

Performing XML Data Validation in the Global Force

Management Data Initiative

by Frederick S. Brundick

ARL-TR-4742 March 2009

Approved for public release; distribution unlimited.

NOTICES

Disclaimers

The findings in this report are not to be construed as an official Department of the Army position unless
so designated by other authorized documents.

Citation of manufacturer’s or trade names does not constitute an official endorsement or approval of the
use thereof.

Destroy this report when it is no longer needed. Do not return it to the originator.

Army Research Laboratory
Aberdeen Proving Ground, MD 21005

ARL-TR-4742 March 2009

Performing XML Data Validation in the Global Force
Management Data Initiative

Frederick S. Brundick

Computational and Information Sciences Directorate, ARL

Approved for public release; distribution unlimited.

ii

REPORT DOCUMENTATION PAGE Form Approved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the
data needed, and completing and reviewing the collection information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing the
burden, to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302.
Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently
valid OMB control number.
PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.

1. REPORT DATE (DD-MM-YYYY)

March 2009
2. REPORT TYPE

Final
3. DATES COVERED (From - To)

October 2006 to December 2008
5a. CONTRACT NUMBER

5b. GRANT NUMBER

4. TITLE AND SUBTITLE

Performing XML Data Validation in the Global Force Management Data
Initiative

5c. PROGRAM ELEMENT NUMBER

5d. PROJECT NUMBER

5e. TASK NUMBER

6. AUTHOR(S)

Frederick S. Brundick

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

U.S. Army Research Laboratory
ATTN: AMSRD-ARL-CI-IC
Aberdeen Proving Ground, MD 21005

8. PERFORMING ORGANIZATION

 REPORT NUMBER

ARL-TR-4742

10. SPONSOR/MONITOR’S ACRONYM(S)

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

11. SPONSOR/MONITOR’S REPORT

 NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT

Approved for public release; distribution unlimited.

13. SUPPLEMENTARY NOTES

14. ABSTRACT

This report describes the validation performed on data produced by the Global Force Management (GFM) Data Initiative (DI)
project. Extensible Markup Language (XML) was chosen for the data exchange protocol because of its popularity and
widespread support. The GFM data model, written in an object-oriented form, not only normalizes data, but also defines
objects with parent/child hierarchical relationships. Since XML is a hierarchical language, the GFM XML schema is able to
perform a more thorough analysis of hierarchical data than the same data presented in relational form. Due to the limitations
of XSD tests, I wrote XML Stylesheet Language: Transformations (XSLT) scripts to perform additional structural and
business rule validations on GFM XML data. This report contains descriptions and sample code from all of the GFM XSD
modules. After an introduction to data validation with XSLT, the tests performed by both scripts are shown and explained. I
present instructions on how to validate GFM XML data, along with sample results, and discuss the strengths and shortcomings
of the validation process.

15. SUBJECT TERMS

XML, XSL, data schema, data validation

16. SECURITY CLASSIFICATION OF:
19a. NAME OF RESPONSIBLE PERSON

Frederick S. Brundick

a. REPORT

Unclassified
b. ABSTRACT

Unclassified
c. THIS PAGE

Unclassified

17. LIMITATION
OF
ABSTRACT

UU

18. NUMBER
OF
PAGES

82
19b. TELEPHONE NUMBER (Include area code)

410-278-8943

 Standard Form 298 (Rev. 8/98)

 Prescribed by ANSI Std. Z39.18

Contents

List of Figures vii

List of Tables viii

Acknowledgments ix

Executive Summary xi

1. Introduction 1

2. XML and Schemas 1

2.1 Background . 1

2.2 The GFM XSD . 1

2.2.1 GFM Simple Data Types . 4

2.2.2 GFM Relational Table Types . 5

2.2.3 GFM Hierarchical Table Types . 7

2.2.4 GFM Table Elements . 8

2.2.5 Main GFM XSD File . 11

3. Validating Data With Transformations 13

3.1 Background . 13

3.2 XSLT Validation Overview . 15

3.3 Structural Validation . 16

3.3.1 Link Validation . 16

3.3.2 Category Code Validation . 21

3.3.3 Validation of Override Pairs . 21

3.3.4 Validation of Date/Time Groups . 22

3.3.5 Detection of Mandatory Elements . 23

3.3.6 Type Associated With Proper Item . 23

iii

3.3.7 Consistent References . 26

3.3.8 Single Root Node . 27

3.3.9 Putting the Parts Together . 28

3.4 Validation of Business Rules . 29

3.4.1 Introduction . 29

3.4.2 Link Type Validation . 30

3.4.3 Person Type Category Code Validation . 31

3.4.4 Organisation Validation . 32

3.4.5 Billet Validation . 32

3.4.6 Link Endpoint Types . 33

3.4.7 Required Associations . 35

3.4.8 Aligning Person Types . 35

3.4.9 General Information . 37

4. Performing Validation Testing 39

4.1 Schema Validation . 39

4.2 XSLT Validation . 40

5. Analysis 45

5.1 XSD and XSLT . 45

5.2 XML Limitations . 45

5.3 Alternatives . 46

6. References 47

Appendix A. Security Markings 49

Appendix B. Validation Constraints 51

Appendix C. Valid Example 55

List of Symbols, Abbreviations, and Acronyms 63

Glossary 64

Distribution List 67

iv

List of Figures

Figure 1. Hierarchical data schema . 2

Figure 2. Canonical (wrapper) data format . 3

Figure 3. Files comprising the GFM XSD . 4

Figure 4. Simple data type . 4

Figure 5. Enumerated data type . 5

Figure 6. Complex type . 6

Figure 7. Optional element . 6

Figure 8. Object Item type . 7

Figure 9. Object Item Group . 8

Figure 10. Object Item Hierarchy type . 8

Figure 11. Root (main) type . 9

Figure 12. Simple table definition . 9

Figure 13. Hierarchical table definition with tests . 10

Figure 14. Equivalent SQL referential test . 11

Figure 15. Uniqueness test . 12

Figure 16. Object Item keys . 12

Figure 17. Object Item Alias keyrefs . 13

Figure 18. Relational data hierarchy keyrefs . 14

Figure 19. Default empty template for mode mode name 15

Figure 20. Template that checks for invalid OBJ ITEM ASSOC links 16

Figure 21. Named template “missing-endpoint” that produces output 17

Figure 22. Template that checks for invalid OBJ TYPE ESTAB OBJT DET links, part 1 . . 19

Figure 23. Template that checks for invalid OBJ TYPE ESTAB OBJT DET links, part 2 . . 20

Figure 24. Template that compares CAT CODE with child element 21

Figure 25. Template that finds incorrectly overridden fields 22

Figure 26. Template that finds invalid DTG ranges . 23

Figure 27. Template that finds invalid effective datetime values 24

v

Figure 28. Template that finds Object Types without Establishments 25

Figure 29. Template that finds Object Items with incorrect Object Types 26

Figure 30. Redundant reference . 27

Figure 31. Template that finds Object Items with incorrect Object Types 27

Figure 32. Template that finds multiple Organisation tree roots 28

Figure 33. Main (root) template . 29

Figure 34. Counting the number of object-oriented tables 29

Figure 35. Template that matches OTEOD links with valid code pairs 30

Figure 36. SQL query that finds OTEOD links with valid code pairs 30

Figure 37. Template that matches OTEOD links with invalid code pairs 31

Figure 38. Template that checks Person Type categories 32

Figure 39. Template that finds ORGs that are children . 32

Figure 40. Template that reports ORGs that are not children 32

Figure 41. Template that finds Billets that have children 33

Figure 42. Template that checks child of Mat Type parent 34

Figure 43. Named template that checks the category code of an Object Type Establishment . 34

Figure 44. Template that reports Crew Platform Types that do not have a Mat Type 35

Figure 45. Template that reports Person Type roots that do not have a PTSA of ROS 36

Figure 46. Template that reports Person Type trees that have an incorrect number of nodes . 37

Figure 47. Template that reports MilPostTypes with too few PersType children 38

Figure 48. Template that counts Crew Platform (and Billet) elements 39

Figure 49. Typical GFM root element . 39

Figure 50. Xerces XML validator detecting one error . 40

Figure 51. Saxon transformation engine testing XML data 40

Figure 52. Web browser output of XSLT validation . 42

Figure 53. Web browser output of validation of relational data 43

Figure 54. Web browser output of validation using business rules 44

Figure 55. Sample force structure (organisation) tree . 46

Figure A-1. GFM XML data with security attributes . 49

Figure A-2. Classification markings attribute groups . 50

vi

Figure A-3. Object Item type with security attribute group 50

Figure C-1. OBJ TYPE elements, part 1 of 2 (ORG TYPEs) 55

Figure C-2. OBJ TYPE elements, part 2 of 2 (MAT TYPE and PERS TYPE) 56

Figure C-3. OBJ TYPE ESTAB elements . 57

Figure C-4. GFM PERS TYPE SKILL ATTR element . 57

Figure C-5. OBJ TYPE ESTAB OBJT DET (link) elements 58

Figure C-6. OBJ ITEM (ORG) elements . 59

Figure C-7. OBJ ITEM OBJ TYPE ESTAB elements . 59

Figure C-8. OBJ ITEM ASSOC element . 60

Figure C-9. Sample data with relationships . 60

vii

List of Tables

Table 1. Object Type to Object Item associations . 25

Table 2. Allowable OTEOD combinations . 33

Table B-1. OTEOD category codes . 52

Table B-2. Assoc category codes . 53

Table C-1. Link keys for figure C-9 . 60

viii

Acknowledgments

I would like to thank Holly Ingham, a fellow member of the Global Force Management Data
Initiative team, and William Tanenbaum, a high school student in the Science and Engineering
Apprentice Program, for reading early drafts of this report. They provided valuable feedback and
kept the technical discussions from being overly esoteric.

ix

INTENTIONALLY LEFT BLANK.

x

Executive Summary

This report describes the validation performed on data produced by the Global Force
Management (GFM) Data Initiative (DI) project. Extensible Markup Language (XML) was
chosen for the data exchange protocol because of its popularity and widespread support.

It is common practice to compare a set of XML data against an XML Schema definition (XSD)
file, similar to the way that data in a relational database may be verified against the database
schema. While this process will catch gross errors, such as strings that are too long, incorrect date
formats, and the absence of mandatory elements, much more validation may be performed. The
two basic test classes that this report describes are structural and business rule validation.

One reason why XML is popular is because the values are surrounded by their element names,
eliminating confusion caused by changing the order of unlabeled values. However, the GFM data
model was written in an object-oriented form where the data is not only normalized (to use the
database term), but also defines objects with parent/child hierarchical relationships. XML is a
hierarchical language, and this fact may be used to explicitly structure the data to match the
hierarchical model.

The GFM XML schema is able to perform a more thorough analysis of hierarchical data than the
same data presented in relational form. Tests are also defined to check the data for referential
integrity; when one object refers to a second object, the latter is checked to make sure that it
exists. The final structural test ensures that top-level identifiers are unique.

There are limits to the tests that may be conducted by XSD. While the XML Stylesheet
Language: Transformations (XSLT) was written to transform an XML file into another form, such
as Hypertext Markup Language (HTML), it may be used as a programming language to validate
XML data. An XSLT script has been written to perform additional structural validations on GFM
XML data. Unlike XSD, XSLT includes conditional expressions, allowing validation tests such as
“the starting date/time group must be less than the termination date/time group.” A second XSLT
script enforces certain GFM business rules. While the XSD ensures that an particular value is in
the set of values recognized by the data model, GFM business rules may put additional constraints
on the value.

This report contains descriptions and sample code from all of the GFM XSD modules. After an
introduction to data validation with XSLT, the tests performed by both scripts are shown and
explained. I present instructions on how to validate GFM XML data, along with sample results,
and discuss the strengths and shortcomings of the validation process.

While the intended audience is people with some XML experience, a glossary with acronyms is
provided to define terms in the context of the report. Appendix A contains a description of the
Intelligence Community Information Security Marking (IC-ISM) XSD module, appendix B lists
summaries of the structural and business rules, and appendix C describes a small set of sample
data. This is work in progress that is expected to grow over time.

xi

INTENTIONALLY LEFT BLANK.

xii

1. Introduction

The Global Force Management (GFM) Data Initiative (DI) (1) uses Extensible Markup Language
(XML) (2) to exchange data between servers and clients. It is important that the data be validated,
not only to prevent retransmissions due to errors, but also to verify that the original data was
constructed in accordance with the GFM schema, structure, and business rules. This report
discusses the techniques that are used by GFM to ensure the correctness of the data.

An XML data file is composed of elements (with attributes) in a hierarchical structure, while the
original (non-XML) schema was written using a relational database model. Database tables
contain records; each record is made up of fields, with one value in each field. The vocabulary in
this report is a mixture of XML and database terms. It is simpler to call an element a table instead
of using the verbose phrase “the XML element that corresponds to a table in the database
model.”1 The intended meaning of a word should be clear within its context.

2. XML and Schemas

2.1 Background

While XML was originally designed to be used in conjunction with Hypertext Markup Language
(HTML) and for document processing, it was quickly adopted as a data markup language (3).
XML Schema Definition (4,5) (commonly known as XML Schema or XSD) was adopted as a
grammar to describe the structure and data types of an XML data file. It is similar to a traditional
data dictionary, declaring data elements and their types, but allows the programmer to define his
own data types, the structural relationships between elements, and the logical relationships.

There are two tests that may be performed on an XML data file. The first is well-formedness,
which ensures that the file is syntactically correct—are elements nested properly, are all elements
terminated, are strings properly delimited, etc.? The second is validation, which compares the file
with an XSD and examines the data contents (6)—are all of the elements defined, does all data
conform to the type restrictions, are mandatory elements present, etc.?

Section 3 presents another methodology to validate data.

2.2 The GFM XSD

The GFM Information Exchange Data Model (IEDM) is an augmented subset of the Joint
Command, Control and Consultation Information Exchange Data Model (JC3IEDM) developed

1See section 2.2.2 for other element mappings.

1

by the Multilateral Interoperability Programme Data Modelling Working Group (MIP
DMWG) (7). The JC3IEDM is available in both relational and object-oriented XSDs. Note: All
fields and tables added by GFM start with “GFM ”.

For readers who are unfamiliar with the GFMIEDM, a short explanation is in order. Every record
of every table has a primary key called an Enterprise-Wide Identifier (EwID) (8). These surrogate
keys are constructed so they are unique not only within a specific table or database, but throughout
all systems that produce GFM data. Because the JC3IEDM is an object-oriented model, even
though it is intended to be used by relational database management systems (RDBMSs), many of
the EwIDs are foreign keys that refer to records in other tables. The JC3IEDM may be treated as
a highly normalized database where many of the tables have a parent-child relationship. A
hierarchical (object-oriented) portion of the GFMIEDM Entity-Relationship (E-R) diagram,
where links represent “is-a” relationships, is shown in figure 1.

Figure 1. Hierarchical data schema.

The field “above the line” is the primary key for each table. In this example, obj item id is a
unique key and the other EwIDs (such as org id and unit id) are foreign keys.

The relational XSD uses what the Oracle Corporation refers to as the “canonical XML
format” (9), also called the “wrapper” format. Each database table is an XML element, the rows
in the table correspond to children of the element, and the fields are child elements of the row
element. A typical example is shown in figure 2.2 When hierarchical data is stored in canonical
form, the relationships between the records is lost and validation becomes more difficult.

2Intelligence Community Information Security Marking (IC-ISM) attributes are not shown but are described in
appendix A.

2

<OBJ_ITEM_ASSOC_TBL>
<OBJ_ITEM_ASSOC>
<SUBJ_OBJ_ITEM_ID>72060755133858488</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72060755133863257</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX>72060755133858493</OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
<OBJ_ITEM_ASSOC>
<SUBJ_OBJ_ITEM_ID>72060755133858488</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72060755133863255</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX>72060755133858494</OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
<OBJ_ITEM_ASSOC>
<SUBJ_OBJ_ITEM_ID>72060755133858485</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72060755133858483</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX>72060755133858495</OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
</OBJ_ITEM_ASSOC_TBL>

Figure 2. Canonical (wrapper) data format.

Since XML is inherently hierarchical, it is ideally suited to handle GFM data. As figure 1 shows,
a UNIT is-an ORG is-an OBJ ITEM. To phrase that another way, a Unit is composed of an
OBJ ITEM, an ORG, and a UNIT. The org id and unit id fields are foreign keys that have the
same value as the obj item id primary key. It is incorrect to have a record in one of these tables
without having a corresponding record in each of the other tables. Of course, that is just one path
through the tree. A UNIT child of an ORG could be replaced by a GFM CREW PLATFORM or
a GFM BILLET, or the OBJ ITEM child could be a MAT (Materiel) or FAC (Facility). These
requirements—an OBJ ITEM must have an ORG, MAT, or FAC child, and an ORG must have
one of three children—may be explicitly recorded in the XSD.

3

Due to the size of the JC3IEDM, there are two separate sets of XSD files. Since the GFM model
is considerably smaller than the JC3 model, the relational and object-oriented schemas were
combined. In order to improve readability and facilitate configuration control, the XSD was split
into multiple files. These files, which are shown in figure 3, are described from the bottom up.

GFMIEDM341simpleTypes.xsd

GFMIEDM341relatTableTypes.xsd

GFMIEDM341hierTableTypes.xsd

GFMIEDM341tables.xsd

GFMIEDM341.xsd

IC-ISM-v2.xsd

Figure 3. Files comprising the GFM XSD.

2.2.1 GFM Simple Data Types

The file GFMIEDM341simpleTypes.xsd contains all of the data types that are defined in the
E-R model, translated into XML terms. The majority of the types were copied from the
JC3IEDM XSD. At over 10,500 lines, this file makes a strong argument for a modular design.
There are 2 main classes of data types:

1. Simple or primitive types, and

2. Enumerated types.

An example of a simple type is shown in figure 4 and should be self-explanatory.

<xs:simpleType name="txt_mandatory_100">
<xs:annotation>
<xs:documentation>Oracle datatype: VARCHAR(100)</xs:documentation>

</xs:annotation>
<xs:restriction base="xs:string">
<xs:maxLength value="100"/>

</xs:restriction>
</xs:simpleType>

Figure 4. Simple data type.

