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UPDATED RESUME AND RESEARCH PROGRESS ON A GRANT TO "DETERMINE
PRECIPITATION RATES FROM VISIBLE AND INFRA-RED SATELLITS IMAGES"

ACCOMPLISHED RESULTS:

OQur previous work on rainfall retrieval from satellite imagery sought to
'=crieve rainfall rates in three categories from GOES visible and infra-red
mages of convective precipitation cells. This work was described in the paper
Lv Wu et al. (1985) (Enclosure 1). That work used statistical texture and
radlance features of the imagery to classify the rain in the categories of no,
lizht and medium intensity rain.

A more advanced cloud pattern analysis algorithm was subsequently developed
©> take the shape and brightness of the various clouds into account in a manner
tiat is more consistent with the human analyst's perception of GOES cloud
imanery. The results of that classification scheme were compared with
crecizitation probabilities observed from ships of opportunity off the U.S.
21g2- coast to derive empirical regressions between cloud types and precipitation
crobabllity. The cloud morphology was then quantitatively and objectively used
> map precipitation probabilities during two winter months during which severe
cold air outbreaks were observed over the northwest Atlantic. This work was
part of the Ph.D. research of Louis Garand. Table 1 summarizes precipitation
probabilities associated with various cloud types. Fig. 1 compares maps of
precipitation probability derived from the cloud morphology analysis program for
two months and the precipitation probabilty derived from thirty years of ship
observation.

Table 1: Frequency of occurrence of precipitation for various cloud classes

Class Number of Cases Prob. (%)
Clear 37 0.0
Stratus 29 6.9
Scattered cumulus 101 7.9
Scatt. stratocumalus 49 8.2
Broken cumulus 15 20.0
Cloud streets 37 13.5
Rolls 43 41.9
Polygonal open cells 24 29.2
Convective open cells 18 55.6
Bright closed cells 62 17.7
Nimbostratus 84 52.4
Altocunulus 40 20.0
Altocunulus & other 29 24,1
Thin ecirrus 52 0.0
Multilayer cirrus 106 14.2
Cumulonimbus & cirrus 163 58.3
-Dense cirrostratus 33 27.3

Overcast cumulonimbus 113 72.6
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Tig. 1. Mean probability of precipitation retrieved from 11761 cloud
images 128 x 128 Km for January and February 1984 and the
thirty year climatology of January from Isemer and Hasse's
(1985) climatological atlas.

A somewhat unexpected result that emerged from Dr. Garand's analysis of the
GOES imagery was the development of a technique to derive surface air and dew
poiat temperatures in cloud capped marine boundary layers. As a consequence it
appears that surface air temperatures over the ocean can be derived within an
r.m.s. 2 K at a spatial resolution of 128 Km. Fig. 2 shows a time series that
compares air temperatures measured by a buoy for two months with those derived
from this technique. The cold air outbreaks that correspond to temperature
changes of ~ 20 K are clearly determined by this technique. Fig. 3 compares air
temperature maps obtained by this technique with those obtained from thirty
years of ship data. The influence of the Gulf Stream boundary is evident in the
satellite derived data.
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Fig. 2. Time series of observed and retrieved surface air temperatures
from Julian days 1 - 60, 1984 at buoy 41001 (34.9 N., 72.9 W.).
Numbers on plot indicate Julian day.
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The cloud classification scheme is described in Garand's thesis, and a
manuscript that describes the technique in a somewhat abridged form has been
snkmitted for publication {n J.C.A.M. (Enclosure 2). Tapes containing the
asrogram have been provided to Dr. Man Li Wu at the Goddard Space Flight Center.
Ms. Cindy Dixon, one of our graduate students is planning to join Dr. Wu this
su~mer to work on applications of computer pattern analysis to satellite
imagery. : '
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Fig. 3. Surfaccair temperature distributions retrieved from 11761
sample areas in GOES images during January and February 1984
and the thirty year climatology from Isemer and Hasse (1985).

