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1. Objective 

The objective of this project is to perform analyses and designs of efficient fault-tolerant 
quantum circuits for incorporation in both small- and large-scale quantum computers 

2. Approach 

Although large-scale quantum computers do not yet exist, future quantum computers have great 
potential for solving problems beyond the capabilities of classical computers.  However, no 
general methods for constructing new quantum algorithms are known, and potential quantum 
computer showstoppers presently include only the capabilities of factoring huge numbers and 
finding a hidden datum in a huge database.  Much remains to be discovered concerning the 
potential power of quantum computers. 

Any quantum computation can be ideally represented by a unitary transformation acting in the 
Hilbert space of the computational degrees of freedom of the quantum computer, and any unitary 
transformation can be faithfully represented by a network of universal quantum gates, such as 
two-qubit controlled-NOT (CNOT) gates and single-qubit gates.  This is the basis of the 
quantum circuit model of quantum computation (1).  The quantum circuit model is the most 
widely used model of quantum computation.  In place of the bits of classical computers, which 
assign the values 0 or 1, the quantum circuit model is based on qubits, which are quantum 
systems that can be in a state of 0 or 1 or a quantum superposition of the two, and can be 
entangled with each other.  Qubits may be implemented in a number of possible ways: photon 
polarization states, atomic states, quantum-dot electron states, Josephson junction charge or flux 
states, etc.  In a quantum computer, the qubits are manipulated by a network of quantum gates in 
such a way that their final state corresponds to the solution to a computational problem.  The 
quantum gates act on the qubits and can be mathematically represented by tensor products of 
Pauli matrices. 

An important measure of quantum circuit complexity and the difficulty of performing a quantum 
computation is the number of quantum gates needed.  A quantum algorithm is considered 
efficient if the number of required gates scales only polynomially (not exponentially) with the 
size of the problem.  Quantum circuit networks are usually analyzed using discrete methods; 
however, potentially powerful continuous differential geometric methods are under development, 
using Riemannian geometry.  Since unitary transformations are themselves continuous, this is 
perhaps not a surprising development.  Using these differential geometric methods, optimal paths 
in Hilbert space may be found for executing a quantum computation with minimum gate 
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operations.  An appropriate metric, connection, covariant derivative, curvature, and geodesic 
equation must be formulated. 

A new innovative differential geometric approach to quantum circuit complexity was recently 
introduced by Nielsen et al. (2).  A Riemannian metric was formulated on the space of multi-
qubit unitary transformations, such that the metric distance between the identity and the desired 
unitary operator, representing the quantum computation, is equivalent to the number of quantum 
gates needed to represent that unitary operator, thereby providing a measure of the complexity 
associated with the corresponding quantum computation.  The Riemannian metric can be defined 
as a positive-definite bilinear form defined in terms of the multi-qubit Hamiltonian.  The analytic 
form of the metric can be chosen to penalize all directions on the manifold not easily simulated 
by local gates.  In this way, basic differential geometric concepts such as the Levi-Civita 
connection, geodesic path, Riemannian curvature, and geodesic equation can be associated with 
quantum computation.  In accord with the Schrodinger equation, the unitary transformation 
expressing the quantum evolution is an exponential involving the Hamiltonian.  The Hamiltonian 
can be expressed in terms of tensor products of the Pauli matrices, which act on the qubits.  The 
geodesic equation in the manifold follows from the connection and determines the local optimal 
Hamiltonian evolution corresponding to the unitary transformation representing the desired 
quantum computation and minimizing the quantum circuit complexity.   

3. Results 

A Riemannian metric is first chosen on the manifold of the Lie Group SU(2n) (special unitary 
group in 2ⁿ dimensions) of n-qubit unitary operators with unit determinant (3–5).  A traceless 
Hamiltonian serves as a tangent vector to a point on the group manifold of the n-qubit unitary 
transformation U.  The Hamiltonian H is an element of the Lie algebra su(2n) of traceless 2n2n 
Hermitian matrices (3), and is taken to be tangent to the quantum evolutionary curve e–iHtU at  
t = 0.  (Here and throughout, I chose units such that Planck’s constant divided by 2π is 1 .) 