4

The word “mandatory” in the type name is slightly misleading. A type may not be mandatory;
only an element may be mandatory.3 This is a reminder that an element of this type is required.
This type is an extension of xs:string and has a maximum length of 100 characters.4 The
‘documentation’ element shows the equivalent SQL type.5

An enumerated type is an extension of xs:string with a list of all possible values. The example in
figure 5 was chosen because it has only two values. Most of the enumerations are fairly large, and
some are huge. The documentations and type names are taken from the E-R model. All
JC3IEDM enumerated type names start with “DS”, while GFM types begin with “GF”.

<xs:simpleType name="DS4190_obj_type_estab_cat_code">
<xs:annotation>
<xs:documentation>Data type for the validation rule

DS4190_obj_type_estab_cat_code</xs:documentation>
</xs:annotation>
<xs:restriction base="xs:string">
<xs:enumeration value="CES">

<xs:annotation>
<xs:documentation>Complete equipment schedule: A list of the

associated ancillaries, accessories, tools, literature and
spares which, when scheduled together, form a composite
vehicle, equipment or store.</xs:documentation>

</xs:annotation>
</xs:enumeration>
<xs:enumeration value="PCG">

<xs:annotation>
<xs:documentation>Parts catalogue: A list showing the disassembly

build order of an equipment, identifying the assemblies,
sub-assemblies and components which comprise the equipment
(or assemblies and sub-assemblies).</xs:documentation>

</xs:annotation>
</xs:enumeration>

</xs:restriction>
</xs:simpleType>

Figure 5. Enumerated data type.

2.2.2 GFM Relational Table Types

The file GFMIEDM341relatTableTypes.xsd includes the file GFMIEDM341simpleTypes.xsd.
At roughly 1800 lines, it is the second largest file. It defines all of the “records” and “fields” for
the canonical form. It also imports the file IC-ISM-v2.xsd (10) and defines the attributes required
for classification markings on data records.6 These attributes are discussed in appendix A.

3The definition is identical to the type txt optional 100.
4All XML Schema elements are in the “xs” namespace and thus start with “xs:”.
5The XSD best practices recommends ‘documentation’ elements rather than comments because they are inline

elements and therefore part of the schema.
6The ‘include’ element treats all of the declarations as part of a single application, while ‘import’ references

declarations in another namespace.

5

Figure 6 shows the definition of the CivilianPostType type. It is a complex type because it
combines several elements together. By default, an ‘all’ element requires that each child element
appears exactly once (in the data file). The first element is named CIV POST TYPE ID and it is
of type identifier20 (an EwID). Notice that the other two elements have almost the same type
names except for the first two characters. This was done to emphasize that the types are related,
but that the first was defined by the JC3IEDM and the second by GFM.

<xs:complexType name="CivilianPostType">
<xs:annotation>
<xs:documentation>Definition: An ORGANISATION-TYPE with a set of

duties that are intended to be fulfilled by one person in private
sector and non-military government organisations.</xs:documentation>

</xs:annotation>
<xs:all>
<xs:element name="CIV_POST_TYPE_ID" type="identifier20">

<xs:annotation>
<xs:documentation>Definition: The organisation-type-id of a

specific CIVILIAN-POST-TYPE (a role name for object-type-id).
</xs:documentation>

</xs:annotation>
</xs:element>
<xs:element name="CAT_CODE" type="DS369_civ_post_type_cat_code">

<xs:annotation>
<xs:documentation>Definition: The specific value that represents

the class of CIVILIAN-POST-TYPE.</xs:documentation>
</xs:annotation>

</xs:element>
<xs:element name="GFM_CAT_CODE" type="GF369_civ_post_type_gfm_cat_code">

<xs:annotation>
<xs:documentation>Definition: The specific value that represents

the GFM class of CIVILIAN-POST-TYPE.</xs:documentation>
</xs:annotation>

</xs:element>
</xs:all>

</xs:complexType>

Figure 6. Complex type.

The code fragment in figure 7 shows how to mark a field as optional. The attribute is ‘minOccurs’
and the value 0 means that the element may appear zero times, i.e., it is optional. Remember that
the word “optional” in the type name is just a reminder to the human reader.

<xs:element name="DESCR_TXT" type="txt_optional_50" minOccurs="0">
<xs:annotation>
<xs:documentation>Definition: The character string assigned to

represent the specific ORGANISATION-TYPE.</xs:documentation>
</xs:annotation>

</xs:element>

Figure 7. Optional element.

6

2.2.3 GFM Hierarchical Table Types

The file GFMIEDM341relatTableTypes.xsd could be included to define the schema using the
canonical form; however, better validation may be achieved by taking advantage of the
hierarchical nature of XML and defining hierarchical table types in the file
GFMIEDM341hierTableTypes.xsd. To differentiate the force structure tree hierarchical data7

from the data structure hierarchy, the latter is referred to as the Generalization Hierarchy. Nesting
the elements also makes the data more understandable to a human reader since related data are
kept together instead of being scattered throughout the GFM XML data file.

Figure 8 shows part of the definition of ObjectItem. Notice that it uses ‘sequence’ instead of
‘all’. The main difference, which is not relevant in GFM, is that the data elements in a sequence
must appear in the specified order, while ‘all’ allows any order to be used. The reason that
‘sequence’ is used is to allow the ObjectItem type to be extended to derive a new type. The
italicized element is explained in appendix A.

<xs:complexType name="ObjectItem">
<xs:annotation>
<xs:documentation>Definition: An individually identified object
that has military or civilian significance.</xs:documentation>

</xs:annotation>
<xs:sequence>
<xs:element name="OBJ_ITEM_ID" type="identifier20">

<xs:annotation>
<xs:documentation>Definition: The unique value, or set of
characters, assigned to represent a specific OBJECT-ITEM and to
distinguish it from all other OBJECT-ITEMs.</xs:documentation>

</xs:annotation>
</xs:element>
...

</xs:sequence>
<xs:attributeGroup ref="SecurityAttributesGroup"/>

</xs:complexType>

Figure 8. Object Item type.

The simple types shown in figures 4 and 5 are restrictions. They are both based on the xs:string
type, but the first has a maximum length of 100 characters and the second may contain only
specific values.

A specification is needed to state that an ObjectItem must have a FAC, MAT, or ORG child
element via an extension of the ObjectItem type. If one or more simple types were being added to
the ObjectItem type, a format similar to the one for restricting simple types could be used;
however, a group must be used instead. The group definition is shown in figure 9.

7Force structures are discussed in section 5.2 and appendix B. Otherwise, the word “hierarchy” refers to a data
structure.

7

<xs:group name="ObjectItemGroup">
<xs:choice>
<xs:element name="FAC" type="Facility"/>
<xs:element name="MAT" type="Materiel"/>
<xs:element name="ORG" type="OrganisationHierarchy"/>

</xs:choice>
</xs:group>

Figure 9. Object Item Group.

The ‘choice’ element specifies that exactly one of the elements listed must appear in the data.
Now the parts may be assembled to define the hierarchical version of an Object Item type. This
has been done in figure 10. An ObjectItemHierarchy consists of all of the elements in an
ObjectItem (figure 8) plus the ObjectItemGroup (figure 9).

<xs:complexType name="ObjectItemHierarchy">
<xs:annotation>
<xs:documentation>An ObjectItem which is part of a hierarchy.
</xs:documentation>

</xs:annotation>
<xs:complexContent>
<xs:extension base="ObjectItem">

<xs:sequence>
<xs:group ref="ObjectItemGroup"/>

</xs:sequence>
</xs:extension>

</xs:complexContent>
</xs:complexType>

Figure 10. Object Item Hierarchy type.

Figure 9 states that the element ORG is of type OrganisationHierarchy. This hierarchical type
is an extension of the Organisation type plus the OrganisationGroup. Except for the names, these
types and this group are defined the same way as the Object Item example. The final result
matches the hierarchical data schema shown in figure 1.

2.2.4 GFM Table Elements

All of the pieces are now in place to define the “table” elements. The file
GFMIEDM341tables.xsd includes the file GFMIEDM341hierTableTypes.xsd. Next a type for
the root element is defined to allow different main XSD files to include this file. As explained in
the next section, validation rules must appear in the scope of the element, so the top element may
not be declared here. The enclosing elements and some table elements are shown in figure 11.

The first thing to note is that every table is optional. If a GFM XML data file does not contain any
MiscellaneousEquipmentType data, then it should not have a MISC EQPT TYPE TBL element.8

8A basic tenet of XML data is that empty elements are rarely used.

8

<xs:complexType name="GFMIEDM34Type">
<xs:annotation>
<xs:documentation xml:lang="en">This element MUST be conveyed as
the root element in any instance document based on this schema
specification.</xs:documentation>

</xs:annotation>
<xs:all>
...
<xs:element ref="MISC_EQPT_TYPE_TBL" minOccurs="0"/><!--rel-->
<xs:element ref="OBJ_ITEM_TBL" minOccurs="0"/><!--rel-->
<xs:element ref="OBJ_ITEM_OO_TBL" minOccurs="0"/><!--oo-->
<xs:element ref="OBJ_ITEM_ADDR_TBL" minOccurs="0"/><!--both-->
...

</xs:all>
</xs:complexType>

Figure 11. Root (main) type.

Similarly, a table may appear no more than once. Also, all of the elements end with “ TBL”, a
convention adopted by the JC3IEDM.

Finally, compare the two highlighted elements. The first is the relational (canonical) Object Item
table, and the second is the object-oriented (generalization hierarchy) version. This fact is
emphasized by the <!--rel--> and <!--oo--> comments. Within a GFM XML data file, a
hierarchical table element ends with “ OO TBL”. The fourth element shown has a
<!--both--> comment to denote that it is not part of any generalization hierarchy, and thus is
the same regardless of the schema being used.

The GFM XSD defines 46 tables; 37 are part of generalization hierarchies and 9 are purely
relational. The hierarchical tables are combined into only three XML hierarchies.

The rest of the file defines all of the table elements and states that each element may contain one
or more child elements (records). (A sequence implicitly sets ‘minOccurs=1’.) A simple table is
shown in figure 12. All relational tables use this form, changing only the element and type names.

<xs:element name="OBJ_ITEM_TBL"><!--rel-->
<xs:annotation><xs:documentation>rel only</xs:documentation></xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element name="OBJ_ITEM" type="ObjectItem"
maxOccurs="unbounded"/>

</xs:sequence>
</xs:complexType>

</xs:element>

Figure 12. Simple table definition.

The hierarchical tables, such as the one in figure 13, start out like the relational tables. The
element name ends with “ OO TBL” instead of “ TBL”, but the “record” name remains the same.
The OBJ ITEM TBL contains one or more OBJ ITEMs, while the OBJ ITEM OO TBL
contains one or more top-level OBJ ITEMs, which have child elements.

9

What complicates the definition of a hierarchical table are the ‘key’ and ‘keyref’ elements, which
are highlighted in figure 13. Each of these elements has a name, a selector with an XPath9

expression, and a field with a second XPath expression (11). In addition, a keyref contains a
reference to a key.

<xs:element name="OBJ_ITEM_OO_TBL"><!--oo-->
<xs:annotation><xs:documentation>oo only</xs:documentation></xs:annotation>
<xs:complexType>
<xs:sequence>

<xs:element name="OBJ_ITEM" type="ObjectItemHierarchy"
maxOccurs="unbounded"/>

<xs:annotation><xs:documentation>foreign keys in OBJ_ITEM tree must
equal primary key</xs:documentation></xs:annotation>
<xs:key name="ObjItemIDTree">
<xs:selector xpath="OBJ_ITEM_ID"/>
<xs:field xpath="."/>

</xs:key>
<xs:keyref name="testFacID" refer="ObjItemIDTree">
<xs:selector xpath="FAC"/>
<xs:field xpath="FAC_ID"/>

</xs:keyref>
<xs:keyref name="testMatID" refer="ObjItemIDTree">
<xs:selector xpath="MAT"/>
<xs:field xpath="MAT_ID"/>

</xs:keyref>
<xs:keyref name="testOrgID" refer="ObjItemIDTree">
<xs:selector xpath="ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:keyref>
<xs:keyref name="testGFMBilletID" refer="ObjItemIDTree">
<xs:selector xpath="ORG/GFM_BILLET"/>
<xs:field xpath="GFM_BILLET_ID"/>

</xs:keyref>
<xs:keyref name="testGFMCrewPlatformID" refer="ObjItemIDTree">
<xs:selector xpath="ORG/GFM_CREW_PLATFORM"/>
<xs:field xpath="GFM_CREW_PLATFORM_ID"/>

</xs:keyref>
<xs:keyref name="testUnitID" refer="ObjItemIDTree">
<xs:selector xpath="ORG/UNIT"/>
<xs:field xpath="UNIT_ID"/>

</xs:keyref>
</xs:element>

</xs:sequence>
</xs:complexType>

</xs:element>

Figure 13. Hierarchical table definition with tests.

9XPath is a standard XML query language. XSD uses a subset of XPath.

10

The purpose of key/keyref is to test referential integrity. The ‘selector’ and ‘field’ are used to
locate an element whose value is associated with the key’s name. In this example, the selector
specifies the OBJ ITEM ID. Since we have located the element that we want, the field is “.”,
which means the current element. A simple way to picture this is the assignment statement

ObjItemIDTree = value-of(this OBJ ITEM’s OBJ ITEM ID).

The ‘keyref’s that follow specify elements whose values must be the same as a key. The
highlighted keyref has a name that must be unique but otherwise is ignored. The ‘refer’ attribute
supplies the name of the desired key. The ‘selector’ and ‘field’ attributes specify that the
ORG ID of the ORG child of the current OBJ ITEM is the element to compare. The equivalent
comparison statement is

value-of(this OBJ ITEM’s ORG’s ORG ID) == ObjItemIDTree.

These statements may be combined into the desired result, namely, when an OBJ ITEM has a
child ORG, the ORG’s ORG ID must be equal to the OBJ ITEM’s OBJ ITEM ID. Since this test
is applied to every OBJ ITEM in the OBJ ITEM OO TBL, it roughly the same as the SQL
query shown in figure 14. The value returned by the query should match the number of records in
the ORG table.

SELECT COUNT(*)
FROM OBJ_ITEM oi, ORG o
WHERE oi.obj_item_id=o.org_id;

Figure 14. Equivalent SQL referential test.

2.2.5 Main GFM XSD File

The GFMIEDM341.xsd file is the main GFM XSD file and is entirely devoted to validation tests.
If fewer restrictions are desired, such as for GFM XML data files that are known to be
incomplete, then a different main file could be written. The reason for the declaration of the
GFMIEDM34Type should now be apparent, since tests must be defined within the scope (body)
of an element.

After including the GFMIEDM341tables.xsd file, the main file defines the document root of a
GFM XML data file, namely GFMIEDM34. The first rule is verbose but easy to understand—it
uses the ‘unique’ element to ensure that the primary key in each record (that is not a child in a
generalization hierarchy) is unique. A highly edited version of the uniqueness test is shown in
figure 15. The selector’s XPath expression, of which only two paths are shown, must be confined
to a single, long line. The actual test lists all 12 EwIDs that appear in the GFM XSD.

11

<xs:unique name="UniqueEwID">
<xs:annotation><xs:documentation>primary EwIDs must be unique
</xs:documentation></xs:annotation>
<xs:selector xpath="

...|*/OBJ_ITEM/OBJ_ITEM_ID|
OBJ_ITEM_ADDR_TBL/OBJ_ITEM_ADDR/OBJ_ITEM_ADDR_IX|..."

/>
<xs:field xpath="."/>

</xs:unique>

Figure 15. Uniqueness test.

The paths in the selector expression are separated by vertical bars, and the field’s XPath is simply
“.”. Ignoring the syntactic details, what this test indicates is that all of the fields listed in the
selector must contain unique values. Each path must be long enough to unambiguously specify a
single element. The foreign key element often uses the same name as the primary key element,
requiring the use of long paths to differentiate between the two. The example shows that the path
always starts with the “ TBL” name and drills down to the EwID element. The first path in the
example starts with a wildcard (*) because an OBJ ITEM may be a record in an
OBJ ITEM TBL or an OBJ ITEM OO TBL.10

The rest of the file consists of tests for referential integrity. There are two types of references:
pointers to disparate element types (“horizontal” references) and the relational version of the data
hierarchy (“vertical” references). The keys are defined the same way as in the
GFMIEDM341tables.xsd file. Each key has the same name as its field, plus vertical keys have
the prefix “Rel”.

The details are explained with the OBJ ITEM hierarchy. Figure 16 shows the keys that are
defined for fields in the OBJ ITEM. The first two selectors start with a wildcard, because
horizontal tests apply to both relational and object-oriented tables. The third selector explicitly
names the table element because the key is used only in vertical relational tests.

<!-- ObjItem keys -->
<xs:key name="ObjItemID">

<xs:selector xpath="*/OBJ_ITEM"/>
<xs:field xpath="OBJ_ITEM_ID"/>

</xs:key>
<xs:key name="OrgID">

<xs:selector xpath="*/OBJ_ITEM/ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:key>
<xs:key name="RelOrgID">

<xs:selector xpath="ORG_TBL/ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:key>

Figure 16. Object Item keys.

10Remember that these paths are relative to the GFMIEDM34 element.

12

The horizontal tests in figure 17 are for the table (OBJ ITEM ALIAS) that associates an Object
Item with an Alias. The desired tests are to make sure that the elements that are referenced,
namely the OBJ ITEM ID and GFM OBJ ALIAS TYPE, exist in the GFM XML data file.
The first keyref ensures that the OBJ ITEM ID in an OBJ ITEM ALIAS of an
OBJ ITEM ALIAS TBL has the same value as an ObjItemID as defined in figure 16. The second
does the same for the Alias end of the link; the key definition is not shown.

<!-- ObjItemAddr -->
<xs:keyref name="ObjItemAliasObjItemRef" refer="ObjItemID">

<xs:selector xpath="OBJ_ITEM_ALIAS_TBL/OBJ_ITEM_ALIAS"/>
<xs:field xpath="OBJ_ITEM_ID"/>

</xs:keyref>
<xs:keyref name="ObjItemAliasAliasTypeRef" refer="GFMAliasTypeID">

<xs:selector xpath="OBJ_ITEM_ALIAS_TBL/OBJ_ITEM_ALIAS"/>
<xs:field xpath="GFM_OBJI_ALIAS_TYPE"/>

</xs:keyref>

Figure 17. Object Item Alias keyrefs.