A pattern analysis algorithm has also been developed to identify features
of images of extra-tropical cyclones. This work comprised the M.Sc. thesis of
Mr. Craig Burfeind. Burfeind was able to locate the fronts on images of
cvclones in various stages of development. The results of that work are
presented in Enclosure 3.

PROPOSED RESEARCH:

Ye will conduct a more detailed analysis of the data that yielded the
results shown in the enclosed figures. Data from the CASP/GALE experiment will
also be analyzed to provide additional validation of the image analysis
algorithms. The results of those additional studies will be included in a
description of our work that will be submitted to J.C.A.M.

The mechanisms that produce precipitation differ in cumulonimbus and in
nimbostratus clouds. We therefore propose to utilize information on the
location of precipitating regions, such as cold or warm frontal zomes in
extra-tropical cyclones, to adjust the rainfall retrievals. This aspect of our
proposed effort will be based on Burfeind's research.




The availability of ground truth with which the algorithm can be adjusted
has heen a limitation to our past efforts. We used ship records of the existence
»f rain and NOAA operational radars in our previous studies. We are in the
process of acquiring data from radars that have Computer Analyzed Plan Position
Iadicator, CAPPI, output. These radars are also regularly calibrated with
dedicated rain gauges. Data from the FACE tropical rainfall experiment is also
in hand. We propose to use that data to develop improved retrievals of rainfall
from images obtained from the AVHRR and possibly from the Operational Line
Scanner on the military DMSP. The latter imaging system measures reflected
moonlizht as well as sunlight so that the observation period is extended. It is
my understanding that members of the Goddard staff are looking into the
feasibility of operating sensors on TRMM and GOES-Next that measure nocturnal
reflected visible light.
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ABSTRACT

Radiances from clouds observed in visible and infrared images obtained from the SMS-2. GOES-2. and
GOES-4 satellites have been used to estimate rainfall by means of a patiern recognition algorithm that was
applied 1o single images. The algorithm classified rain into three classes: 0—nerain (0 S R < 0.5 mmh™') 1 —
light rain (0.5 = R < 5.0 mm h™'). and 2—heavy rain (5.0 mm h™'S R). The rainfall rates used in the training
set and those used 10 test the algorithm were derived from a set of twenty-nine Plan Position Indicator (PPI)
displays obtained from NOAA operational radars. Data were derived from summer storms. tropical storms and
cyclones.

Rainfall from precipitating clouds was classified by a patiern recognition technique that used textural and

- radiance features in a hierarchic decision tree. The analysis was applied 1o regions 20 ¥ 20 km in area that were

measured in the visible spectral region with 1 X 1 km and 2 x 2 km resolution and in the infrared with 4 x §
km resolution. The radiance features used in this analysis were the radiance maxima. minima. and the means.
The textural features that were used included the edge strengths per unit area and the maxima and means of
the mean. contrast. angular second moment. and entropy in four directions.

Of the areas sampled in this study, approximately one-third were in class 0. one-half were in class | and one-
sixth were in class 2. Case studies that emploved data from both the visibie and infrared sensors correctly
identified rainfall classes G and (1 + 2} in about 30% of the cases and identification into classes | and 2 was
correct in about 70% of the cases studied. The comesponding skill scores were ~ 80 and 60% respectively. Data
derived only from infrared images vielded correct identification of 0 and (1 + 2) classes in 85% of the cases and
identification of classes 0. 1 and 2 was correct in 65% of the cases. The corresponding skill scores were ~65%

VOLUME 2

and 40% respectively.

1. Introduction

The latent heat released by precipitation affects the
heat budget of the aimosphere. Rainfall measurements
are thus useful input 10 models of the earth’s climate.
Latent heat is also the main source of energy of hur-
ricanes (see Anthes. 1982). Adler and Rodgers (1977)
used satellite-borne microwave radiometry to measure
the latent heat released in hurricanes at large distances
from shore based radars. That energy was directly re-
lated 10 the wind speed measurement in the hurricanes.
Such considerations have motivated studies on the
measurement of precipitation from space. A recent
NASA workshop addressed itself to various methods
that employed microwave. infrared and visible satellite
imagery (see Atlas and Thiele. 1981).