Independent of U, the Riemannian metric (inner product), ..,.. , is taken to be a positive definite 

bilinear form JH ,  defined on tangent vectors (Hamiltonians) H and J.  Following (2), the n-

qubit Hamiltonian H can be divided into two parts P(H) and Q(H), where P(H) contains only one 
and two-body terms, and Q(H) contains more than two-body terms.  Thus 

 ),()( HQHPH   (1) 

in which P and Q are superoperators (matrices) acting on H, and obey the following relations: 

 ,IQP     0 QPPQ ,   PP 2 ,   QQ 2 . (2) 

For example, in the case of a three-qubit Hamiltonian, for Pauli matrices ,, 21   and 3 , one has 
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 1)( xHP  II 1 +  IIx 22 IIx 33 4x II  1  

                  5x II  2 6x II  3 7x 1 II 8x 2 II  

                          9x 3 II 10x I 21  11x 21   I 12x 21  I  

                                  13x I 12   14x 12   I 15x 12  I 16x I 31   

                                  17x 31   I 18x 31  I 19x I 13  20x 13   I  

                                  21x 13  I 22x I 32  23x 32   I 24x 32  I  

                                  25x I 23  26x 23   I 27x 23  I 28x I 11   

                                  29x I 22  30x I 33  31x 11   I 32x 22   I  

                                  33x 33   I 34x 11  I 35x 22  I 36x 33  I , (3) 

in which ⊗ denotes the tensor product,  and 

 37)( xHQ  321   + 23138  x 39x 312   + 40x 132    

              41x 213   42x 123   43x 211   44x 121    

                      45x 112   46x 311   47x 131   48x 113    

                      49x 122   50x 212   51x 221   52x 322    

                      53x 232   54x 223   55x 133   56x 313    

                      57x 331   58x 233   59x 323   60x 332    

                      61x 111   62x 222   63x 333    . (4) 

Here, all possible tensor products of one and two-qubit Pauli matrix operators on three qubits 
appear in P(H), and analogously, all possible tensor products of three-qubit operators appear in 
Q(H).  I exclude the tensor products including only the identity because the Hamiltonian is taken 
to be traceless.  Each of the terms in equations 3 and 4 is an 8×8 matrix.  The various tensor 
products of Pauli matrices, such as those appearing in equations 3 and 4, are referred to as 
generalized Pauli matrices.  In the case of an n-qubit Hamiltonian, there are 4ⁿ – 1 possible tensor 
products and each term is a 2ⁿ2ⁿ matrix. 

The right-invariant Riemannian metric for tangent vectors H and J is given by (2) 

 )],([
2

1
, JHGTrJH

n
    qQPG  . (5) 
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Here the superoperator G is defined in terms of superoperators P and Q, and q is a large penalty 
parameter which taxes more than two-body terms.  The length l of an evolutionary path on the 
SU(2n) manifold is given by the integral over time t from an initial time ti to a final time tf, 
namely, 

 ,)(),(
2/1


f

i

t

t

tHtHdtl  (6) 

and is a measure of the cost of applying a control Hamiltonian H(t) along the path.   

Using the metric, equation 5, I derived from first principles and in complete detail (6, 7) the 
reduced Riemannian metric, inverse metric, the Levi-Civita connection, 

 )])}(,[)](,)([({
2

1
1


 GGGTr

i
n

 
 , (7) 

and the following expression for the covariant derivative of a vector zZ  along a vector 
yY  : 

 )])}(,[)](,([],{[
2

/ 1 YGZZGYGZY
i

xZyZY   , (8) 

in which the Einstein sum convention is understood.  In equation 7, Greek letters  ,  , and   

denote generalized Pauli matrices appearing in the n-qubit Hamiltonian, and the notation is such 
that a Greek index (for example,   in 

 ) refers to a particular one of the 14 n  possible 

generalized Pauli matrices.  An important step in my derivation was to obtain the following 
identity:  

   )])(,([2)](,)[( 11 


GGGGTr n   . (9) 

Next considering a curve passing through the origin with tangent vector Y, such that 
dt

dx
y


  , 

it follows from equation 8 that the covariant derivative along the curve in the Hamiltonian 
representation is given by 

 )]}.(,[)](,([],{[
2

1 YGZZGYGZY
i

dt

dZ
ZZD Yt    (10) 

Because of the right-invariance of the metric, equation 10 is true on the entire manifold.  One can 
next proceed to obtain the geodesic equation.  A geodesic in )2( nSU is a curve )(tU with tangent 
vector )(tH  parallel transported along the curve, namely, 

 .0HDt  (11) 
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However, according to equation 10, one has 

 )])}(,[)](,([],{[
2

1 HGHHGHGHH
i

dt

dH
HDt   , (12) 

which, when substituting equation 11, becomes  

 )]).(,([1 HGHiG
dt

dH   (13) 

Next defining 

 )()( 1 HFHGL  , (14) 

one has 

 .)( 







dt

dH
GHG

dt

d

dt

dL
 (15) 

Thus substituting equations 13 and 14 in equation 15, one obtains 

 )](,[ LFLi
dt

dL
 . (16) 

Equation 14 implies 

 )(1 LGH  , (17) 

and therefore solving equation 16 for L  yields the Hamiltonian H  producing the geodesic path.  
Equation 16 is the geodesic equation for the locally optimal quantum computational paths in the 

)2( nSU manifold.  It is a nonlinear first-order differential matrix equation of the same form as 

the Lax equation for Lax pairs L and ).(LiF   Here H and L are nn 22   matrices, and the 

superoperator QqPF 1 . 