The keyrefs in figure 18 match the E-R diagram in figure 1. Each EwID in a table must match the
EwID in its parent table. However, there are subtle differences between these tests and the ones
defined in figure 13. For one thing, the scope is entirely different. The other tests are defined
inside of the OBJ ITEM OO TBL, while these keys and keyrefs are in the main GFMIEDM34
element.

Another difference is the key that is referenced—the object-oriented keyrefs all refer to the
OBJ ITEM ID element. The OBJ ITEM OO TBL element requires that each OBJ ITEM has
an ORG, MAT, or FAC child, and an ORG has one of three child elements. Since the relational
elements are distinct from each other, this restriction must be imposed by the keyrefs from the
bottom up. A UNIT ID must match an ORG ID, while an ORG ID must match an
OBJ ITEM ID. It is still possible to create an ORG without a child, but detecting this is beyond
the scope of XSD. The techniques described in the next section could perform this task, but the
emphasis has been on GFM XML data in the object-oriented form.

3. Validating Data With Transformations

3.1 Background

There are limits to the tests that may be performed by an XSD file. Only a subset of XPath is
recognized, and conditional statements are not allowed. A separate application must be written to
conduct additional validation tests, and that can be quite an undertaking. Rick Jelliffe of the
Academia Sinica devised a way to use Extensible Stylesheet Language: Transformations
(XSLT) (12) as a clever alternative.

13

<!-- ObjItem tree -->
<xs:keyref name="OrgRef" refer="ObjItemID">

<xs:selector xpath="ORG_TBL/ORG"/>
<xs:field xpath="ORG_ID"/>

</xs:keyref>
<!-- Org subtree -->
<xs:keyref name="UnitRef" refer="RelOrgID">

<xs:selector xpath="UNIT_TBL/UNIT"/>
<xs:field xpath="UNIT_ID"/>

</xs:keyref>
<xs:keyref name="CrewPlatformRef" refer="RelOrgID">

<xs:selector xpath="GFM_CREW_PLATFORM_TBL/GFM_CREW_PLATFORM"/>
<xs:field xpath="GFM_CREW_PLATFORM_ID"/>

</xs:keyref>
<xs:keyref name="BilletRef" refer="RelOrgID">

<xs:selector xpath="GFM_BILLET_TBL/GFM_BILLET"/>
<xs:field xpath="GFM_BILLET_ID"/>

</xs:keyref>
<!-- Mat subtree -->
<xs:keyref name="MatRef" refer="ObjItemID">

<xs:selector xpath="MAT_TBL/MAT"/>
<xs:field xpath="MAT_ID"/>

</xs:keyref>
<!-- Fac subtree -->
<xs:keyref name="FacRef" refer="ObjItemID">

<xs:selector xpath="FAC_TBL/FAC"/>
<xs:field xpath="FAC_ID"/>

</xs:keyref>

Figure 18. Relational data hierarchy keyrefs.

XSLT was originally conceived to transform one XML document into another (13). The file
GFMIEDM341flatten.xsl is an XSLT script that reads a GFM XML data file that contains
hierarchical data and produces the same data in relational form. The most common use of XSLT
is to indicate to a Web browser how to convert XML data into XHTML (14) (a reformulation of
HTML) to make it more readable by humans.11 GFM’s script to do this is the file
GFMIEDM341.xsl. Jelliffe describes how to write XSLT templates (rules) to produce error
messages in XHTML based on problems that it detects in the XML data (15).

The GFM package contains two XSLT scripts. These scripts assume that the data has already
been validated against the GFM XSD. The first, GFMIEDM341validate.xsl, defines structural
restrictions that could not be tested by the XSD. The second, GFMIEDM341businessRules.xsl,
is an attempt to automate business rules that are not formally part of the model. The restrictions
and allowed values are summarized in appendix B. Other scripts may be written to validate data
with special requirements. Providing tools to perform data validation allows the data producers to
test their systems, while data consumers may avoid tedious input checking in their applications.

11All major Web browsers have a built-in XSLT transformation engine.

14

3.2 XSLT Validation Overview

This report is not intended to be a tutorial on XSLT or XPath. However, XSLT is a declarative
language, not a procedural language like C, Java, and most other popular languages. An overview
is provided to explain Jelliffe’s technique in layman’s terms, followed by actual code from the
GFM XSLT files.

An XSLT file contains templates. Most templates contain a ‘match’ attribute, which consists of an
XPath expression.12 This is very similar to the patterns in an XSD key or keyref, except the full
power of XPath is available. The ‘apply-templates’ element may be used to compare the XML
data tree (or a specified subtree) to all of the templates or just a subset. The code in a matching
template is executed, possibly producing XHTML output.

Without going into too much detail, a match template may have an optional ‘mode’ and/or
‘priority’. By default, all templates have no mode or priority. Each template in the desired mode
is evaluated, comparing its XPath expression against the XML tree (or subtree). The one with the
highest priority “wins” and its code is evaluated. A default template that matches every element
and prints an element’s contents is automatically provided to make sure that all data gets matched
(and printed) and is never ignored.

The other kind of template is a named template, where a fixed name takes the place of an XPath
expression. This is XSLT’s concession to procedural code, allowing parameters to be passed to a
specific template to facilitate code re-use. These are used in the GFM scripts to format error
messages.

The mechanism that makes Jelliffe’s technique possible is the fact that once XSLT matches a data
element against a template, other templates are ignored. A template that has no contents “traps”
an element and quietly ignores it.

The template in figure 1913 catches all text elements14 when the mode name mode is in effect and
throws them away. The priority of -1 causes the template to be matched after other templates.

<xsl:template match="text()" priority="-1" mode="mode_name">
<!-- strip characters -->

</xsl:template>

Figure 19. Default empty template for mode mode name.

Most templates used in GFM validation are “bad” templates. They match data that has an error
and generate XHTML that describes the problem that was found. All elements that are not
matched are processed by a default template like the one in figure 19. The assumption is that all
elements that are not bad are either good or they are irrelevant.

The opposite idea is to write a template that matches “good” data and does nothing with it. A
second template, with a similar ‘match’ expression but a lower priority, produces the proper error
message. The default template then catches all data elements that are left and ignores them.

12A match template is analogous to an SQL query statement.
13By convention, XSLT tokens are in the “xsl” namespace and thus start with “xsl:”.
14There are seven types of nodes in the XML Tree Model. All GFM data elements are text elements.

15

A variation on these two approaches is a template that matches a subset of data, then uses
conditional processing to determine if the data is good or bad. The first of these is the link test as
described in the next section.

3.3 Structural Validation

3.3.1 Link Validation

The simplest template in the file GFMIEDM341validate.xsl, because it is the closest to
procedural code, is the template that detects Object Item Associations (Assocs) that are missing
either the parent or child node. The actual template is shown in figure 20.15

<!-- locate nodes where an endpoint is not an OBJ_ITEM -->
<!-- external OBJ_ITEMs are not supported yet -->
<xsl:template priority="2"

match="//gfm:OBJ_ITEM_ASSOC"
mode="link">
<xsl:choose>
<xsl:when test="gfm:SUBJ_OBJ_ITEM_ID=//gfm:OBJ_ITEM/gfm:OBJ_ITEM_ID">
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="’OBJ_ITEM_ASSOC’"/>
<xsl:with-param name="end-name" select="’SUBJ_OBJ_ITEM_ID’"/>
<xsl:with-param name="end-ewid" select="gfm:SUBJ_OBJ_ITEM_ID"/>
<xsl:with-param name="link-ewid" select="gfm:OBJ_ITEM_ASSOC_IX"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
<xsl:choose>
<xsl:when test="gfm:OBJ_OBJ_ITEM_ID=//gfm:OBJ_ITEM/gfm:OBJ_ITEM_ID">
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="’OBJ_ITEM_ASSOC’"/>
<xsl:with-param name="end-name" select="’OBJ_OBJ_ITEM_ID’"/>
<xsl:with-param name="end-ewid" select="gfm:OBJ_OBJ_ITEM_ID"/>
<xsl:with-param name="link-ewid" select="gfm:OBJ_ITEM_ASSOC_IX"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 20. Template that checks for invalid OBJ ITEM ASSOC links.

The priority is 2 and the mode is link. The XPath expression is very simple. The code

match="//gfm:OBJ_ITEM_ASSOC"

15All elements defined in the GFM XSD are in the “gfm” namespace.

16

will match all OBJ ITEM ASSOC elements at any depth in the XML data tree. The ‘choose’ is
the outer wrapper for a multi-branch conditional statement. Each ‘when’ element may be thought
of as an “if” or “else if”. The ‘otherwise’ element is a default (“else”) that is executed if none of
the ‘when’ tests is true.

The ‘test’ attributes are XPath expressions. While they may look intimidating, GFM uses basic
patterns. The data element that matches the ‘match’ expression may be treated as an argument to
the template. All expressions within the template are relative to it. Therefore, the reference to

gfm:SUBJ_OBJ_ITEM_ID

means “the value of the SUBJ OBJ ITEM ID in the current OBJ ITEM ASSOC.”

The second fragment uses an absolute path

//gfm:OBJ_ITEM/gfm:OBJ_ITEM_ID

and means “the value of the OBJ ITEM ID of any OBJ ITEM” in the data. The “=” means “is
equal to.”

The entire expression may be summed up as “For each OBJ ITEM ASSOC, is there an
OBJ ITEM whose OBJ ITEM ID is equal to the Assoc’s SUBJ OBJ ITEM ID?” If so, do
nothing (the ‘when’ element is empty), otherwise call the named template “missing-endpoint”
with the listed parameters. The code is shown in figure 21.

<!-- parent or child of link does not exist -->
<xsl:template name="missing-endpoint">

<xsl:param name="class"/>
<xsl:param name="end-name"/>
<xsl:param name="end-ewid"/>
<xsl:param name="link-ewid"/>

<xsl:value-of select="$class"/>
<xsl:text>’s </xsl:text>
<xsl:value-of select="$end-name"/>
<xsl:text> (</xsl:text>
<xsl:value-of select="$end-ewid"/>
<xsl:text>) does not exist</xsl:text>

<xsl:value-of select="$link-ewid"/>

</xsl:template>

Figure 21. Named template “missing-endpoint” that produces output.

The named template starts with the parameter names (argument list); the rest is written to the
output file. It uses the XHTML tags ‘li’ and ‘br’. In this case, the ‘value-of’ element writes the
value of the named parameter. The ‘text’ element writes literals that contain blanks, which are
shown as “ ” symbols. Sample output is shown in section 4.2.

17

Going back to the original template, the first two parameters in figure 20 are literal strings to
facilitate code re-use, while the other two are values taken from the current OBJ ITEM ASSOC
data element.

The second ‘choose’ element tests for the existence of the child OBJ ITEM of the link. This
template will detect a link whose parent, child, or both is missing from the GFM XML data file.
This may not be the case with other templates, which may stop after the first error.

The endpoint tests performed by this template could have been done with a key/keyref pair, and in
fact, those tests were originally in the GFM XSD. Links to external data stored in other systems
will be added, and these tests will be embellished to check for external indicators.

The links between Object Types are more sophisticated, and their validation tests must be
performed with XSLT. Figure 22 shows the first part of the template. It ensures that the parent
Object Type and Object Type Establishment both exist in the GFM XML data file. Again, this
may be a key/keyref in the XSD if external nodes are ignored.

There are three types of Object Type links (OBJ TYPE ESTAB OBJT DET or OTEOD) in the
GFM model, and they are designated by the GFM OTEOD ROLE IND CD element. A normal
OTEOD has a role of “0”, and currently that’s the only value used in GFM data. A Type 1 Role is
a placeholder that shows that an Organisation must be created, but the details are unknown. This
type of OTEOD should not have a child node. The third possible value for a role is “2”, but it is
ignored for now and is treated as if it were a Type 0 Role. These tests, which occur in the second
half of the template, are shown in figure 23.

The outermost ‘choose’ element checks if the OTEOD is a Type 1 Role; if so, the template exits.
Otherwise, the child Object Type and Object Type Establishment are checked to make sure that
they exist. As it is currently written, the only difference between this template and a group of
key/keyrefs is the test of the role indicator code.

The “text()” template with a mode of “link” and a priority of -1 is required because of all of the
data elements that are not Assocs or OTEODs. Without this default template, all other data
elements would be printed.

18

<!-- locate nodes where an endpoint is not an OBJ_TYPE(_ESTAB) -->
<!-- exception: Type 1 Roles have a parent but not a child -->
<!-- external OBJ_TYPEs are not supported yet -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE_ESTAB_OBJT_DET"
mode="link">
<xsl:choose>
<xsl:when test="gfm:ESTABD_OBJ_TYPE_ID=//gfm:OBJ_TYPE/gfm:OBJ_TYPE_ID">
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="’OBJ_TYPE_ESTAB_OBJT_DET’"/>
<xsl:with-param name="end-name" select="’ESTABD_OBJ_TYPE_ID’"/>
<xsl:with-param name="end-ewid" select="gfm:ESTABD_OBJ_TYPE_ID"/>
<xsl:with-param name="link-ewid"

select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>
<xsl:choose>
<xsl:when test="gfm:OBJ_TYPE_ESTAB_IX=

//gfm:OBJ_TYPE_ESTAB/gfm:OBJ_TYPE_ESTAB_IX">
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="missing-endpoint">
<xsl:with-param name="class" select="’OBJ_TYPE_ESTAB_OBJT_DET’"/>
<xsl:with-param name="end-name" select="’OBJ_TYPE_ESTAB_IX’"/>
<xsl:with-param name="end-ewid" select="gfm:OBJ_TYPE_ESTAB_IX"/>
<xsl:with-param name="link-ewid"

select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>
...

Figure 22. Template that checks for invalid OBJ TYPE ESTAB OBJT DET links, part 1.

19

...
<xsl:choose>
<xsl:when test="gfm:GFM_OTEOD_ROLE_IND_CD=’1’">
</xsl:when>
<xsl:otherwise>

<xsl:choose>
<xsl:when test="gfm:DET_OBJ_TYPE_ID=//gfm:OBJ_TYPE/gfm:OBJ_TYPE_ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">

<xsl:with-param name="class"
select="’OBJ_TYPE_ESTAB_OBJT_DET’"/>

<xsl:with-param name="end-name" select="’DET_OBJ_TYPE_ID’"/>
<xsl:with-param name="end-ewid" select="gfm:DET_OBJ_TYPE_ID"/>
<xsl:with-param name="link-ewid"

select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>
<xsl:choose>

<xsl:when test="gfm:DET_OBJ_TYPE_ESTAB_IX=
//gfm:OBJ_TYPE_ESTAB/gfm:OBJ_TYPE_ESTAB_IX">

</xsl:when>
<xsl:otherwise>
<xsl:call-template name="missing-endpoint">

<xsl:with-param name="class" select="’OBJ_TYPE_ESTAB_OBJT_DET’"/>
<xsl:with-param name="end-name"

select="’DET_OBJ_TYPE_ESTAB_IX’"/>
<xsl:with-param name="end-ewid"

select="gfm:DET_OBJ_TYPE_ESTAB_IX"/>
<xsl:with-param name="link-ewid"

select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

Figure 23. Template that checks for invalid OBJ TYPE ESTAB OBJT DET links, part 2.

20

3.3.2 Category Code Validation

Every object in the generalization hierarchy has a field named CAT CODE, which states the
category of its child (if any). The first template in the XSLT file checks every element in the
generalization hierarchy to make sure that the CAT CODE and child element agree. It does all of
the work in the ‘match’ attribute instead of using a procedural conditional element. Since it is
looking for bad patterns, the template finds elements whose CAT CODE is not the same as the
child. One of the many templates is shown in figure 24.

<!-- locate nodes where child exists but catcode is incorrect -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE[gfm:CAT_CODE!=’OR’][gfm:ORG_TYPE]"
mode="tree">
<xsl:call-template name="cc-mismatch">
<xsl:with-param name="class" select="’OBJ_TYPE’"/>
<xsl:with-param name="catcode" select="gfm:CAT_CODE"/>
<xsl:with-param name="subclass" select="’ORG_TYPE’"/>
<xsl:with-param name="ewid" select="gfm:OBJ_TYPE_ID"/>
<xsl:with-param name="name" select="gfm:NAME_TXT"/>

</xsl:call-template>
</xsl:template>

Figure 24. Template that compares CAT CODE with child element.

The XPath expression matches “an OBJ TYPE that has an ORG TYPE child but whose
CAT CODE element does not have the value OR.” There are a total of 34 templates that test the
combinations allowed by the model. If an element contains an error, the child elements are not
tested because the transformation engine has already found a match.

3.3.3 Validation of Override Pairs

The GFM model adds enumerated values to existing JC3 fields. To facilitate future data
exchanges between GFM- and JC3-based systems, new fields were defined containing the new
enumerated values. The implementation requirement states “If the GFM field is NOS (no such),
then use the value in the JC3 field, else use the GFM field’s value.” What this means in practice is
that it is invalid for both fields to have non-NOS values.16 The template in figure 25 will be
executed when an ORG is found where neither the CAT CODE nor the GFM CAT CODE is
NOS.

There are some JC3 fields that do not include the NOS value. In these cases, the test uses the first
enumerated JC3 value instead. This value is relevant only when the GFM field is NOS, but the
data should be consistent. There are 11 override templates.

16Setting both fields to NOS is perfectly valid and means the desired value is NOS.

21

<!-- locate nodes where each field pair is not NOS -->
<xsl:template priority="2"

match="//gfm:ORG[gfm:CAT_CODE!=’NOS’][gfm:GFM_CAT_CODE!=’NOS’]"
mode="override">
<xsl:call-template name="no-override">
<xsl:with-param name="class" select="’ORG’"/>
<xsl:with-param name="jc3-name" select="’CAT_CODE’"/>
<xsl:with-param name="jc3-value" select="gfm:CAT_CODE"/>
<xsl:with-param name="gfm-name" select="’GFM_CAT_CODE’"/>
<xsl:with-param name="gfm-value" select="gfm:GFM_CAT_CODE"/>
<xsl:with-param name="ewid" select="gfm:ORG_ID"/>

</xsl:call-template>
</xsl:template>

Figure 25. Template that finds incorrectly overridden fields.