Microwave radiances respond directly to hydro-
meteors: however., microwave data are available at
twelve-hour intervals at best. While rainfall distribu-
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tions are not uniquely related to the appearance of
clouds seen in visible and infrared imagery, rainfall
estimates can be derived more frequently from oper-
ational geostationary and sun synchronously orbiting
meteorological satellites. Combining space borne mea-
surements of precipitation that employ both methods
could thus improve the temporal resolution of rainfall
rate distributions as well as the accuracy of such de-
terminations,

Cloud observations in visible and infrared images
obtained from satellites have been used to estimate
rainfall rates over remote areas. The most widely em-
ploved techniques descnmbed by Barrett and Marntin
(1981) and by Atlas and Thiele (1981) obtain rainfall
rates from regresstons against area or rates of areal
growth of cold clouds. Techniques such as the ones
developed by Grifhth er al. (1978) require the analysis
of sequential images which can be obtained from geo-
stationary satellites. A somewhat different approach
was developed by Follansbee and Oliver (1975): that
technique relied upon subjective cloud tvpe identifi-
cation in sample areas. i.e.. the recognition of various
cloud patterns by an experienced meteorologist. All of
these rainfall estimation procedures are time consum-



SEPTEMBER 1985

ing and labor intensive because the meteorologist is
obliged to exercise careful judgement.

Lovejoy and Austin (1979) developed a pattern rec-
ognition technique that estimated rainfall from visible
and infrared GOES satellite images. Their technique
analyzed the statistics of radiances in both images.
More recently, Negri er al. (1984) developed a simpli-
fied and objective adaptation of the Gnffith-Woodley
technique. which avoids the need to trace the temporal
development of precipitating clouds.

The present study developed a pattern recognition
algorithm to derive rainfall rates from single visible
and infrared images or infrared images only. The tech-
nique that we used was an outgrowth of the preliminary
study of Lee and Chin (1983). This technique deter-
mines rainfall in 20 X 20 km grid elements on the basis
of radiance and texture features. Radiance features are
globai measurements of the 20 X 20 km gnd elements
containing information about the overall characteristic
of the radiances within the gnd element. Texture fea-
tures are measurements that concern the spatial dis-
tribution of the radiances. When the grid contains ra-
diances that vary little. the dominant properties of that
grid are the radiance feature. When the grid has a wide
variety of radiances. the dominant property of that area
1s texture. The algorithm classifies rainfall into three
classes that correspond to operational radar precipi-
tation levels: 0—no rain (0 £ R < 0.5 mm h™'): 1—
light rain (0.5 £ R < 5.0 mm h™'); and 2—heavy
rain (5.0 mm h™' £ R). The rainfall rates used in the
training sets for the development of the algorithm and
those used to test the algorithm were derived from a
set of twenty nine plan position indicator (PP} displays
obtained from NOAA operational radars. A training
set contains two subsets: 1) the set of images that char-
acterizes typical cloud/rain patterns and 2) a corre-
sponding se1 of ground truth to identifs patterns ob-
served 1n the first subset. The training set is used to
estimate the conditional probability distributions of
the features extracted from 1). from which the decision
rule (the rule for the identification of the various classes)
is constructed. Data were obtained from summer
storms. tropical storms and cvclones in the Gulf of
Mexico coastal region and near south Flonda.