For the three-qubit case with TsSP  , in which S  and T  are superoperators projecting out 
one- and two-body interactions, respectively, and s  is a parameter, the solution to the locally 
optimal Hamiltonian corresponding to the solution of the geodesic equation, equations 16 and 
17, is given by 

0
11

0
11

0
11

00
1

00
1

0
11 )(

0
)(1)())(1(

0
))(1()(

0
1)( SsqitSsqitSsqitQSqitQSqitSsqit eQeqeeTeeSstH

   (18) 

where 0S , 0T , and 0Q  are the one-, two-, and three-body parts of the initial Hamiltonian. 

Also, beginning with equation 7, I derived in complete detail (7, 8) the Riemannian curvature 
and the sectional curvature of the SU(2n) group manifold.  These quantities are essential for 
developing increased understanding of the globally optimum quantum computational paths in the 
SU(2n) group manifold. 



 

6 

Other work performed, but currently of secondary interest and which because of page limitations 
is not included in this report, includes the following:   

1. A brief survey of the current progress in developing physical implementations of quantum 
computers and identifying the issues peculiar to each;  

2. Mathematical analyses of quantum circuits for implementing the quantum Fourier 
transform, expressed in terms of matrix algebra associated with successive stages of the 
algorithm;  

3. Addressing issues of fault tolerance and the associated requirements for supplementary 
quantum error correction circuits; and  

4. Determination and analysis of possible quantum circuits for producing generic states of 
quantum entanglement. 

4. Conclusions 

In this effort, I have derived the necessary differential geometric structure of the SU(2n) group 
manifold, including the connection, curvatures, and geodesic equation in complete detail from 
first principles.  This fundamental understanding is essential for the proposed practical 
applications.  It is a necessary step in the design of optimal quantum circuits for implementing 
small- and large-scale quantum computation.  Solutions to the geodesic equation need extensive 
investigation, keeping in mind that one must incorporate piecewise-smooth joining of local 
geodesics in order to produce possible global geodesics in the group manifold.  Possible 
conjugate points must be incorporated in the analysis, and possible classical computational 
obstructions may need to be circumvented in order to facilitate the construction of globally 
optimum geodesics and associated minimum-complexity circuits for large-scale quantum 
computation.   

 



 

7 

5. References 

1. Nielsen, M. A.; Chuang, I. L.  Quantum Information and Computation; Cambridge 
University Press, 2000. 

2. Dowling, M. R.; Nielsen, M. A.  The Geometry of Quantum Computation.  Quantum 
Information and Computation 2008, 8, 0861–0899. 

3. Pfeifer, Walter  The Lie Algebras su(N); Birkhäuser, Basel, 2003. 

4. Cornwell, J. F.  Group Theory in Physics, Vols. 1 & 2; Academic Press, London, 1984. 

5. Petersen, P.  Riemannian Geometry; 2nd Edition, Springer, New York, 2006. 

6. Brandt, H. E.  Riemannian Geometry of Quantum Computation.To be published in Nonlinear 
Analysis 2008, 16 pages. 

7. Brandt, H. E.  Riemannian Geometry of Quantum Computation.  AMS Short Course Lecture, 
Proceedings of Symposia in Applied Mathematics, submitted for publication,, American 
Mathematical Society, Providence, RI, 2009, 35 pages. 

8. Brandt, H. E.  Riemannian Curvature in the Differential Geometry of Quantum Computation.  
Physica E, submitted for publication, 2009, 8 pages. 

9. Brandt, H. E.  Differential Geometry of Quantum Computation J. Modern Optics 2008, 55, 
3403–3412. 

10. Brandt, H. E.  Differential Geometry of Quantum Computation. In Quantum Information and 
Computation, SPIE Volume 67976, 69760X-1-10, Bellingham, WA, 2008.   

 



 

8 

6. Transitions 

1. This work will supplement the small U.S. Army Research Laboratory (ARL)-Sensors and 
Electron Devices Directorate (SEDD) Mission Program on Quantum Computing. 

2. I have initiated collaborative research with Dr. John Myers and Prof. Tai Tsun Wu of 
Harvard University. 

3. Five papers have been accepted for publication (four of which are refereed). 

4. I presented an American Mathematical Society (AMS) Short Course lecture on this work at 
AMS Meeting in Washington, DC. 

5. I presented work at the Gordon Research Conference on quantum computation. 

6. I gave four invited talks at international meetings. 

7. I periodically informed a classified Government group of my progress on this research. 
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