3.3.4 Validation of Date/Time Groups

Many tables contain a pair of elements that define the start and termination date/time group
(DTG) of the object; the start DTG must be before (less than) the termination DTG. This would
normally not be a difficult test, but XSLT cannot convert the string into an actual date.17 The trick
is to delete extraneous characters, convert each string into a number, and compare the values. This
may be safely done because the DTGs have been validated against the XSD, and the type has a
strict pattern that must be adhered to, which includes leading zeroes where needed.

The function translate is used to replace a set of characters with an empty string. This string is
then converted into a number with the number function. To give an example, a typical DTG is
“1990-01-01T00:00:00Z”. Removing the dashes, colons, “T”, and “Z” gives “19900101000000”.
Because the date is stored in year-month-day form, the numerical values may be compared. The
template for a start and termination pair is shown in figure 26.

This is another example of a template that matches a set of elements, then uses a conditional (in
this case, an ‘if’ element) to check for an invalid condition. There are 12 templates that test DTG
ranges.

There are two fields whose values must be within the start and termination DTG range. The valid
expression is s dtg ≤ date time < t dtg. Unfortunately, XPath 1.0 does not have a “≤” operator,
so the first part of the test must be rewritten as “not (s dtg > date time)”. The “>” and “<” and
symbols are not allowed in a ‘when’ element and have been replaced by “>” and “<”,
respectively. The template that tests both the start and termination DTG range and the effective
datetime is shown in figure 27.

17There may be extensions that do this, and newer versions of XML and XSLT may have this capability, but GFM
has been restricted to the original versions because they are widely available.

22

<!-- locate objects where an S_DTG is not less than the T_DTG -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE"
mode="dtg">
<xsl:if
test="number(translate(gfm:GFM_OBJ_TYPE_S_DTG, ’-T:Z’, ’’)) >=

number(translate(gfm:GFM_OBJ_TYPE_T_DTG, ’-T:Z’, ’’))">
<xsl:call-template name="bad-dtg-range">

<xsl:with-param name="class" select="’OBJ_TYPE’"/>
<xsl:with-param name="s-dtg" select="gfm:GFM_OBJ_TYPE_S_DTG"/>
<xsl:with-param name="t-dtg" select="gfm:GFM_OBJ_TYPE_T_DTG"/>
<xsl:with-param name="ewid" select="gfm:OBJ_TYPE_ID"/>
<xsl:with-param name="name" select="gfm:NAME_TXT"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

Figure 26. Template that finds invalid DTG ranges.

The comment block at the top of the figure summarizes the actions performed. The
EFFCTV DTTM element is optional, and errors will be falsely reported if it is absent from the
data file. The expression test="gfm:EFFCTV DTTM" is true if the EFFCTV DTTM element
has a value. The format for EFFCTV DTTM is purely numeric, with no internal separators
between the fields, so no translation is needed. The other value that must be within the start and
termination DTG range is GFM ORG ORGT M DTG and its template is not shown because of
its complexity. It is based on figure 27.

3.3.5 Detection of Mandatory Elements

Many of the tests that have been discussed thus far have checked referential integrity, e.g., do both
endpoints of a link exist? There is another requirement that says certain elements must contain a
reference to another element. The next pair of tests ensure that the referring element exists. The
“must-have-ote” template, shown in figure 28, finds all OBJ TYPE elements where the
OBJ TYPE ID is not equal to an OBJ TYPE ESTAB’s ESTABD OBJ TYPE ID. In other
words, each Object Type must have an Object Type Establishment.

A similar template, using the “must-have-oiote” mode, tests the requirement that every Object
Item must be linked to an Object Type with an Object Item Object Type Establishment
(OBJ ITEM OBJ TYPE ESTAB or OIOTE). This template is not shown.

3.3.6 Type Associated With Proper Item

The “must-have-oiote” template ensures that every Object Item is associated with an Object Type.
It is also important to verify that the Item and Type are compatible. For example, a
GFM CREW PLATFORM must be associated with a GFM CREW PLATFORM TYPE.
The Object Type to Object Item mappings are shown in table 1. Notice that a
GOVT ORG TYPE may be a leaf node in the data hierarchy only if it has a category code of
INTCIV, INTCMI, or NATCIV.

23

<!--
Pseudocode to explain this template.
if (S_DTG >= T_DTG)
report bad-dtg-range error

else if not null(EFFCTV_DTTM)
{
if (not (S_DTG > EFFCTV_DTTM) and (EFFCTV_DTTM < T_DTG))

do nothing
else

report date-outside-range error
}

-->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE_ESTAB"
mode="dtg">
<xsl:choose>
<xsl:when

test="number(translate(gfm:GFM_OBJ_TYPE_ESTAB_S_DTG, ’-T:Z’, ’’)) >=
number(translate(gfm:GFM_OBJ_TYPE_ESTAB_T_DTG, ’-T:Z’, ’’))">

<xsl:call-template name="bad-dtg-range">
...

</xsl:call-template>
</xsl:when>
<xsl:when test="gfm:EFFCTV_DTTM">

<xsl:choose>
<xsl:when
test="not(number(translate(gfm:GFM_OBJ_TYPE_ESTAB_S_DTG, ’-T:Z’, ’’)) >

number(gfm:EFFCTV_DTTM)) and
number(gfm:EFFCTV_DTTM) <
number(translate(gfm:GFM_OBJ_TYPE_ESTAB_T_DTG, ’-T:Z’, ’’))">

</xsl:when>
<xsl:otherwise>
<xsl:call-template name="date-outside-range">

<xsl:with-param name="class" select="’OBJ_TYPE_ESTAB’"/>
<xsl:with-param name="field-name" select="’EFFCTV_DTTM’"/>
<xsl:with-param name="field-value" select="gfm:EFFCTV_DTTM"/>
<xsl:with-param name="s-dtg"

select="gfm:GFM_OBJ_TYPE_ESTAB_S_DTG"/>
<xsl:with-param name="t-dtg"

select="gfm:GFM_OBJ_TYPE_ESTAB_T_DTG"/>
<xsl:with-param name="ewid" select="gfm:OBJ_TYPE_ESTAB_IX"/>
<xsl:with-param name="name" select="’’"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:when>

</xsl:choose>
</xsl:template>

Figure 27. Template that finds invalid effective datetime values.

24

<!-- find OBJ_TYPE that does not have an OBJ_TYPE_ESTAB -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE"
mode="must-have-ote">
<xsl:choose>
<xsl:when test="gfm:OBJ_TYPE_ID=

//gfm:OBJ_TYPE_ESTAB/gfm:ESTABD_OBJ_TYPE_ID">
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="missing-obj">
<xsl:with-param name="class" select="’OBJ_TYPE’"/>
<xsl:with-param name="miss-class" select="’OBJ_TYPE_ESTAB’"/>
<xsl:with-param name="ewid" select="gfm:OBJ_TYPE_ID"/>
<xsl:with-param name="name" select="gfm:NAME_TXT"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 28. Template that finds Object Types without Establishments.

Table 1. Object Type to Object Item associations.

Object Type Object Item
Unit Crew Platform Billet

Exctv Mil Org Type X
Unit Type X
Task Frmtn Type X
Crew Platform Type X
Civ Post Type X
Mil Post Type X
Prv Sctr Org Type X
Group Org Type X
Govt Org Type

INTCIV X
INTCMI X
NATCIV X

A portion of the “item-matches-type” template is shown in figure 29. The outer conditional
determines the type of the Object Item, and each inner test verifies that Object Type is an
allowable type. The code for the Crew Platform is shown because it is the simplest.

25

<!-- find OBJ_ITEM that does not link to proper type of OBJ_TYPE -->
<xsl:template priority="2"

match="//gfm:OBJ_ITEM_OBJ_TYPE_ESTAB"
mode="item-matches-type">
<xsl:variable name="item-ewid" select="gfm:OBJ_ITEM_ID"/>

<xsl:choose>
<xsl:when

test="gfm:OBJ_ITEM_ID=//gfm:GFM_CREW_PLATFORM/gfm:GFM_CREW_PLATFORM_ID">
<xsl:choose>

<xsl:when
test="gfm:ESTABD_OBJ_TYPE_ID=

//gfm:GFM_CREW_PLATFORM_TYPE/gfm:GFM_CREW_PLATFORM_TYPE_ID">
</xsl:when>
<xsl:otherwise>
<xsl:call-template name="item-type-mismatch">

<xsl:with-param name="item-name"
select=

"//gfm:OBJ_ITEM[gfm:OBJ_ITEM_ID=$item-ewid]/gfm:NAME_TXT"/>
<xsl:with-param name="item-ewid"

select="$item-ewid"/>
<xsl:with-param name="item-class"

select="’ GFM_CREW_PLATFORM_TYPE’"/>
<xsl:with-param name="oiote-ewid"

select="gfm:OBJ_ITEM_OBJ_TYPE_ESTAB_IX"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:when>
...

</xsl:choose>
</xsl:template>

Figure 29. Template that finds Object Items with incorrect Object Types.

3.3.7 Consistent References

In the JC3 model, an OBJ TYPE ESTAB is an index to an OBJ TYPE, and together they make
up a compound key. Each Establishment may be thought of as a numbered variant on an Object
Type. All references are required to provide both the OBJ TYPE ID and the
OBJ TYPE ESTAB IX to uniquely identify the Object Type Establishment.

GFM replaces the integer index with an EwID. The compound keys still function correctly, but
redundancy has been introduced to the references as shown in figure 30. In this example, the
OBJ ITEM OBJ TYPE ESTAB directly references the OBJ TYPE and indirectly via the
OBJ TYPE ESTAB. The template with the mode “objtype-matches-estab” ensures that the
OBJ TYPE in a reference has the same value as the OBJ TYPE in the referenced
OBJ TYPE ESTAB. One of the templates for mode “objtype-matches-estab” is shown in
figure 31.

26

Figure 30. Redundant reference.

<!-- OBJ_TYPE/ESTAB references must match the OTE’s OBJ_TYPE -->
<!-- check OIOTEs because they have dual references -->
<xsl:template priority="2"

match="//gfm:OBJ_ITEM_OBJ_TYPE_ESTAB"
mode="objtype-matches-estab">
<xsl:variable name="estab-ewid"
select="gfm:OBJ_TYPE_ESTAB_IX"/>
<xsl:choose>
<xsl:when

test="gfm:ESTABD_OBJ_TYPE_ID=//gfm:OBJ_TYPE_ESTAB
[gfm:OBJ_TYPE_ESTAB_IX=$estab-ewid]/gfm:ESTABD_OBJ_TYPE_ID">

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="objtype-estab-mismatch">
<xsl:with-param name="link-class"

select="’OBJ_ITEM_OBJ_TYPE_ESTAB ’"/>
<xsl:with-param name="link-ewid"

select="gfm:OBJ_ITEM_OBJ_TYPE_ESTAB_IX"/>
<xsl:with-param name="estab-ewid"

select="$estab-ewid"/>
<xsl:with-param name="objtype-ewid"

select= "gfm:ESTABD_OBJ_TYPE_ID"/>
</xsl:call-template>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

Figure 31. Template that finds Object Items with incorrect Object Types.

3.3.8 Single Root Node

Each file is expected to contain an Organisation tree root node and, optionally, an OrgType tree
root node. While it is possible for an XML dump of a GFM database to contain multiple roots

27

with different date/time intervals, this is unlikely. The template with the mode “roots” for
Organisation trees is shown in figure 32.

<!-- count Org roots -->
<xsl:template priority="2"

match="//gfm:OBJ_ITEM_ASSOC_TBL"
mode="roots">
<xsl:variable name="root-assocs"
select="gfm:OBJ_ITEM_ASSOC[gfm:SUBJ_OBJ_ITEM_ID=gfm:OBJ_OBJ_ITEM_ID]"/>

<xsl:if test="count($root-assocs) > 1">
<xsl:call-template name="too-many-roots">

<xsl:with-param name="class-name" select="’Org’"/>
<xsl:with-param name="link-list" select="$root-assocs"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

Figure 32. Template that finds multiple Organisation tree roots.

This template stores all of the Assocs where the parent and child node are the same, completely
ignoring the date/time interval. If the number of Assocs is greater than one, the list is passed to
the output template for printing.

3.3.9 Putting the Parts Together

A template near the top of the XSLT file is the main driver.18 It writes the HTML wrapper for the
output file and applies all of the match templates with their modes. It is shown in figure 33 with
most of the tests removed.

The contents of the ‘title’ and ‘h1’ tags are identical. They display text describing the output and
show the file’s ‘TITLE’ attribute (assuming that one exists). The ‘choose’ conditional applies the
“tree” templates only if the file contains object-oriented data elements. The second mode (“link”)
shows the form used by the rest of the template sets.

The code to determine if the file contains object-oriented data elements counts the number of
“OO TBL” elements found, as shown in figure 34. The variable hierCount is assigned a value
from 0–3; a zero means the file is in relational form.

Partitioning the templates by assigning them to different modes helps to prevent unwanted
overlaps in the templates. It also allows the user to remove the ‘apply-templates’ element of any
unwanted test that may be deemed too time-consuming.

18The order of the templates in the file is irrelevant and was chosen for readability.

28

<!-- root writes general HTML wrapper and processes all data -->
<xsl:template match="/">

<html>
<head>

<title>Results of Validation (using XSLT)
<xsl:value-of select="//gfm:GFMIEDM34/@TITLE"/>

</title>
</head>
<body>

<h1>Results of Validation (using XSLT)
<xsl:value-of select="//gfm:GFMIEDM34/@TITLE"/>

</h1>
<h2>Improper category/child element</h2>

<!-- perform test only for hierarchical data -->
<xsl:choose>

<xsl:when test="$hierCount > 0">

<xsl:apply-templates mode="tree"/>

</xsl:when>
<xsl:otherwise>
<xsl:text>Tests may not be performed on relational data</xsl:text>

</xsl:otherwise>
</xsl:choose>
<h2>Links with missing endpoint(s)</h2>

<xsl:apply-templates mode="link"/>

...

</body>
</html>

</xsl:template>

Figure 33. Main (root) template.

<!-- count the number of hierarchical tables (0-3) -->
<xsl:variable name="hierCount"

select="count(//gfm:GFMIEDM34/gfm:OBJ_TYPE_OO_TBL) +
count(//gfm:GFMIEDM34/gfm:OBJ_ITEM_OO_TBL) +
count(//gfm:GFMIEDM34/gfm:ADDR_OO_TBL)"/>

Figure 34. Counting the number of object-oriented tables.

3.4 Validation of Business Rules

3.4.1 Introduction

The file GFMIEDM341businessRules.xsl checks a GFM XML data file for conformance with
rules formulated by the GFM user community. While a particular enumerated value may be in the
JC3 schema, it may not be permitted by the GFM rules. Other templates test for compliance with

29

higher level constraints, such as the fact that a Billet may not have a child in the Organisation tree.
Because of the complexity of the tests, most of the templates contain procedural code. The file
implements seven modes, the first of which is named “link”.

3.4.2 Link Type Validation

The GFM XSD ensures that the values assigned to CAT CODE and SUBCAT CODE elements
are allowable enumerated values. The “link” templates in this file further restrict the values to
pairs that conform to the business rules. Because of the complexity of the code, “good” templates
were defined. One of these is shown in figure 35, with the equivalent SQL code in figure 36.

<!-- ignore nodes where cat_code/subcat_code pair is allowed -->
<!-- ORG_TYPE to ORG_TYPE links -->
<!-- we only need to check the child’s object type -->
<xsl:template priority="3"

match="//gfm:OBJ_TYPE_ESTAB_OBJT_DET
[gfm:GFM_OTEOD_CAT_CODE=’HSADMI’ and
gfm:GFM_OTEOD_GFM_SUBCAT_CODE=’DEFALT’ and
gfm:DET_OBJ_TYPE_ID=//gfm:ORG_TYPE/gfm:ORG_TYPE_ID]"

mode="link">
</xsl:template>

Figure 35. Template that matches OTEOD links with valid code pairs.

SELECT COUNT(*)
FROM OBJ_TYPE_ESTAB_OBJT_DET oteod,

ORG_TYPE ot
WHERE oteod.GFM_OTEOD_CAT_CODE=’HSADMI’ AND

oteod.GFM_OTEOD_GFM_SUBCAT_CODE=’DEFALT’ AND
oteod.DET_OBJ_TYPE_ID=ot.ORG_TYPE_ID;

Figure 36. SQL query that finds OTEOD links with valid code pairs.

This template enforces the rule “all OTEOD links between two Org Types must use the codes
“HSADMI/DEFALT.” Only the type of the child is checked under the assumption that Org Types
always have an Org Type parent (see section 3.4.6). Other templates test the remaining allowable
code pairs.

Notice that the priority of the template has been raised to 3, and the template has no contents. All
OTEOD links that have acceptable codes will be matched and processed, producing no output.
The remaining OTEOD links will match the template in figure 37.

The latter template is complicated because it must determine which codes are invalid based on the
override policy. There are 8 templates that match good OTEODs and Assocs, and 2 templates that
catch the remaining OTEODs and Assocs and produce error messages. As in the other XSLT file,
a template with a priority of -1 catches all text elements that are not OTEODs or Assocs and
ignores them.