2. Data sets
a. Satellite dara

Data were obtained from the geostaticnary satellites
GOES-2 during the summer of 1978 SMS-2 during
the summer of 1979 and GOES-4 during the summer
of 1983. The sensors on these satellites produced images
in the visible spectrum. 0.55 < A < 0.70 um. and in
the thermal infrared. 10.5 < A < 12.6 um. The spatal
resolution of the visible sensors was either 1 X 1 km
or 2 x 2 km while that of the infrared sensors was 4
> & km. The satellite data sources are summarized in
Table 1. The infrared pirels were quantized into 236
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grey levels that were calibrated in terms of brightness
temperature. The images in the visible spectrum were
quantized into 64 grey levels: these levels were multi-
plied by four to produce images that have a dvnamic
range that matches that in the infrared.

Before commencing the pattern recognition analysis,
the visible and infrared images were navigated with
respect 1o terrestrial landmarks so that the radar images
could be collocated. Navigation problems were espe-
cially troublesome when correlations were sought be-
tween satellite and radar imagery of rapidiy developing
cells that were either at the edges of larger svstems or
were completely 1solated. The existence of rain was
indicated but no attempt was made to categorize the
intensity of the rainfall in such cases.

Visible radiance levels were corrected to account for
the effect of solar zenith angle on the illumination of
the clouds by means of the empirical relationship de-
veloped by Raschke and Bandeen (1968). The satellite
data cited in Table | were acquired from different sat-
ellites over several vears. The calibration of the visible
sensors was known 10 have drified (see Muench. 1981):
accordingly, images of White Sands. New Mexico and
bright clouds were used to calibrate the relative re-
sponse of the visible channel. Conversion from digital
counts to directional reflectivity was achieved by the
calibration method described by Smith er al. (1981).
The intrinsic reflectivities of White Sands and bnght
clouds are independent of time so that the vanation
in the apparent reflectivities could be determined. The
relative radiance values in all of the images obtained
from a given satellite were thus restored to an approx-
imately consistent set of values.

Another source of errors was the lack of uniform
response of all of the sensors that comprised the visible
imaging system. This effect could introduce sireakiness
in the image that could produce errors in the texture
features. This effect will be described in the next section.
Most of the data in Table I were screened to minimize
this effect over scenes of surfaces that were known to
be uniform.

Detailed analvses of satellite imagery revealed that
the best results were obtained if the training and test
data sets were obtained from the same satellite svstem.
The reason for the incompatibilitv of data acquired
from different satellites was not readily apparent: how-
ever. there are ample archives of data from any given
geostationary satellite so that we do not regard this as
a significant problem.

The 20 x 20 km gnd elements that were used in this
analysis were seiected 10 match the resolution of the
37 GHz channel of the Scanning Multifrequency Mi-
crowave Radiometer of Nimbus 7. The grid elements
contained a sufficient number of independent mea-
surements in the infrared images 10 be statistically use-
ful (~ 13): the situation was better in the vistble images
where each grid element contained at least one hundred
pixels.
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TABLE |. Summan of data sources.
Resolution Contrast
Juhan Time Weather Radar .
Date dayv (GMT) Satellite VIS IR VIS IR system station
2% Aupust 1978 240 1500 GOES-2 22 4 xR High High Tropical storm GLS
1930 GOES-2 2x2 4 x 8 High High Tropical storm GLS
25 Juby 1979 206 1730* SMS-2 2x2 4> 8 Low Med/low Tropical storm GLS
1930 SMS.2 2x2 4 x8 Low Med/low Tropical storm GLS
2100 SMS-2 2x2 4x8 Low Med/lown Tropica! storm GLS
26 July 1979 207 1500 SMS-2 2x%x2 4> 8 Low Med/low Tropical storm GLS
1700*: SMS.2 22 48 Low Med/low Tropical storm GLS
1830 SMS-2 2x2 4 X8 Low Med/low Tropical storm GLS
3 Seprember 1979 246 1500 SMS-2 2x2 478 Low Low Hurmicane DAB
1645 SMS.2 2x2 4508 Low Low Hurmcane DAB
1800 SMS-2 2x2 4> 8 Low Low Hurricane DAB
2030 SMS-2 2x2 4> 8 Low Low Hummcane DAB
1930 SMS.2 1> 4 8 Low Low Hurricane DAB
16 July 1979 191 1800 SMS-2 1>l 4> 8 Low Low Tropical storm SIL
203 SMS-2 1> 4~ 8 Low Low Tropical storm SIL
11 Julh 1979 192 1900 SMS-2 IR 4> 8 High High Tropical storm SIL
S Juby 1979 186 1600* SMS-2 1> ] 4 xR High High Thunderstorms GLS
1700%: SMS.2 1> 1 4 x & High High Thunderstorms GLS
1800** SMS.2 1> 1 4x8 High High‘med Thunderstorm GLS
1900° SMS.2 (I 48 Low Low Thundersiorm GLS
1930 SMS-2 1> 4 %8 Low Low Thunderstorm GLS
13 July 1479 194 1530 SMS.2 b x 1 48 High High Thunderstorm GLS
1800 SMS-2 1>} 4 %8 High High Thunderstorm GLS
6 July 1979 187 1830 SMS-2 1 x1 4x8 High High Thunderstorm GLS
1900 SMS-2 x 1 4 x8 High High Thunderstorm GLS
17 August 1983 229 1800 GOES-4 2x2 4> 8 High High Hurricane GLS
1900 GOES-4 2x2 4x8 High High Hurricane GLS
2000 GOES4 2x 2 4> 8 High High Hurnicane GLS
2130 GOES4 22 4> & High High Hurncane GLS

