substituting for D 1in (A.l) gives

i
cos ¢ = AR
L cos 8

(A.3)

Equation (A.3) is a transcendental equation that relates the direction
and elevation of the source to the delay between two microphones. Note
that D' 1is given, as the output of the LMSTDE algorithm, while ¢ and
8 are to be found.

The array configuration, and the values of 8 (61, 8, 63) for the
three pair of microphones, are shown in Figure A.2 (horizontal plane).
Let D{, DQ, and D; be the delays obtained from microphones (3, 4),
(3,2), and (3,1), respectively, due to a signal propogating with ¢°

elevation. Applying equation (A.3) to the different pairs yields

cos ¢ = v _b (A.4a)
£ CO0s 01
)
cos ¢ = V.0 (A.4b)
£ cos 92
. .
cos ¢ -y s (A.4c)
2 cos 83

81, 82, and 63 represent the source direction relative to the

microphones axis as shown in the figure. If B8 represents the source

direction relative to true North, then 61, 82, and 63 can be expressed
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Figure A.2. Relative angles.
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in terms of 8 by linear relationships, i.e., in figure A.2, the re-

lations are

61 =B - 180°
92 = 3000_ B (A.S)
83 = 240°. B

?

Hence, having D{, Dé, and D; estimated by the system, the problem of
finding ¢ and B becomes that of solving two equations (out of the
three in eq. (A.4)) with two unknowns.

Note that the relations of (A.5) hold for a certain range of B
only. Thus, when solving for the elevation and the exact bearing of the
source in a given situation, these relations have to be evaluated with

the bearing values provided by the system.