30

<!-- locate nodes where cat_code/subcat_code pair is not allowed -->
<!-- all good nodes have already been matched -->
<!-- templates are complicated because of override rules -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE_ESTAB_OBJT_DET"
mode="link">
<xsl:choose>
<xsl:when test="gfm:GFM_OTEOD_GFM_CAT_CODE=’NOS’ and

gfm:GFM_OTEOD_GFM_SUBCAT_CODE=’NOS’">
<xsl:call-template name="illegal-link">

<xsl:with-param name="class"
select="’OBJ_TYPE_ESTAB_OBJT_DET’"/>

<xsl:with-param name="catcode"
select="gfm:GFM_OTEOD_CAT_CODE"/>

<xsl:with-param name="subcatcode"
select="gfm:GFM_OTEOD_SUBCAT_CODE"/>

<xsl:with-param name="ewid"
select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>

<xsl:with-param name="label" select="gfm:GFM_OTEOD_LABEL_TXT"/>
</xsl:call-template>

</xsl:when>
<xsl:when test="gfm:GFM_OTEOD_GFM_CAT_CODE=’NOS’ and

gfm:GFM_OTEOD_GFM_SUBCAT_CODE!=’NOS’">
<xsl:call-template name="illegal-link">

...
</xsl:call-template>

</xsl:when>
<xsl:when test="gfm:GFM_OTEOD_GFM_CAT_CODE!=’NOS’ and

gfm:GFM_OTEOD_GFM_SUBCAT_CODE=’NOS’">
<xsl:call-template name="illegal-link">

...
</xsl:call-template>

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="illegal-link">
...

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 37. Template that matches OTEOD links with invalid code pairs.

3.4.3 Person Type Category Code Validation

The templates that validate Person Type codes are simple. They test the requirement that
“military Person Types must have a subcategory of NOS, while civilian Person Types must have a
subcategory of GOVEMP or NONGVE.” There are two “bad” templates like the one shown in
figure 38. The explanation for how this code works is described with figure 24.

31

<!-- Person Types must have proper cat_codes -->
<xsl:template priority="2"

match="//gfm:PERS_TYPE[gfm:CAT_CODE=’MILTRY’][gfm:SUBCAT_CODE!=’NOS’]"
mode="person">
<xsl:call-template name="mil-civ">
<xsl:with-param name="type" select="’Military’"/>
<xsl:with-param name="correct" select="’MILTRY/NOS’"/>
<xsl:with-param name="catcode" select="gfm:CAT_CODE"/>
<xsl:with-param name="subcatcode" select="gfm:SUBCAT_CODE"/>
<xsl:with-param name="ewid" select="gfm:PERS_TYPE_ID"/>
<xsl:with-param name="skill-code" select="gfm:GFM_PERS_TYPE_SKILL_CD"/>

</xsl:call-template>
</xsl:template>

Figure 38. Template that checks Person Type categories.

3.4.4 Organisation Validation

Every Organisation (ORG) must appear in the Organisation tree. Any Organisation that does not
have a parent (i.e., is an orphan) is assumed to be a mistake and should be reported. The template
in figure 39 finds and discards all ORGs that are children of Assoc links. The remaining ORGs
match the template in figure 40 and an error message is generated.

<!-- ignore Orgs which are children -->
<xsl:template priority="3"

match="//gfm:ORG[gfm:ORG_ID=//gfm:OBJ_ITEM_ASSOC/gfm:OBJ_OBJ_ITEM_ID]"
mode="assoc">

</xsl:template>

Figure 39. Template that finds ORGs that are children.

<!-- every Org must be a child -->
<xsl:template priority="2"

match="//gfm:ORG"
mode="assoc">
<xsl:call-template name="never-child">
<xsl:with-param name="ewid" select="gfm:ORG_ID"/>
<xsl:with-param name="name" select="gfm:GFM_ORG_SHORT_NAME_TXT"/>

</xsl:call-template>
</xsl:template>

Figure 40. Template that reports ORGs that are not children.

3.4.5 Billet Validation

This business rule is almost the opposite of the previous one. A Billet may never be a parent node
in the Organisation tree. Figure 41 finds all ORGs that break this rule.

32

<!-- find billets which are parents -->
<xsl:template priority="2"

match="//gfm:ORG[gfm:ORG_ID=//gfm:OBJ_ITEM_ASSOC/gfm:SUBJ_OBJ_ITEM_ID]
[gfm:ORG_ID=//gfm:GFM_BILLET/gfm:GFM_BILLET_ID]"

mode="billet">
<xsl:call-template name="billet-parent">
<xsl:with-param name="ewid" select="gfm:ORG_ID"/>
<xsl:with-param name="name" select="gfm:GFM_ORG_SHORT_NAME_TXT"/>

</xsl:call-template>
</xsl:template>

Figure 41. Template that finds Billets that have children.

The first part of the XPath expression matches all ORGs that are in the parent
(OBJ OBJ ITEM ID) element of an OBJ ITEM ASSOC. The second half requires that the
same ORG is a GFM BILLET. An ORG that meets both of these criteria is therefore a Billet that
is a parent of another Object Item.

3.4.6 Link Endpoint Types

The force structure tree for organisation types consists of Org Type parents and children. The
links are contained in the OBJ TYPE ESTAB OBJT DET TBL element along with other kinds
of links. Materiel, Person, and Facility Types may be aligned with an Org Type via an OTEOD
link, while Materiel and Person Types may be clustered using OTEODs. The allowable endpoint
type combinations are shown in table 2.

Table 2. Allowable OTEOD combinations.

Child
Org Type Mat Type Pers Type Fac Type

Org Type X X X X
Parent Mat Type X

Pers Type X

Because an Org Type may have any type of child, explicit testing is not needed; other link tests
will catch any errors. However, links with Mat Type and Person Type parents must be checked. In
addition, the establishments of the latter two parent Object Types are required to have a category
code of “PCG” (Parts Catalogue). The template for locating and testing Mat Type parents is
shown in figure 42. The Person Type template is identical with element names changed as
appropriate.19

19Additional templates should be written to thoroughly test Person Type clusters.

33

<!-- find all OTEODs with a MatType parent, then check the OTEOD’s child -->
<xsl:template priority="2"

match="//gfm:OBJ_TYPE_ESTAB_OBJT_DET[gfm:ESTABD_OBJ_TYPE_ID=
//gfm:MAT_TYPE/gfm:MAT_TYPE_ID]"

mode="oteod">
<xsl:choose>
<xsl:when test="gfm:DET_OBJ_TYPE_ID=//gfm:MAT_TYPE/gfm:MAT_TYPE_ID">

<xsl:call-template name="check-for-PCG">
<xsl:with-param name="ote-ewid" select="gfm:OBJ_TYPE_ESTAB_IX"/>

</xsl:call-template>
</xsl:when>
<xsl:otherwise>

<xsl:call-template name="same-parent-child">
<xsl:with-param name="link-ewid"

select="gfm:OBJ_TYPE_ESTAB_OBJT_DET_IX"/>
<xsl:with-param name="label" select="gfm:GFM_OTEOD_LABEL_TXT"/>
<xsl:with-param name="class" select="’MAT_TYPE’"/>
<xsl:with-param name="parent-ewid" select="gfm:ESTABD_OBJ_TYPE_ID"/>
<xsl:with-param name="child-ewid" select="gfm:DET_OBJ_TYPE_ID"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 42. Template that checks child of Mat Type parent.

The XPath expression matches all OTEODs where the parent (ESTAB OBJ TYPE ID) is a Mat
Type. If the OTEOD’s child (DET OBJ TYPE ID) is also a Mat Type, then the named template
“check-for-PCG” is called, passing the EwID of the parent Object Type Establishment
(OBJ TYPE ESTAB IX) as a parameter. Any other type of child produces an error message.

The named template is procedural code and is shown in figure 43. It begins by finding the Object
Type Establishment that has the desired EwID and storing the value of its category code in the
variable catcode. If the variable does not have the value PCG, then an error is generated.

<xsl:template name="check-for-PCG">
<xsl:param name="ote-ewid"/>
<xsl:variable name="catcode"
select="//gfm:OBJ_TYPE_ESTAB[gfm:OBJ_TYPE_ESTAB_IX=

$ote-ewid]/gfm:CAT_CODE"/>
<xsl:if test="$catcode!=’PCG’">
<xsl:call-template name="parent-ote-not-pcg">

<xsl:with-param name="ote-ewid" select="$ote-ewid"/>
<xsl:with-param name="catcode" select="$catcode"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

Figure 43. Named template that checks the category code of an Object Type Establishment.

34

3.4.7 Required Associations

The next three tests have similar requirements, and therefore the templates are identical except for
changes in element names. The first template, whose mode is “crewtype”, determines if every
CREW PLATFORM TYPE (CPT) has a Mat Type aligned with it.20 The template collects all
of the CPTs, then locates at least one link where each CPT is the parent and a Mat Type is the
child. The template is shown in figure 44.

<!-- find all CPTs, then look for an OTEOD with a MatType child -->
<xsl:template priority="2"

match="//gfm:GFM_CREW_PLATFORM_TYPE"
mode="crewtype">
<xsl:variable name="cpt-ewid" select="gfm:GFM_CREW_PLATFORM_TYPE_ID"/>
<xsl:choose>
<xsl:when

test="//gfm:OBJ_TYPE_ESTAB_OBJT_DET
[gfm:ESTABD_OBJ_TYPE_ID=$cpt-ewid]
[gfm:DET_OBJ_TYPE_ID=//gfm:MAT_TYPE/gfm:MAT_TYPE_ID]">

</xsl:when>
<xsl:otherwise>

<xsl:call-template name="sometype-does-not-have-sometype">
<xsl:with-param name="ewid" select="$cpt-ewid"/>
<xsl:with-param name="type" select="’MatType’"/>

</xsl:call-template>
</xsl:otherwise>

</xsl:choose>
</xsl:template>

Figure 44. Template that reports Crew Platform Types that do not have a Mat Type.

The related pair of templates, using the mode “posttype”, perform the same logic with
CIV POST TYPE and MIL POST TYPE objects and an assigned mandatory PERS TYPE
object. They are not shown. By passing part of the diagnostic message as a parameter, the same
named output template may be used by all three templates.

3.4.8 Aligning Person Types

The required Person Type objects may be aligned with each MIL POST TYPE and
CIV POST TYPE object in one of two different ways:

1. Each PersType may be aligned directly to a PostType with an OTEOD, or

2. A set of PersTypes may be clustered into a PersType tree (PTT).

The second has the advantage of allowing commonly used sets of qualifications, such as a Radio
Operator, to be defined once and then linked to the appropriate MilPostTypes with a single
OTEOD.

20The Post Types subordinate to this object are carried by the Mat Type, which should be a vehicle of some type.
This latter test is not performed by the code.

35

There are specific requirements for a PTT. The first is the root PersType of the PTT must
reference a Person Type Skill Attribute (PTSA) with a type code of ROS, which stands for “Root
Occupational Specialty”. The template, which has a mode of “ros”, is shown in figure 45.

<!-- find all PersTypes that are parents and make sure PTSA is ROS. -->
<xsl:template priority="2"

match="//gfm:PERS_TYPE[gfm:PERS_TYPE_ID=
//gfm:OBJ_TYPE_ESTAB_OBJT_DET/gfm:ESTABD_OBJ_TYPE_ID]"

mode="ros">
<xsl:variable name="ptsa-ewid" select="gfm:GFM_PERS_TYPE_SKILL_ATTS"/>
<xsl:variable name="catcode"
select="//gfm:GFM_PERS_TYPE_SKILL_ATTR[gfm:GFM_PERST_SKILL_ATTR_ID=

$ptsa-ewid]/gfm:GFM_PERST_SKILL_ATTR_TYPE_CD"/>
<xsl:if test="$catcode!=’ROS’">
<xsl:variable name="pt-ewid" select="gfm:PERS_TYPE_ID"/>
<xsl:call-template name="not-ros">

<xsl:with-param name="catcode" select="$catcode"/>
<xsl:with-param name="ewid" select="gfm:PERS_TYPE_ID"/>
<xsl:with-param name="name"

select="//gfm:OBJ_TYPE[gfm:OBJ_TYPE_ID=$pt-ewid]/gfm:NAME_TXT"/>
</xsl:call-template>

</xsl:if>
</xsl:template>

Figure 45. Template that reports Person Type roots that do not have a PTSA of ROS.

Variables are used to circumvent restrictions imposed by XPath.21 The template matches all
PersTypes that appear as the parent of an OTEOD. The PTSA of the PersType is stored in a
variable, then the variable is used in an expression to fetch the type code of that PTSA. This value
is examined to see if it is not ROS, in which case an error message is generated.

The second PTT requirement is the number of PersTypes that must be included in a PersType tree.
The template shown in figure 46, with the mode “cluster”, counts the number of PTT nodes and
reports errors.

The template begins by finding all PTSAs that have a type code of ROS. The code loops through
each PersType that references that PTSA, counting the number of child PersTypes and storing the
value in a variable. Military PTTs must have 5 children, while civilian trees are required to have 3
child PersTypes. If the number is incorrect, an appropriate message is produced.

This template overlaps other tests. It assumes that the children are all PersTypes (see
section 3.4.6) and that PersType roots are always ROS. If those conditions are not met, this test
may give incorrect results. Either way, mistakes will be detected and reported.

The test with mode=“count-perstypes” in figure 47 check the number of Person Types that are
directly aligned with a MilPostType.22 This is the most complex of the GFM tests, using multiple
variables defined with expressions.

21This is equivalent to a 3-way join in SQL.
22A similar test checks CivPostTypes.

36

<!-- find all PTSAs with TYPE_CD=’ROS’. -->
<!-- for each PersType that uses that PTSA, count the children. -->
<xsl:template priority="2"

match="//gfm:GFM_PERS_TYPE_SKILL_ATTR[
gfm:GFM_PERST_SKILL_ATTR_TYPE_CD=’ROS’]"

mode="cluster">
<xsl:variable name="ptsa-ewid" select="gfm:GFM_PERST_SKILL_ATTR_ID"/>
<xsl:for-each
select="//gfm:PERS_TYPE[gfm:GFM_PERS_TYPE_SKILL_ATTS=$ptsa-ewid]">
<xsl:variable name="ros-ewid" select="gfm:PERS_TYPE_ID"/>
<xsl:variable name="type" select="gfm:CAT_CODE"/>
<xsl:variable name="num-children"

select="count(//gfm:OBJ_TYPE_ESTAB_OBJT_DET[
gfm:ESTABD_OBJ_TYPE_ID=$ros-ewid])"/>

<xsl:if test="(($type=’MILTRY’) and ($num-children!=5)) or
(($type!=’MILTRY’) and ($num-children!=3))">

<xsl:call-template name="bad-perstype-tree">
<xsl:with-param name="type" select="gfm:CAT_CODE"/>
<xsl:with-param name="ros-ewid" select="$ros-ewid"/>
<xsl:with-param name="name"
select="//gfm:OBJ_TYPE[gfm:OBJ_TYPE_ID=$ros-ewid]/gfm:NAME_TXT"/>

<xsl:with-param name="num-children" select="$num-children"/>
</xsl:call-template>

</xsl:if>
</xsl:for-each>

</xsl:template>

Figure 46. Template that reports Person Type trees that have an incorrect number of nodes.

The template begins by matching all MilPostType elements and storing the ID of each one. The
list of OTEOD links where the parent is the current MilPostType is stored in a second variable.
The next variable contains a temporary tree containing ‘child’ elements; the name chosen is
irrelevant. A loop iterates through all of the PersTypes that are children of the OTEOD links, and
a ‘child’ element is created for each PersType. The contents of the child are empty or contain a
PTSA. The last variable looks for a child element that is not empty. If such an element is found, it
means that the PostType links to a PTT, and the value 5 is stored. Otherwise, the number of links
is counted and stored.

The final step checks the number of children that were found. If fewer than 5 PersType children
were found, an error message is generated. A PostType that has no child PersTypes is ignored
because that case is tested with the mode “posttype” as described in section 3.4.7.

3.4.9 General Information

A simple test verifies that an XML data file contains at least one Crew Platform and at least one
Billet.23 The template in figure 48 counts all GFM CREW PLATFORM elements in the XML
file. If no Crew Platforms are found, a special message is produced, otherwise, the actual number

23These are general suggestions and may not always be applicable.

37

found is displayed. The second half of the test, which counts Billets, is identical except for the
field name and generated text.

<!-- MilPostType must have 5 simple PersTypes -->
<!-- for each MPT, find all OTEODs where the child is a PersType -->
<xsl:template priority="2"

match="//gfm:MIL_POST_TYPE"
mode="count-perstypes">
<xsl:variable name="mpt-ewid" select="gfm:MIL_POST_TYPE_ID"/>
<xsl:variable name="oteods"
select="//gfm:OBJ_TYPE_ESTAB_OBJT_DET[gfm:ESTABD_OBJ_TYPE_ID=

$mpt-ewid][gfm:DET_OBJ_TYPE_ID=//gfm:PERS_TYPE/gfm:PERS_TYPE_ID]"/>
<!-- is any child an ROS? -->

<xsl:variable name="found-ros">
<xsl:for-each

select="//gfm:PERS_TYPE[gfm:PERS_TYPE_ID=$oteods/gfm:DET_OBJ_TYPE_ID]">
<xsl:variable name="ptsa-ewid" select="gfm:GFM_PERS_TYPE_SKILL_ATTS"/>
<child>

<xsl:value-of
select="//gfm:GFM_PERS_TYPE_SKILL_ATTR[gfm:GFM_PERST_SKILL_ATTR_ID=

$ptsa-ewid][gfm:GFM_PERST_SKILL_ATTR_TYPE_CD=’ROS’]"/>
</child>

</xsl:for-each>
</xsl:variable>

<!-- compute or store number of children -->
<xsl:variable name="num-children">
<xsl:choose>

<xsl:when test="$found-ros[child!=’’]">
5

</xsl:when>
<xsl:otherwise>

<xsl:value-of select="count($oteods)"/>
</xsl:otherwise>

</xsl:choose>
</xsl:variable>

<!-- required number of PersType children found? -->
<xsl:if test="$num-children > 0 and $num-children < 5">
<xsl:call-template name="wrong-number-perstypes">

<xsl:with-param name="title" select="’MIL_POST_TYPE ’"/>
<xsl:with-param name="type" select="’MILTRY’"/>
<xsl:with-param name="ros-ewid" select="$mpt-ewid"/>
<xsl:with-param name="name"

select="//gfm:OBJ_TYPE[gfm:OBJ_TYPE_ID=$mpt-ewid]/gfm:NAME_TXT"/>
<xsl:with-param name="desc" select="’alignments’"/>
<xsl:with-param name="num-children" select="$num-children"/>

</xsl:call-template>
</xsl:if>

</xsl:template>

Figure 47. Template that reports MilPostTypes with too few PersType children.