* Denotes tratning sets used to represent categories charactenized by spatial resolution and visible textural contrast 4 = [22]. More than

one¢ training set was used where *7 or ** are designated.

+ Denctes where the infrared mean textural feature. & = [§]. restncts the numbers of infrared features.

b Radar data

Rainfall rates were inferred from radar data that were
obuained simulianeousiy with the satellite imagery (see
Table 1). The radar data were obtained from National
Weather Service WSR-57 units which have 10 cm
wavelengths and a 230 km scan radius. Rainfall rates.
R ¢mm h™'). were computed from the measured radar
reflectivities. Z (mm® m™%). by the relationship Z
= 33R'* this relationship is in operational use for con-
vecuve precipitation. Complete PPl scans were ob-
tained in seven minutes. and these scans were obtained
within fisve minutes of the corresponding satellite im-
ages. Microfilm images of PPI displays were projected
on & transparent grid array with 20 x 20 km spacing.
Outlines of rainfall rate contours were manually traced
on the gnd and the effects of ground clutter were also
removed. The rainfall rate classes and coordinates of
the grid were then digitized. If a grid element was par-
tially filled by two rain classes. the grid element was

assigned the value that occupied the greatest fractiona!
area. Ambiguities could anse around the edges of larger
storm systems where small precipitation cells were lo-
calized and evolving rapidhy . Isolated cells also had to
be carefully navigated so that their location was prop-
erly weighted among neighbonng gnd elements The
radar data could be displaved once 1t was digitized.
The analyvsis of twents nine PPl and corresponding
satellite images was performed on the University of
Wisconsin Man-computer Interactive Data Acquisition
System (McIDASY. (see Suomi er al.. 1983).

3. Analysis
a The decision rule

The maximum likelihood decision rule was used in
this study to classify the three rain classes denoted as
wo. «y. and w,. A feature vector X = (X, Xa.* * *Xg).

charactenzing the rainfall information in a gnd ele-
ment. was classtfied as class «, iIf:
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P(Nw)P(w,) > p(Xiw)Plw)). forall j#i (1)
where p(Xie,) ts the conditional density function of x.
and P(w,) ts the a priori probability of occurrence of
rainfall class «,. In this study the probability of occur-
rence of all three rain classes were assumed to be the
same. The conditional density functions p(X|w,) i = 0.
1. and 2 were assumed 10 be normally distributed and
their means and covariances are estimated from a set
of training samples. The components of the pattern
recognition process. as depicted in Fig. 1. are training
and classification. The following problems were then
addressed: 1) what features should be extracted from
each gnd element to give a good representation of the
rainfall rates: and 2) how does one choose the proper
training sets?

b. Feature extraction

We emploved 24 features from each of the visible
and the infrared images to determine the vanous rain-
fall classes. these radiance and textural features are
summarized in Table 2. These features have been more
comprehensivelh described by Weszka eral (1976) and
Parikh (1977).