This test has inspired the creation of yet another XSLT file for GFM. The file GFMIEDM341.xsl
counts all of the major elements in an XML file and displays them at the top of the XHTML file

38

of the pretty-printed data, while the IChart application produces a more detailed breakout in its
log file. A fairly simple XSLT file has been written (but not released at this time) that produces a
summary of the data in an XML file to help validate the data.

<!-- Count number of CrewPlatforms (and Billets) -->
<xsl:template priority="2" match="*"
mode="count">
<xsl:variable name="num-crews" select="count(//gfm:GFM_CREW_PLATFORM)"/>

<xsl:choose>
<xsl:when test="$num-crews=0">
<xsl:text>There should be at least 1 Crew Platform</xsl:text>

</xsl:when>
<xsl:otherwise>
<xsl:text>Found </xsl:text>
<xsl:value-of select="$num-crews"/>
<xsl:text> Crew Platform</xsl:text>
<xsl:if test="$num-crews > 1">

<xsl:text>s</xsl:text>
</xsl:if>

</xsl:otherwise>
</xsl:choose>

</xsl:template>

Figure 48. Template that counts Crew Platform (and Billet) elements.

4. Performing Validation Testing

4.1 Schema Validation

Every XML data file should have a reference to the physical file that contains the XSD. The root
element used by GFM XML files is shown in figure 49.

<GFMIEDM34 TITLE="optional description of data"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xmlns:ism="urn:us:gov:ic:ism:v2"
xmlns="http://gfm.arl.army.mil/GFMIEDM34"
xsi:schemaLocation="http://gfm.arl.army.mil/GFMIEDM34

GFMIEDM341.xsd">
. . . data elements . . .

</GFMIEDM34>

Figure 49. Typical GFM root element.

39

The actual file name is highlighted. The five files that make up the GFM XSD plus the IC-ISM
XSD file (see figure 3) must all be in the same folder. If the XML data file is in a different folder,
then the path to the XSD file must be added to the highlighted file name in figure 49.

The validation may be performed with the Xerces-J (16) Java Archive (JAR) files. Figure 50
shows the command line (in two parts for readability) to validate a sample file that contains one
error.

java -classpath xerces.jar;xercesSamples.jar
sax.SAXCount -s -v -f -an somefile.xml

[Error] somefile.xml:1183:17: Key with value [ID Value: 7205759403792784] not
found for identity constraint of element "OBJ_ITEM".

somefile.xml: 1112 ms (1155 elems, 182 attrs, 7205 spaces, 11102 chars)

Figure 50. Xerces XML validator detecting one error.

The public Java application SAXCount was written to count objects in an XML file. One
available option is to also validate the data if an XSD is available. In this example24, an error was
found on line 1183, column 17. While the error message may appear to be cryptic, an
examination of the OBJ ITEM shows that the value 7205759403792784 is missing a trailing
zero. The error report is followed by a line of summary information.

Other tools include XMLSpy R© (17), a commercial product that graphically edits and validates
XML files. The nice feature of XMLSpy is that it actually highlights the element that contains an
error; the bad thing is it stops at the first error that it finds.25 Saxon (18) is an XSLT
transformation engine that is run from the command line, and the commercial version also
performs XSD validation.26 ARL’s IChart (19) application always tests GFM XML data files for
well-formedness, and it will optionally test files for validity using Xerces-J.

4.2 XSLT Validation

Unlike XSD, XSLT was not designed to perform validation, so the process is slightly more
involved. Either Saxon or XMLSpy may be used as the transformation engine. The command line
for Saxon is shown in figure 51.

java -jar saxon9.jar somefile.xml GFMIEDM341validate.xsl >err.html

Warning: at xsl:stylesheet on line 107 of file:GFMIEDM341validate.xsl:
Running an XSLT 1.0 stylesheet with an XSLT 2.0 processor

Figure 51. Saxon transformation engine testing XML data.

24I used Xerces-J version 1.4.4. With appropriate changes to figure 50, Xerces-J version 2.9.1 gives identical results.
25Xerces attempts to find all of the errors at one time.
26I have not used the commercial version.

40

The warning message is a reminder that there is a mismatch between the transformation engine
and the XSLT file. Saxon supports the new XSLT 2.0 and XPath 2.0 specifications, while the
GFM XSLT file was intentionally limited to 1.0 features to ensure portability.

The output of the transformation has been stored in the file err.html (or whatever file name the
user supplied). A normal text file could have been generated, but this leverages off of the
formatting performed by XHTML. The next step is to load err.html into a Web browser.

Several GFM XML data files have been created to test the XSLT validation files. They are
available to the user community for anyone who wants to confirm that their own validation tool is
working correctly. The files GFMIEDM341invalidTestsSet1.xml and
GFMIEDM341invalidTestsSet2.xml contain hierarchical data to test
GFMIEDM341validate.xsl, while GFMIEDM341invalidSampleRelat.xml is similar data in
relational form. All three files contain errors that are described in section 3.3; however, category
code errors from section 3.3.2 may be detected only in the hierarchical sample XML file.

To ensure that every template reports an error, many intentional mistakes were made in the
sample files. The correct data was tested first to avoid false positives, then the errors were
introduced. There are 34 category code errors (only in the first file) and 57 other errors (in both
files). An abridged snapshot of the Web browser output is shown in figure 52. The last line of
each item contains the EwID of the offending object and identifying text (where it is available).

It is not possible for XSLT to report when no errors are found in a GFM XML data file. If no
output is produced, then the assumption is that there are no errors. The conditional in the top half
of figure 33 explicitly states when the “tree” tests may not be performed because the GFM XML
data file contains only relational data. Figure 53 shows examples of both of these conditions using
a version of the GFMIEDM341invalidSampleRelat.xml file that contains only two errors.

XMLSpy, because of its graphical interface, is easier to use. Load a GFM XML data file, assign
an XSLT file to it, and command XMLSpy to perform the transformation. The formatted
XHTML output will be displayed in another tab panel.

A third method, which is not recommended but is included for completeness, is to let the Web
browser’s XSLT transformation engine do all of the work. The top of every GFM XML data file
should contain the line

<?xml-stylesheet type="text/xsl" href="GFMIEDM341.xsl"?>

which causes the browser to transform the data into a more readable form. Replace the
highlighted file name with the desired validation XSLT file name, then load the data file into the
browser. Eventually you will see the error text. This is not practical for large data files, but it is a
handy trick if you do not have Saxon or XMLSpy at hand.

The XSLT file that tests GFM business rules is under development as new datasets inspire new
rules. The business rule test file of GFM XML data is GFMIEDM341invalidBusiness.xml.
Output produced from the current (as of this writing) version of the
GFMIEDM341businessRules.xsl file and the test XML file is shown in figure 54. The link
labels and Person Type names, e.g., “bad CAT,” were defined in the data to state the error that
should be reported and are not generated by the XSLT script.

41

Results of Validation (using XSLT) Sample Hierarchical Data

Improper category/child element
1. OBJ_TYPE’s CAT_CODE (MA) must match child ORG_TYPE

72057594037927960 = Some Civilian
Links with missing endpoint(s)

1. OBJ_TYPE_ESTAB_OBJT_DET’s ESTABD_OBJ_TYPE_ID (2057594037927950)
does not exist
18446744073709551013

Improper override of GFM vs JC3 fields
1. CIV_POST_TYPE’s GFM_CAT_CODE (VOLUNT) does not properly override

CAT_CODE (MAYOR)
72057594037927860

Objects with bad DTG ranges or bad starting dates
1. Bad DTG range in GFM_PERS_TYPE_SKILL_ATTR

1990-01-01T00:00:00Z is not before 1005-01-01T00:00:00Z
18446744073709551005 = skill attr name

2. OBJ_TYPE_ESTAB’s EFFCTV_DTTM
19500101000000.000 is not within DTG range of
1990-01-01T00:00:00Z to 2010-01-01T00:00:00Z
18446744073709551027 =

Missing Obj Type Estabs
1. OBJ_TYPE does have an OBJ_TYPE_ESTAB

72057594037927967 = Supply Department
Missing Obj Item/Obj Type Estabs

1. OBJ_ITEM does have an OBJ_ITEM_OBJ_TYPE_ESTAB
72057594037927944 = Platform

Obj Items linked to incorrect Obj Types
1. Item 72337338142818342 = small crew

does not link to a GFM_CREW_PLATFORM_TYPE
in OBJ_ITEM_OBJ_TYPE_ESTAB 72337338142818343

References to Obj Type Estabs do not match Obj Types
1. OBJ_TYPE_ESTAB_OBJT_DET 72337338142818310

references ObjTypeEstab 72337338142818306
and ObjType 72337338142818311
but ObjTypeEstab 72337338142818306
references ObjType 72337338142818305

Multiple Roots
1. found multiple Org tree roots

Assoc = 72337338142818348 Org = sample excmil
Assoc = 72337338142818370 Org = international civilian

Figure 52. Web browser output of XSLT validation.

42

Results of Validation (using XSLT) Sample Relational Data

Improper category/child element
Tests may not be performed on relational data
Links with missing endpoint(s)
Improper override of GFM vs JC3 fields
Objects with bad DTG ranges or bad starting dates
Missing Obj Type Estabs

1. OBJ_TYPE does have an OBJ_TYPE_ESTAB
72057594037927967 = Supply Department

Missing Obj Item/Obj Type Estabs
1. OBJ_ITEM does have an OBJ_ITEM_OBJ_TYPE_ESTAB

72057594037927944 = Platform
Obj Items linked to incorrect Obj Types
References to Obj Type Estabs do not match Obj Types
Multiple Roots

Figure 53. Web browser output of validation of relational data.

43

Results of Validation (using XSLT)

Improper link types
1. OBJ_TYPE_ESTAB_OBJT_DET has illegal link type combination

ADMINS/DEFALT
72060759428875092 = bad CAT

2. OBJ_TYPE_ESTAB_OBJT_DET has illegal link type combination
HSADMI/TACCOM
72060759428875093 = bad SUBCAT

Improper Person Type codes
1. Military PERS_TYPE must be MILTRY/NOS

Found MILTRY/PILOT
72059647032295510 = bad mil codes

2. Civilian PERS_TYPE must be CIV/GOVEMP or CIV/NONGVE
Found CIV/JRNLST
72060755133882801 = bad civ codes

3. PERS_TYPE root must be ROS, found SKLLVL
72060793789194799 = EXECUTIVE OFFICER

Orgs which are not in tree
1. ORG is never in Org Tree

72060755133858478 = OSD-orphan
Billets which have children

1. Billet is a parent, which is not allowed
72060755133860793 = parent org

OTEODs which have improper parent/child type
1. OBJ_TYPE_ESTAB_OBJT_DET does not have matching parent/child types

72060759428875121 = MT parent, not MT child
MAT_TYPE RIFLE 5.56 MM: M16A2 (72057594037927970) may not be parent of
Head of State (72060759428875115)

2. OBJ_TYPE_ESTAB_OBJT_DET does not have matching parent/child types
72059647032302985 = PT parent, not PT child
PERS_TYPE JAG, O-5 (72059647032297826) may not be parent of
WORLD (72060755133857960)

3. Parent OTE should have CAT_CODE = PCG
27A00 O-6 (72059647032297830) has CAT_CODE = CES

CrewPlatformTypes which do not have an aligned MatType
1. 72337338142818314 = small crew

does not have a MatType
PostTypes which do not have an aligned PersType

1. 72060755133858003 = Mayor
does not have a PersType

PersType Tree Counts
1. MILTRY PersType tree 72060793789068864 = DETACHMENT LEADER

should have 5 PersType children but has 4
Non-clustered PersType Counts

1. CIV_POST_TYPE 72060759428875115 = Head of State
should have 3 PersType alignments but has 2

2. MIL_POST_TYPE 72060793789280990 = COMMANDER
should have 5 PersType alignments but has 2

Figure 54. Web browser output of validation using business rules.

44

5. Analysis

5.1 XSD and XSLT

The use of XML Schema to validate an XML data file is a common practice. Defining rules to
test referential integrity is a logical extension and is within the capabilities of XSD. Going beyond
the canonical form to describe the hierarchical data schema as a hierarchical XML schema
provides XSD with the ability to perform additional validations.

A drawback is the amount of time required to validate data (20). While no benchmarking has
been performed, because optimization of the XSD is beyond the scope of the project, very large
files take a considerable amount of time to be validated. I intend to write a modified version of
GFMIEDM341.xsd that ignores uniqueness and referential integrity.27 The new XSD will be
limited to basic schema tests such as verifying the element type and value. Once a GFM XML
data file has been validated to ensure that element names are spelled correctly, no mandatory
fields are missing, etc., the more thorough XSD validation file may be used.

The same reasoning applies to the XSLT scripts. XSLT transformation engines load the entire
data file into memory at once, and this is not feasible for huge data files. The scripts make
multiple passes through the XML data tree (not the file), once for each test. This should not have
a major impact on the time required because the data is cached; however, if certain tests take too
long to run, they may be removed from the main template near the top of the script.

The first validation script should not be run until a given GFM XML data file has been validated
against the XSD. Likewise, the second (business rules) script should be run only after all issues
discovered by the first script are resolved. Additional scripts may be written to enforce business
rules that are not shared by all users of the GFM data.

5.2 XML Limitations

GFM data is complex because it is both temporal and dependent on other data elements. A
complete GFM data set may contain multiple force structure trees based on time and link type.
The date/time groups that are tested in section 3.3.4 are used to designate when each object is
active. A simple example is shown in figure 55.

If node A’s active period of time does not overlap the time interval for node B, then it is
impossible for A to ever be the parent of B. The naive rule used by the GFM validation, described
in section 3.3.1, completely ignores the DTG elements. The template would see that the link’s
endpoints, namely A and B, exist, and decide that the link is valid.

27This file may also allow fragmentary data to be validated.

45

A

C

GFE

B

H

D

Figure 55. Sample force structure (organisation) tree.

The heuristics of the code required to definitively validate the link may be too complex to
implement in any language. If the nodes and link define three different DTG intervals that
partially overlap, is the link valid? The matter may require human judgment to confirm that the
intervals properly define the actual data being modeled.

The validation of a tree based on link types may be performed only if the tree is traversed from
the top down. The force structure tree that is produced from a given set of data—ignoring the
time intervals for the moment—depends on the desired set of link types. When DTG intervals are
included, the construction of the tree becomes much more complex. In figure 55, if the A–B link
is broken, either because of the DTG or link type, then not only does node B disappear, but so do
nodes E and F.

To summarize, GFM validation is performed at the link level and disregards DTG intervals
(except as described in section 3.3.4). It does not perform tree validation.

5.3 Alternatives

Two big advantages of XSD and XSLT are that they are portable, and tools that may perform
validations are readily available. GFM XML data may be validated on a server before it is
distributed to a client that has requested the data. However, due to language limitations and
inefficiency, it may be more practical to write one or more custom applications.

An alternative shortcut is to use SQL. Many commercial implementations of SQL include tests
for referential integrity. It is a declarative language, as is XSLT, and the GFM XSLT scripts could
easily be translated into SQL. Instead of parsing the GFM XML data into an XML data tree in
memory, the file would be incrementally parsed and its data stored in an SQL database. The
nature of the tests requires that the data be scanned repeatedly, such as in the validation test “For
each OBJ TYPE, find an OBJ TYPE ESTAB with the same value for its OBJ TYPE ID,” and
repeated scans of the data cache may be extremely inefficient. Performing queries on SQL data in
a database is analogous to matching XSLT templates to an XML data tree. Due in part of the
maturity of SQL, such queries may be highly optimized.

46

6. References

1. Chamberlain, S. C.; Boller, M.; Sprung, G.; Badami, V. Establishing a Community of
Interest (COI) for Global Force Management. In Proceedings of the 10th International
Command and Control Research and Technology Symposium; McLean, VA, 2005.

2. Extensible Markup Language (XML) 1.0. 2006 [ONLINE] Available
http://www.w3.org/TR/2006/REC-xml-20060816/.

3. Deutsch, A.; Fernandez, M. F.; Florescu, D.; Levy, A. Y.; Maier, D.; Suciu, D. Querying
XML Data. IEEE Data Engineering Bulletin 1999, 22 (3), 10–18.

4. XML Schema Part 1: Structures. 2004 [ONLINE] Available
http://www.w3.org/TR/2004/REC-xmlschema-1-20041028/.

5. XML Schema Part 2: Datatypes. 2004 [ONLINE] Available
http://www.w3.org/TR/2004/REC-xmlschema-2-20041028/.

6. Harold, E. R.; Means, S. W. XML in a Nutshell, Third Edition; O’Reilly Media, Inc.:
Sebastopol, CA, 2004.

7. JC3IEDM Browse Representation. 2007 [ONLINE] Available
http://www.mip-site.org/publicsite/04-Baseline 3.0/JC3IEDM-
Joint C3 Information Exchange Data Model/HTML-Browser/index.html.

8. Chamberlain, S. C. Enterprise Identifiers for Global Naming Across the C4I-Simulation
Boundary. In Proceedings of the 2001 Spring Simulation Interoperabiltiy Workshop;
Orlando, FL, 2001.

9. Dillon, S. XML to Relational: Bridging the gap. Oracle Magazine 2005, XIX (5).

10. IC-ISM-v2. 2004 [ONLINE] Available http://www.niem.gov/IC-ISM-v2.xsd.

11. XML Path Language (XPath) Version 1.0. 1999 [ONLINE] Available
http://www.w3.org/TR/1999/REC-xpath-19991116/.

12. XSL Transformations (XSLT) Version 1.0. 1999 [ONLINE] Available
http://www.w3.org/TR/1999/REC-xslt-19991116/.

13. Kay, M. XSLT 2.0 Programmer’s Reference (Programmer to Programmer); Wrox:
Hoboken, NJ, 2004.

14. XHTMLTM1.0 The Extensible HyperText Markup Language. 2002 [ONLINE] Available
http://www.w3.org/TR/2002/REC-xhtml1-20020801/.

15. Jelliffe, R. Using XSL as a Validation Language. 1999 [ONLINE] Available
http://xml.ascc.net/en/utf-8/XSLvalidation.html.

47

16. Xerces Java Parser Readme. 2005 [ONLINE] Available http://xerces.apache.org/xerces-j/.

17. XMLSpy R©, 2008 [ONLINE] Available
http://www.altova.com/products/xmlspy/xml editor.html.

18. Kay, M. Saxon-B 9.0.0.4J, 2008 [ONLINE] Available http://www.saxonica.com/.

19. Brundick, F. S.; Hartwig, Jr., G. W.; Chamberlain, S. C. IChart: A Graphical Tool To
View and Manipulate Force Management Structure Databases; ARL-TR-4610; U.S. Army
Research Laboratory: Aberdeen Proving Ground, MD, September 2008.

20. Nicola, M.; John, J. XML Parsing: A Threat to Database Performance. In Proceedings of
ACM International Conference on Information and Knowledge Management; 2003.

48

Appendix A. Security Markings

The GFM XSD uses the security marking attributes defined in the Intelligence Community
Information Security Marking (IC-ISM) XSD file. Data is classified at the “record” level; the
classification of the record is the highest classification of its “field” elements.

The file GFMIEDM341relatTableTypes.xsd imports the file IC-ISM.xsd. The ‘import’ element
is the mechanism that XSD uses to allow schemas to be shared and reused. The namespace for
IC-ISM is “ism” and sample data is shown in figure A-1.

<OBJ_ITEM_ASSOC_TBL>
<OBJ_ITEM_ASSOC ism:classification="U" ism:ownerProducer="USA"

ism:disseminationControls="FOUO">
<SUBJ_OBJ_ITEM_ID>72060755133858488</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72060755133863257</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX>72060755133858493</OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
<OBJ_ITEM_ASSOC ism:classification="U" ism:ownerProducer="USA"

ism:disseminationControls="FOUO">
<SUBJ_OBJ_ITEM_ID>72060755133858488</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72060755133863255</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX>72060755133858494</OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
</OBJ_ITEM_ASSOC_TBL>

Figure A-1. GFM XML data with security attributes.

The IC-ISM XSD defines several attributes, the details of which are not pertinent to this
discussion. Two attribute groups, which are similar to the element group shown in figure 9, are
defined to allow the XSD writer to refer to an entire set of attributes. The
SecurityAttributesGroup group states that the first two attributes are mandatory and the rest are
optional, while SecurityAttributesOptionGroup declares each attribute to be optional.

The GFM XSD designers wanted to maintain compatibility with data that had been created before
security markings were introduced in the schema. A pair of new attribute groups are defined in

49

the GFM namespace with each containing a different IC-ISM attribute group. The complete code
is shown in figure A-2.

<!-- This group has mandatory attributes. -->
<xs:attributeGroup name="SecurityAttributesGroup">
<xs:annotation>

<xs:documentation xml:lang="en">
The group of Information Security Marking attributes in which
the use of attributes ’classification’ and ’ownerProducer’ is
required. This group is to be contrasted with group
’SecurityAttributesOptionGroup’ in which use of those attributes
is optional.

</xs:documentation>
</xs:annotation>
<xs:attributeGroup ref="ism:SecurityAttributesGroup"/>

</xs:attributeGroup>

<!-- All attributes are optional in the second group. -->
<xs:attributeGroup name="xxxSecurityAttributesGroup">
<xs:annotation>

<xs:documentation xml:lang="en">
The group of Information Security Marking attributes in which
the use of all attributes is optional.

</xs:documentation>
</xs:annotation>
<xs:attributeGroup ref="ism:SecurityAttributesOptionGroup"/>

</xs:attributeGroup>

Figure A-2. Classification markings attribute groups.

Notice that the group names are almost identical; the second has an “xxx” prefix. The reason is
that security markings are not part of the GFMIEDM but were added to the GFM XSD. The user
may edit the GFMIEDM341relatTableTypes.xsd file and move the “xxx” prefix from the
second group name to the first. Since the attribute group name of SecurityAttributesGroup is
used throughout this XSD file, this will have the effect of declaring the security attributes to be
optional. The relevant part of figure 8 is shown in figure A-3 with the attribute group highlighted.

<xs:complexType name="ObjectItem">
<xs:annotation>
<xs:documentation>Definition: An individually identified object
that has military or civilian significance.</xs:documentation>

</xs:annotation>
<xs:sequence>
...

</xs:sequence>
<xs:attributeGroup ref="SecurityAttributesGroup"/>

</xs:complexType>

Figure A-3. Object Item type with security attribute group.

50

Appendix B. Validation Constraints

B.1 Structural Validation

The file GFMIEDM341validate.xsl performs the following structural tests:

1. In the generalization hierarchy, an element’s CAT CODE must match the type of its child
element. This test is performed only for elements which are children of elements whose
name ends with ‘ OO TBL’.

2. Both endpoints of a link must exist. The exception is an OBJ TYPE ESTAB OBJT DET
whose GFM OTEOD ROLE IND CD has the value 1; it never has a child.

3. When a pair of elements have both JC3 and GFM enumerated values, the GFM values are
extensions of the JC3 set. The implementation rule is “If the GFM field is NOS (no such),
then use the value in the JC3 field, else use the GFM field’s value.” In practice, this means
that at least one of the two fields must have the value NOS or the first enumerated value if
NOS is not an enumerated value.

4. A starting date/time group (DTG) must be before the corresponding termination DTG.

5. An effective date/time or modernization date/time must be within the time span in item 4.
Expressed mathematically, s dtg ≤ date time < t dtg.

6. Every OBJ TYPE must have an OBJ TYPE ESTAB.

7. Every OBJ ITEM must appear as the OBJ ITEM ID in an OBJ ITEM OBJ TYPE ESTAB.

8. Every OBJ TYPE must be associated with the proper OBJ ITEM type.

9. When an element references an OBJ TYPE and OBJ TYPE ESTAB, the
OBJ TYPE ESTAB must refer to the same OBJ TYPE.

10. Each tree may have at most one root node.

B.2 Business Rules

The file GFMIEDM341businessRules.xsl tests GFM XML data for conformance with these
business rules, which are subject to future changes and extensions.

1. The values for the CAT CODE and SUBCAT CODE elements of a link depend on the class
of the parent and child objects. Only certain combinations of parent and child objects are
permitted. The allowable values are shown in tables B-1 and B-2.

51

2. When a PERS TYPE has a CAT CODE of MILTRY, the SUBCAT CODE must be NOS.

3. When a PERS TYPE has a CAT CODE of CIV, the SUBCAT CODE must be GOVEMP or
NONGVE.

4. Every ORG must appear in the Organisation tree, under the assumption that every object
that is created should be used (unless it is reference data). In other words, it must be the
OBJ OBJ ITEM ID of an OBJ ITEM ASSOC.

5. A GFM BILLET must never have a child in the Organisation tree. It may never be the
SUBJ OBJ ITEM ID of an OBJ ITEM ASSOC.

6. The OBJ TYPE ESTAB of a MAT TYPE or PERS TYPE that has child objects must have
a CAT CODE of PCG.

7. Because a CREW PLATFORM TYPE carries people, there must be at least one
MAT TYPE aligned with each one.

8. Each CIV POST TYPE and MIL POST TYPE must have at least one PERS TYPE
aligned with it.

9. When a PERS TYPE is the root of a tree, it must reference a GFM PERS TYPE-
SKILL ATTR with a type code of ROS.

10. Each Military Person Type tree must have 5 nodes, while a Civilian tree has 3 nodes.

11. When clustering is not used, each MIL POST TYPE must have 5 Person Types aligned
with it, while a CIV POST TYPE must have 3 Person Types.

12. There should normally be GFM CREW PLATFORMs and GFM BILLETs in an XML file.

Table B-1. OTEOD category codes.

Parent Child CAT SUBCAT GFM CAT GFM SUBCAT

ORG TYPE ORG TYPE HSADMI ALTFOR NOS DEFALT
ORG TYPE ORG TYPE NOS ALTFOR COCOM ASSIGN
ORG TYPE ORG TYPE NOS ALTFOR COCOM UNASGN
ORG TYPE ORG TYPE CMDCTL ALTFOR NOS DEFALT
ORG TYPE ORG TYPE CMDCTL OPCON NOS NOS

ORG TYPE MAT TYPE ISAUTO ALTFOR NOS DEFALT
ORG TYPE PERS TYPE ISAUTO ALTFOR NOS DEFALT
MAT TYPE MAT TYPE ISPART ALTFOR NOS DEFALT
PERS TYPE PERS TYPE ISPART ALTFOR NOS DEFALT

52

Table B-2. Assoc category codes.

Parent Child CAT SUBCAT GFM CAT GFM SUBCAT

ORG ORG HSADMI ALTFOR NOS DEFALT
ORG ORG NOS ALTFOR COCOM ASSIGN
ORG ORG NOS ALTFOR COCOM UNASGN
ORG ORG CMDCTL ALTFOR NOS DEFALT
ORG ORG CMDCTL OPCON NOS NOS

53

INTENTIONALLY LEFT BLANK.

54

Appendix C. Valid Example

The sample GFM XML data file shown in this set of figures demonstrates most of the structural
and business rules. In order to save space, all mandatory elements that are not germane to the
validation have been deleted. The file uses the standard XML wrapper as shown in figure 49.
Primary FMIDSs are shown boxed and foreign keys are in italics. Category codes and
matching child elements are shown in bold. A summary of the data elements is after the figures.

<OBJ_TYPE_OO_TBL>
<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<OBJ_TYPE_ID> 72337338142818314 </OBJ_TYPE_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_TYPE_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S_DTG>
<GFM_OBJ_TYPE_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_T_DTG>
<ORG_TYPE>
<ORG_TYPE_ID>72337338142818314</ORG_TYPE_ID>
<CAT_CODE>GVTORG</CAT_CODE>
<GOVT_ORG_TYPE>

<GOVT_ORG_TYPE_ID>72337338142818314</GOVT_ORG_TYPE_ID>
<CAT_CODE>MILORG</CAT_CODE>
<MIL_ORG_TYPE>

<MIL_ORG_TYPE_ID>72337338142818314</MIL_ORG_TYPE_ID>
<CAT_CODE>NOS</CAT_CODE>
<GFM_CAT_CODE>CREW</GFM_CAT_CODE>
<GFM_CREW_PLATFORM_TYPE>

<GFM_CREW_PLATFORM_TYPE_ID>72337338142818314</GFM_CREW_PLATFORM_TYPE_ID>
</GFM_CREW_PLATFORM_TYPE>

</MIL_ORG_TYPE>
</GOVT_ORG_TYPE>

</ORG_TYPE>
</OBJ_TYPE>

<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_TYPE_ID> 72337338142818317 </OBJ_TYPE_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_TYPE_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S_DTG>
<GFM_OBJ_TYPE_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_T_DTG>
<ORG_TYPE>
<ORG_TYPE_ID>72337338142818317</ORG_TYPE_ID>
<CAT_CODE>GVTORG</CAT_CODE>
<GOVT_ORG_TYPE>

<GOVT_ORG_TYPE_ID>72337338142818317</GOVT_ORG_TYPE_ID>
<CAT_CODE>MILORG</CAT_CODE>
<MIL_ORG_TYPE>

<MIL_ORG_TYPE_ID>72337338142818317</MIL_ORG_TYPE_ID>
<CAT_CODE>MILPST</CAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<MIL_POST_TYPE>

<MIL_POST_TYPE_ID>72337338142818317</MIL_POST_TYPE_ID>
</MIL_POST_TYPE>

</MIL_ORG_TYPE>
</GOVT_ORG_TYPE>

</ORG_TYPE>
</OBJ_TYPE>
...

Figure C-1. OBJ TYPE elements, part 1 of 2 (ORG TYPEs).

55

...
<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<OBJ_TYPE_ID> 72057594037927968 </OBJ_TYPE_ID>
<CAT_CODE>MA</CAT_CODE>
<GFM_OBJ_TYPE_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S_DTG>
<GFM_OBJ_TYPE_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_T_DTG>
<MAT_TYPE>
<MAT_TYPE_ID>72057594037927968</MAT_TYPE_ID>
<CAT_CODE>EQ</CAT_CODE>
<EQPT_TYPE>

<EQPT_TYPE_ID>72057594037927968</EQPT_TYPE_ID>
<CAT_CODE>VEHCLE</CAT_CODE>
<VEHICLE_TYPE>

<VEHICLE_TYPE_ID>72057594037927968</VEHICLE_TYPE_ID>
</VEHICLE_TYPE>

</EQPT_TYPE>
</MAT_TYPE>

</OBJ_TYPE>

<OBJ_TYPE ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_TYPE_ID> 72059647032297831 </OBJ_TYPE_ID>
<CAT_CODE>PE</CAT_CODE>
<GFM_OBJ_TYPE_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_S_DTG>
<GFM_OBJ_TYPE_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_T_DTG>
<PERS_TYPE>
<PERS_TYPE_ID>72059647032297831</PERS_TYPE_ID>
<CAT_CODE>MILTRY</CAT_CODE>
<SUBCAT_CODE>NOS</SUBCAT_CODE>
<GFM_PERS_TYPE_SKILL_ATTS>72059647032297828</GFM_PERS_TYPE_SKILL_ATTS>

</PERS_TYPE>
</OBJ_TYPE>
</OBJ_TYPE_OO_TBL>

Figure C-2. OBJ TYPE elements, part 2 of 2 (MAT TYPE and PERS TYPE).

56

<OBJ_TYPE_ESTAB_TBL>
<OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<ESTABD_OBJ_TYPE_ID>72337338142818314</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX> 72337338142818315 </OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_OBJ_TYPE_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_S_DTG>
<GFM_OBJ_TYPE_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_T_DTG>

</OBJ_TYPE_ESTAB>

<OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<ESTABD_OBJ_TYPE_ID>72337338142818317</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX> 72337338142818318 </OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_OBJ_TYPE_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_S_DTG>
<GFM_OBJ_TYPE_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_T_DTG>

</OBJ_TYPE_ESTAB>

<OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<ESTABD_OBJ_TYPE_ID>72057594037927968</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX> 72057594037928968 </OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_OBJ_TYPE_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_S_DTG>
<GFM_OBJ_TYPE_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_T_DTG>

</OBJ_TYPE_ESTAB>

<OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<ESTABD_OBJ_TYPE_ID>72059647032297831</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX> 72059647032297832 </OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<CAT_CODE>PCG</CAT_CODE>
<GFM_OBJ_TYPE_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_S_DTG>
<GFM_OBJ_TYPE_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_TYPE_ESTAB_T_DTG>

</OBJ_TYPE_ESTAB>
</OBJ_TYPE_ESTAB_TBL>

Figure C-3. OBJ TYPE ESTAB elements.

<GFM_PERS_TYPE_SKILL_ATTR_TBL>
<GFM_PERS_TYPE_SKILL_ATTR ism:classification="U" ism:ownerProducer="USA" ...>

<GFM_PERST_SKILL_ATTR_ID> 72059647032297828 </GFM_PERST_SKILL_ATTR_ID>
<GFM_PERST_SKILL_ATTR_NAME_TXT>ROOT OCCUPATIONAL SPECIALTY</GFM_PERST_SKILL_ATTR_NAME_TXT>
<GFM_PERST_SKILL_ATTR_TYPE_CD>ROS</GFM_PERST_SKILL_ATTR_TYPE_CD>
<GFM_PERST_SKILL_ATTR_OWNER_CD>USA</GFM_PERST_SKILL_ATTR_OWNER_CD>
<GFM_PERST_SKILL_ATTR_CAT>OFFICER</GFM_PERST_SKILL_ATTR_CAT>
<GFM_PERST_SKILL_ATTR_S_DTG>1990-01-01T00:00:00Z</GFM_PERST_SKILL_ATTR_S_DTG>
<GFM_PERST_SKILL_ATTR_T_DTG>2999-12-01T00:00:00Z</GFM_PERST_SKILL_ATTR_T_DTG>

</GFM_PERS_TYPE_SKILL_ATTR>
</GFM_PERS_TYPE_SKILL_ATTR_TBL>

Figure C-4. GFM PERS TYPE SKILL ATTR element.