The radiance features are statistical parameters de-
rnived from all of the pixels in each 20 x 20 km gnd
element. They include the maximum. minimum. and
mean of the radiance grey levels.

One of the texture features that are used 10 determine
radiance vanations is the edge strength per unit area
defined by the area averaged Robers gradient

RONGZHANG WU. JAMES A, WEINMAN AND ROLAND T. CHIN
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{m. ny = Im + d. n + d),

+ i{m +d, n)— I(m, n + d)i} (2)
where J(m. n) are the radiances at specified Cartesian
coordinates m and 7. and d is the number of pixels
separating the M X N points. The Roberts gradients.
RG are designated as k = [7] and [16] in Table 2.

Grey level difference statistics were additional texture
features that were emploved in this study. These quan-
tities depend on the histograms of the distributions of
radiance difference. h, 4(g). If pairs of pixels are con-
sidered within a 20 X 20 km grid element the grey level
radiance difference is:

g=tm.n=Im+dn+d. (3)
where both d and d can assume values of either 0 or
=d. d is the distance separating the pixel pairs and #
= arc tan{d/d) = 0°.45°.90°. 135° is the direction in
which the pixel pairs are measured. The grey difference
£ may assume values in the range 0. 1.- - + 255,

The histograms /i, 4(g) of grev level radiance differ-
ences in a gnd element provide a measure of the scale
size of the cloud features. For example. if a grid element
contains clouds whose horizontal dimensions are large
and whose texture is smooth compared to the selected
pixel separation d. then grev level differences g = 0
will be highly probable. On the other hand. if clouds

GROUND TRUTH:
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Wy, Gy, &(4)2

!
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FiG. 1. Schematic diagram of the pattern recognition algorithm.
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TaBLE 2. Features® used to characterize satellite images of clouds.

Feature
number
k Features
Radiance
1] Mean grey level
2 Standard deviation of grey level
{31 Maximum grey level
[4] Minimum grey level
{1 Maximum/minimum grey level ratio
[6] Grey level range
Pixel separation d
Texture VIS IR
] Edge strength per unit area RGI7} 2 4
[&}-[11) Maximum within 4 directions MEANIE]. CON{9]. ASM[10}. ENT[11)] 2 4
112]1-115] Mean of 4 directions MEAN[12]. CON[13]. ASM[14]. ENT[15} 2 4
[16) Edge strength per unit area RG{16] 4 8
{171-{20] Maximum within 4 directions MEAN[17]. CON[18]. ASM[19]. ENT{20) 4 &
[21]-[24] Mean of 4 directions MEAN[21]. CON[22). ASM[23]. ENT{24) 4 &

* A total of 24 features were considered for infrared images only and 48 features were considered for infrared and visible images.

are small or if thev are inhomogeneous in appearance
compared to the pixel separation. then a larger range
of g is more probable in a given grid element. The
histograms A, 4(g) will thus be spread over a larger range
of g as graininess or streakiness increase. Note that the
texture may be streaky in a particular direction so that
the histogram must be specified as a function of angle
6 as well as d.

Four features that characterize the shape of A, (g)
are calculated:

Mean:
T Theale)
= 4
MEAN(8. d) = soo g_OJ < :i (4)
Contrast:

CON(b.d)= S ["‘j\‘"':l.