57

<OBJ_TYPE_ESTAB_OBJT_DET_TBL>
<OBJ_TYPE_ESTAB_OBJT_DET ism:classification="U" ism:ownerProducer="USA" ...>

<ESTABD_OBJ_TYPE_ID>72337338142818314</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX>72337338142818315</OBJ_TYPE_ESTAB_IX>
<OBJ_TYPE_ESTAB_OBJT_DET_IX> 72337338142818321 </OBJ_TYPE_ESTAB_OBJT_DET_IX>
<DET_OBJ_TYPE_ID>72337338142818317</DET_OBJ_TYPE_ID>
<DET_OBJ_TYPE_ESTAB_IX>72337338142818318</DET_OBJ_TYPE_ESTAB_IX>
<GFM_OTEOD_CAT_CODE>HSADMI</GFM_OTEOD_CAT_CODE>
<GFM_OTEOD_SUBCAT_CODE>ALTFOR</GFM_OTEOD_SUBCAT_CODE>
<GFM_OTEOD_GFM_CAT_CODE>NOS</GFM_OTEOD_GFM_CAT_CODE>
<GFM_OTEOD_GFM_SUBCAT_CODE>DEFALT</GFM_OTEOD_GFM_SUBCAT_CODE>
<GFM_OBJT_ESTAB_OBJT_DET_S_DTG>1990-01-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_S_DTG>
<GFM_OBJT_ESTAB_OBJT_DET_T_DTG>2999-12-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_T_DTG>

</OBJ_TYPE_ESTAB_OBJT_DET>

<OBJ_TYPE_ESTAB_OBJT_DET ism:classification="U" ism:ownerProducer="USA" ...>
<ESTABD_OBJ_TYPE_ID>72337338142818314</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX>72337338142818315</OBJ_TYPE_ESTAB_IX>
<OBJ_TYPE_ESTAB_OBJT_DET_IX> 72337338142818376 </OBJ_TYPE_ESTAB_OBJT_DET_IX>
<DET_OBJ_TYPE_ID>72057594037927968</DET_OBJ_TYPE_ID>
<DET_OBJ_TYPE_ESTAB_IX>72057594037928968</DET_OBJ_TYPE_ESTAB_IX>
<GFM_OTEOD_CAT_CODE>ISAUTO</GFM_OTEOD_CAT_CODE>
<GFM_OTEOD_SUBCAT_CODE>ALTFOR</GFM_OTEOD_SUBCAT_CODE>
<GFM_OTEOD_GFM_CAT_CODE>NOS</GFM_OTEOD_GFM_CAT_CODE>
<GFM_OTEOD_GFM_SUBCAT_CODE>DEFALT</GFM_OTEOD_GFM_SUBCAT_CODE>
<GFM_OBJT_ESTAB_OBJT_DET_S_DTG>1990-01-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_S_DTG>
<GFM_OBJT_ESTAB_OBJT_DET_T_DTG>2999-12-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_T_DTG>

</OBJ_TYPE_ESTAB_OBJT_DET>

<OBJ_TYPE_ESTAB_OBJT_DET ism:classification="U" ism:ownerProducer="USA" ...>
<ESTABD_OBJ_TYPE_ID>72337338142818317</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX>72337338142818318</OBJ_TYPE_ESTAB_IX>
<OBJ_TYPE_ESTAB_OBJT_DET_IX> 72337338142818380 </OBJ_TYPE_ESTAB_OBJT_DET_IX>
<DET_OBJ_TYPE_ID>72059647032297831</DET_OBJ_TYPE_ID>
<DET_OBJ_TYPE_ESTAB_IX>72059647032297832</DET_OBJ_TYPE_ESTAB_IX>
<GFM_OTEOD_CAT_CODE>ISAUTO</GFM_OTEOD_CAT_CODE>
<GFM_OTEOD_SUBCAT_CODE>ALTFOR</GFM_OTEOD_SUBCAT_CODE>
<GFM_OTEOD_GFM_CAT_CODE>NOS</GFM_OTEOD_GFM_CAT_CODE>
<GFM_OTEOD_GFM_SUBCAT_CODE>DEFALT</GFM_OTEOD_GFM_SUBCAT_CODE>
<GFM_OBJT_ESTAB_OBJT_DET_S_DTG>1990-01-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_S_DTG>
<GFM_OBJT_ESTAB_OBJT_DET_T_DTG>2999-12-01T00:00:00Z</GFM_OBJT_ESTAB_OBJT_DET_T_DTG>

</OBJ_TYPE_ESTAB_OBJT_DET>
</OBJ_TYPE_ESTAB_OBJT_DET_TBL>

Figure C-5. OBJ TYPE ESTAB OBJT DET (link) elements.

58

<OBJ_ITEM_OO_TBL>
<OBJ_ITEM ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<OBJ_ITEM_ID> 72337338142818342 </OBJ_ITEM_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_ITEM_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_S_DTG>
<GFM_OBJ_ITEM_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_T_DTG>
<ORG>
<ORG_ID>72337338142818342</ORG_ID>
<CAT_CODE>NOS</CAT_CODE>
<GFM_CAT_CODE>CR</GFM_CAT_CODE>
<GFM_CREW_PLATFORM>

<GFM_CREW_PLATFORM_ID>72337338142818342</GFM_CREW_PLATFORM_ID>
</GFM_CREW_PLATFORM>

</ORG>
</OBJ_ITEM>

<OBJ_ITEM ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">
<OBJ_ITEM_ID> 72337338142818344 </OBJ_ITEM_ID>
<CAT_CODE>OR</CAT_CODE>
<GFM_OBJ_ITEM_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_S_DTG>
<GFM_OBJ_ITEM_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_T_DTG>
<ORG>
<ORG_ID>72337338142818344</ORG_ID>
<CAT_CODE>NOS</CAT_CODE>
<GFM_CAT_CODE>BL</GFM_CAT_CODE>
<GFM_BILLET>

<GFM_BILLET_ID>72337338142818344</GFM_BILLET_ID>
</GFM_BILLET>

</ORG>
</OBJ_ITEM>
</OBJ_ITEM_OO_TBL>

Figure C-6. OBJ ITEM (ORG) elements.

<OBJ_ITEM_OBJ_TYPE_ESTAB_TBL>
<OBJ_ITEM_OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ...>

<OBJ_ITEM_ID>72337338142818342</OBJ_ITEM_ID>
<ESTABD_OBJ_TYPE_ID>72337338142818314</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX>72337338142818315</OBJ_TYPE_ESTAB_IX>
<OBJ_ITEM_OBJ_TYPE_ESTAB_IX> 72337338142818343 </OBJ_ITEM_OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_ORG_ORGT_M_DTG>1990-01-01T00:00:00Z</GFM_ORG_ORGT_M_DTG>
<GFM_OBJI_OBJT_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJI_OBJT_ESTAB_S_DTG>
<GFM_OBJI_OBJT_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJI_OBJT_ESTAB_T_DTG>

</OBJ_ITEM_OBJ_TYPE_ESTAB>

<OBJ_ITEM_OBJ_TYPE_ESTAB ism:classification="U" ism:ownerProducer="USA" ...>
<OBJ_ITEM_ID>72337338142818344</OBJ_ITEM_ID>
<ESTABD_OBJ_TYPE_ID>72337338142818317</ESTABD_OBJ_TYPE_ID>
<OBJ_TYPE_ESTAB_IX>72337338142818318</OBJ_TYPE_ESTAB_IX>
<OBJ_ITEM_OBJ_TYPE_ESTAB_IX> 72337338142818345 </OBJ_ITEM_OBJ_TYPE_ESTAB_IX>
<EFFCTV_DTTM>19900101000000.000</EFFCTV_DTTM>
<GFM_ORG_ORGT_M_DTG>1990-01-01T00:00:00Z</GFM_ORG_ORGT_M_DTG>
<GFM_OBJI_OBJT_ESTAB_S_DTG>1990-01-01T00:00:00Z</GFM_OBJI_OBJT_ESTAB_S_DTG>
<GFM_OBJI_OBJT_ESTAB_T_DTG>2999-12-01T00:00:00Z</GFM_OBJI_OBJT_ESTAB_T_DTG>

</OBJ_ITEM_OBJ_TYPE_ESTAB>
</OBJ_ITEM_OBJ_TYPE_ESTAB_TBL>

Figure C-7. OBJ ITEM OBJ TYPE ESTAB elements.

59

<OBJ_ITEM_ASSOC_TBL>
<OBJ_ITEM_ASSOC ism:classification="U" ism:ownerProducer="USA" ism:disseminationControls="FOUO">

<SUBJ_OBJ_ITEM_ID>72337338142818342</SUBJ_OBJ_ITEM_ID>
<OBJ_OBJ_ITEM_ID>72337338142818344</OBJ_OBJ_ITEM_ID>
<OBJ_ITEM_ASSOC_IX> 72337338142818352 </OBJ_ITEM_ASSOC_IX>
<CAT_CODE>HSADMI</CAT_CODE>
<SUBCAT_CODE>ALTFOR</SUBCAT_CODE>
<GFM_CAT_CODE>NOS</GFM_CAT_CODE>
<GFM_SUBCAT_CODE>DEFALT</GFM_SUBCAT_CODE>
<GFM_OBJ_ITEM_ASSOC_S_DTG>1990-01-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_S_DTG>
<GFM_OBJ_ITEM_ASSOC_T_DTG>2999-12-01T00:00:00Z</GFM_OBJ_ITEM_ASSOC_T_DTG>

</OBJ_ITEM_ASSOC>
</OBJ_ITEM_ASSOC_TBL>

Figure C-8. OBJ ITEM ASSOC element.

(72337338142818314)
GFM_CREW_PLATFORM_TYPE GFM_CREW_PLATFORM

(72337338142818342)

OBJ_TYPE_ESTAB
(72057594037928968)

MAT_TYPE
(72057594037927968)

α

MIL_POST_TYPE
(72337338142818317)

OBJ_TYPE_ESTAB
(72337338142818318)

GFM_BILLET
(72337338142818344)

PERS_TYPE
(720559647032297831)

OBJ_TYPE_ESTAB
(720559647032297832)

GFM_PTSA
(72059647032297828)

OBJ_TYPE_ESTAB
(72337338142818315)

β

γ

δ

ε

ζ

Figure C-9. Sample data with relationships.

Table C-1. Link keys for figure C-9.

Category Symbol EwID

OBJ TYPE ESTAB OBJT DET α 72337338142818321
β 72337338142818376
γ 72337338142818380

OBJ ITEM OBJ TYPE ESTAB δ 72337338142818343
ε 72337338142818345

OBJ ITEM ASSOC ζ 72337338142818352

60

Figure C-9 and table C-1 graphically show the relationships between the data elements in figures
C-1–8. The objects in the center of figure C-9 comprise the Org Type tree, while the boxes
beneath them are the establishments of the object types. The first OBJ TYPE is a
GFM CREW PLAT- FORM TYPE, and its subordinate OBJ TYPE is a MIL POST TYPE. The
OBJ TYPE ESTAB - OBJT DET (OTEOD) labeled α is the link that connects the OBJ TYPEs
in the tree.

The right third of the diagram represents the Organisation tree. There are two OBJ ITEMs that
are connected by the ζ OBJ ITEM ASSOC link. Every OBJ ITEM must be an instantiation of an
OBJ TYPE. The OBJ ITEM OBJ TYPE ESTAB objects (δ and ε) associate each OBJ ITEM
with its respective OBJ TYPE.

Reference data is shown in the leftmost third of the diagram. A MAT TYPE and its establishment
are aligned with the GFM CREW PLATFORM TYPE, and a PERS TYPE and establishment are
aligned with the MIL POST TYPE object. These are examples where OTEODs do double-duty,
since the objects β and γ are both OTEOD links. In addition, the PERS TYPE refers to the
GFM PERS TYPE SKILL ATTR (GFM PTSA) to indicate what skill attribute the PERS TYPE
implements.

The sample shows a one-to-one relationship between OBJ TYPEs and OBJ TYPE ESTABs. This
is not a requirement for GFM, although the IChart application generally assumes that this is the
case. ORG TYPE to ORG TYPE links, such as link α, are used to construct the optional Org
Type tree. The GFM business rules require that an ORG to point to an ORG TYPE and its
establishment, but the ORG TYPE does not need to be a node in the Org Type tree.

61

INTENTIONALLY LEFT BLANK.

62

List of Symbols, Abbreviations, and Acronyms

CPT CREW PLATFORM TYPE

DI Data Initiative

DMWG Data Modelling Working Group

DTG date/time group

E-R Entity-Relationship

EwID Enterprise-Wide Identifier

GFM Global Force Management

HTML Hypertext Markup Language

IC-ISM Intelligence Community Information Security Marking

IEDM Information Exchange Data Model

JC3 Joint Command, Control and Consultation

JC3IEDM Joint Command, Control and Consultation Information Exchange Data Model

MIP Multilateral Interoperability Programme

ORG Organisation

OTEOD OBJ TYPE ESTAB OBJT DET

PCG Parts Catalogue

PTSA Person Type Skill Attribute

PTT PersType Tree

RDBMSs relational database management systems

XML Extensible Markup Language

XSD XML Schema Definition

XSLT XML Stylesheet Language: Transformations

63

Glossary

attribute An XML element may have attributes which are of the form name=“value”. The GFM
XSD uses attributes for classification marking of data elements.

complex type An XML element that contains attributes and/or child elements. In SQL terms, a
field is a simple type, while a record is a complex type because it contains multiple fields.

DTG A date/time group in GFM is an instant in time specified by both a date and a time. The
format used by the GFM XSD is “yyyy-mm-ddThh:mm:ssZ”. (The EFFCTV DTTM field
is a DTTM and not a DTG and uses a different format.)

declarative language A high-level programming language that describes a problem rather than
defining a solution. XSLT and SQL are declarative languages.

element The basic building block of an XML data file. Data values are contained within
matching start and end elements.

E-R Diagram An Entity-Relationship Diagram is a graphical way of showing the
interrelationships between entities in a database.

EwID An Enterprise-Wide Identifier is a surrogate key that is globally unique within the GFM
community. They are used as primary and foreign keys in the GFM XSD.

force structure tree The command and control hierarchy that contains elements of the same
type. In this tree, a child element is subordinate to its parent element.

Generalization Hierarchy GFM term used to refer to data elements that have a parent/child
relationship in the object-oriented sense.

GFM Global Force Management is a Joint Staff and Office of the Secretary of Defense initiative
designed to standardize force structure representation, making it visible, accessible, and
understandable across the Department of Defense.

JC3IEDM The Joint Command, Control and Consultation Information Exchange Data Model is
the message exchange mechanism for the Multilateral Interoperability Programme (MIP).

key An XSLT element that is assigned the value of the element specified by an XPath expression.

keyref An XSLT element that compares the value of the element specified by an XPath
expression with the value of a specified key. A key/keyref pair is used to test referential
integrity.

match template An XSLT template that is invoked when its XPath expression matches an
element (or attribute) in an XML data file. It may be controlled by assigning a numerical
priority and/or a named mode.

64

named template An XSLT template that is invoked by using its name like in a procedural
language.

namespace The context for related elements and attributes to group components of a single
XML application together. This also disambiguates multiple elements with the same name
but different meanings.

procedural language A high-level programming language that describes a series of
computational steps to be carried out. The majority of popular languages, including C and
Java, are procedural languages.

referential integrity Consistency between coupled tables which is usually enforced by the
combination of a primary key and a foreign key. The keys are EwIDs in the GFM model.

simple type An XML type that does not have child elements or attributes. Other languages call
this a scalar type. Examples are strings and numbers.

template The basic element in an XSLT script.

validation Every XML data file must reference a schema definition file (XSD). The data file is
valid if all of its elements and attributes are declared in the XSD and it conforms to the
rules defined in the XSD.

well-formedness The basic syntax which all XML documents or data files must follow. Rules
specify constraints such as “Every start element must have a matching end element.”

XHTML Extensible Hypertext Markup Language is a markup language that is a reformulation
of HTML but also conforms to XML syntax.

XML Extensible Markup Language is the syntax used when exchanging GFM data between
systems. Many of the specifications developed by the World Wide Web Consortium (W3C)
are written in XML.

XML data tree An XML data file is processed by an XML parser (reader) and stored in memory
in the form of a tree. Operations, such as template matching in XSLT, are performed on this
memory-resident tree.

XPath A language for identifying particular parts of an XML document or data file. It is tightly
coupled with XSLT but is not written in XML.

XSD An XML Schema Definition defines elements, their types, their relationships to other types,
and simple constraints. It is written in XML and is similar to a data dictionary.

XSLT XML Stylesheet Language: Transformations is an XML-based language to convert an
XML file into another form. A transformation engine reads the data file and applies the
templates defined in the XSLT file. (XSLT used to be called simply XSL until it was split
into two parts.)

65

INTENTIONALLY LEFT BLANK.

66

67

No. of
Copies Organization

 1 ADMNSTR
 ELEC DEFNS TECHL INFO CTR
 ATTN DTIC OCP
 8725 JOHN J KINGMAN RD STE 0944
 FT BELVOIR VA 22060-6218

 1 DARPA
 ATTN IXO S WELBY
 3701 N FAIRFAX DR
 ARLINGTON VA 22203-1714

 1 CD OFC OF THE SECY OF DEFNS
 ATTN ODDRE (R&AT)
 THE PENTAGON
 WASHINGTON DC 20301-3080

 1 US ARMY RSRCH DEV AND
 ENGRG CMND
 ARMAMENT RSRCH DEV AND
 ENGRG CTR
 ARMAMENT ENGRG AND
 TECHNLGY CTR
 ATTN AMSRD AAR AEF T J MATTS
 BLDG 305
 ABERDEEN PROVING GROUND MD
 21005-5001

 1 CD JOINT STAFF J-8 MASO
 ATTN G SPRUNG
 ROOM 2C646
 JOINT STAFF PENTAGON
 WASHINGTON DC 20318-8000

 1 PM TIMS, PROFILER (MMS-P)
 AN/TMQ-52
 ATTN B GRIFFIES
 BUILDING 563
 FT MONMOUTH NJ 07703

 1 US ARMY INFO SYS ENGRG CMND
 ATTN AMSEL IE TD F JENIA
 FT HUACHUCA AZ 85613-5300

 1 COMMANDER
 US ARMY RDECOM
 ATTN AMSRD AMR
 W C MCCORKLE
 5400 FOWLER RD
 REDSTONE ARSENAL AL 35898-5000

No. of
Copies Organization

 1 US GOVERNMENT PRINT OFF
 DEPOSITORY RECEIVING SECTION
 ATTN MAIL STOP IDAD J TATE
 732 NORTH CAPITOL ST NW
 WASHINGTON DC 20402

 1 CFLCC PARC
 ATTN B PARRISH
 BLDG 505
 FPO AE 09306

 1 U.S. ARMY RSRCH LAB
 ATTN AMSRD ARL CI IC
 M MITTRICK
 BLDG 321
 ABERDEEN PROVING GROUND MD
 21005

 7 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI IC
 F S BRUNDICK (6 COPIES)
 ATTN AMSRD ARL CI IC G MOSS
 BLDG 321
 ABERDEEN PROVING GROUND MD
 21005

 1 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI IC M THOMAS
 BLDG 321 RM 1B
 ABERDEEN PROVING GROUND MD
 21005

 1 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI IC
 S CHAMBERLAIN
 BLDG 321
 ABERDEEN PROVING GROUND MD
 21005

 1 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI OK TP
 TECHL LIB T LANDFRIED
 BLDG 4600
 ABERDEEN PROVING GROUND MD
 21005-5066

68

No. of
Copies Organization

 1 DIRECTOR
 US ARMY RSRCH LAB
 ATTN AMSRD ARL RO EV
 W D BACH
 PO BOX 12211
 RESEARCH TRIANGLE PARK NC
 27709

 5 US ARMY RSRCH LAB
 ATTN AMSRD ARL CI I B BROOME
 ATTN AMSRD ARL CI J GOWENS
 ATTN AMSRD ARL CI OK PE
 TECHL PUB
 ATTN AMSRD ARL CI OK TL
 TECHL LIB
 ATTN IMNE ALC HR
 MAIL & RECORDS MGMT
 ADELPHI MD 20783-1197

TOTAL: 27 (1 ELEC, 2 CDS, 24 HCS)