£=0

Angular second moment:

ASM(6. d) = S | Pt (6)
ﬁ:ﬁ I- N
Entropy:
22 e [hedte)
ENT(. ) = - 3 48 m[—“{\—*} M

£=0

where N is the total number of pixel pairs in the gnd
element separated by distance 4 and direction 6.

The MEAN is the average of the grey level radiance
difierences. Contrast, CON, is a measure of the local
variation of radiances in a grid element. Large values
of MEAN and CON in a given direction correspond
to markedly structured clouds such as cumulus with

shadows. The maximum directional MEAN and CON
are designated as A = [8)], [17) and &k = [9]. [1§]. re-
spectively. in Table 2. The mean of these quantities
averaged over four directions are designated as A
= [12).[21]and k = [13]. [22] in Table 2.

The angular second moment. ASM. is a measure of
the homogeneity of grey level differences over distances.
d. and angles 8. A large ASM implies that although
neighboring pixels may have different grev levels. the
differences in these levels at neighboring pixels are
similar over many pairs of pixels in the grid element.
It 1s high for cirrus or cumulonimbus anvils. for decks
of stratus. and for bands of clouds oriented in the di-
rection of 6. The ASM can depend on angle if the clouds
are banded in a dominant direction. The maximum
ASM in a given direction are designated as features A
= [10] and [19] and the mean ASM over all directions
are designated as A = [14] and {23] in Table 2.

Entrops. ENT. is a measure ofthe absence of a dis-
tinct scale of organization. I is a feature that is a max-
imum when all radiance differences ¢ have an equal
probability of occurring. The ENT is low when the
texture is smooth and when it is highhy structured. This
dual valued dependence on /1, #(g) arises because ENT
1s small when /A, 4(¢) = 0 and <. The latter effect is
contnibuted by the loganthmic contribution 10 ENT.
Again ENT depends on direction for features A = [11]
and [20] and it can be averaged over all directions in
features A = [15] and [24].

The corrected visible and infrared images or the in-
frared images alone were processed on McIDAS. A
pre-processing step rejected clear gnd elements in the
visible images that had maximum grey level intensities
< 80. The 20 x 20 km gnd elements containing clouds
roughly in the same stage were identified on the basis
of values of the textural contrast feature A = [22].
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Foature sclection criteria

The radiance and texture features can be regarded
ac u.mponems of avector X = (. X2, x3.- » +x;) that
~eorines cach 200X 20 km grid element. The feature
ore of the grid elements that comprise a given rain-
class in each scene can be described by a mean

;;l

tali ¢i
VeolOT | = (pi. B2 B u.) and a variance vector
= (.. 0. 03 s, -+ - ¢g;"). assuming that X is normally

'vg'nHU(t‘d and that all features are independent of each
other. ..

Because these vectors can in principle have as many
« 4% components. not all of which contribute to the
ration of rainfall classes. the number of features
to be reduced. This was achieved by a feature se-
Muon procedure which ranked the features in the or-

- o7 their ability 10 separate the rainfall rate classes.
7 r“c was implemented by a divergence that normalized

Sh
(S

of the variances. The divergence. for the feature x, be-
moen rainfall rate categones i and i’ 1s:

i (1) = (1)

- — . =0.1. and 2:
o) + o {i)

Dii iy =

T#17. (8)

Dnergences were computed durning the training
phase for all pairs of rainfall rate classes. Those features
for which the divergences ranked highest were chosen
to discriminate between the vanous rainfall rate classes
i the classification phase (see Swain and Davis. 19582}

Table 2 presents a summan of the number of scenes
» which varous features were ranked in the order of
coreasing divergence for separating classes (0 and (!
- 2 ie.rank | was the most effective disciminating
fcature while rank 9 was the least. Thus we find that
for the separation of rain and no rain. visibie feaiure
i1] ranked foremost 1n eight scenes. visible feature 3]
ranked foremost in nine scenes. visible feature [14]
ranked foremost in eight scenes. etc. Similarly. infrared
feature 3] ranked first in 11 scenes. etc.

The visible radiance features & = {1]. [3] and [4]
were frequently significant discriminating features:
however. texture features A = [11]. {14] and [13] were
also frequenty  significant discmminating  features
While these texture features affecied the appearance of
precipitating clouds. thev have onh been recognizeu
subiectvely in previous studies as mentioned in the
introduction. Texture features defined over large pixel
separations. d = 4. appeared 10 be weakly related to
rainfall. This is consistent with the findings of Yau and
Rogers ¢19&4). which suggest that most precipitating
cells are smaller than ~ 10 km

The infrared radiance features & = [1]. {3} and {4]
were frequenthy significant in identifying precipitating
regions. [i.e.. those designated (1 + 2)]. However. tea-
ture features k = [10]. [12] and [}3] were also signifi-

e
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cant. Here 100. the texture features that were defined
in terms of the smallest pixel separation were the most
important.

Scparating rainfall classes 1 and 2 was most fre-
quently achieved with features [1]. [3] and [4] in the
visible and in the infrared images. No texture features
were consistently able 1o contribute 1o this preliminary
separation. Accordingly. the classification was con-
ducted in two steps: the no-rain and rain separation 0.
and (! + 2). used features that differed from those used
to subsequently separate between classes | and 2.

d. Feature properties and training sets

The visible and infrared contrast features [22] are
shown in Fig. 2 as functions of time. The points rep-
resent each class mean of these features for rainfall
classes 0. 1 and 2. These two figures show that the
feature values changed with time and varied with storm
systems. No simple threshold could be found 10 sep-
arate each class for all cases. These figures show that
clouds in different stages of convective activity had dif-
ferent feature values. For example. on dav 186 of 1979
at 1600 GMT. clouds were in a growth stage and at
i900 GMT Fig. 2a shows that the clouds were in a
decay stage. This implied that the separation of rainfall
classes should be performed by taking different con-
veclive activity stages into account.

The contrast is a measure of convective activity so
that this feature should be correlated in the visible and
infrared channels. Moreover. large values of visible
contrast indicate that small scale convective activity is
strong as in the early stages of cumulus growth. As the
cumulus clouds mature. anvils and cirrus shields ex-
hibit lower contrast. Contrast. rather than infrared
bnghtness temperature. was selected as an iniual
screening feature because some tropical storms only
grow to modest altitudes so that radiance features which
depend on brghiness temperature could miss such
clouds. For example. the active thunderstorm shown
in Fig. 2a has greater contrast than the stable tropical
storm shown in Fig. 2d. As a result. feature [22] was
used to divide training sets into three classes, i.e.. high.
medium and low contrast [22].

A visible contrast that was appreciably greater than
the infrared contrast was attributed to streakiness in
the visible image. The subsequent anahsis of such an
image would only consider the visibie features k = [1].
[3]. [4]. [5]. and [6] and all of the relevant infrared
features. An example of such a case is shown in Fig.
2c where the high visible contrast. CON{22] > 150. is
clearly inconsistent with the intermediate infrared
contrast. This figure can be compared to Fig. 2b in
which visible and infrared contrasts are similar in mag-
nitude.

It was generally preferable to utilize the visible con-
trast after its vernsimilitude was determined because
the spatial resolunion of the visible channels was greater
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TaBLE 3. Number of images in which pattern recognition feature [A] were ranked
between | and 9 for rainfall classification (0). no rain. and (1 + 2). rain.
Rank
Radiance
features k 1 2 3 4 s & 7 8 9
Visible

Mean Grey Level [1} 8 8 3 1 2 ! }
Man. Grey Level {3} 9 S 2 i 3 1 ! ! 1
Min. Grey Level {4] i 7 1 3 4 1 1 !

Texture Pixel

features separation
RG 2 {73 3 2 1 7 4
Max. MEAN 2 {8] 1 4 3 3 K 3
Max. ASM 2 {10] 1 2
Max. ENT 2 {11} 1 2 L 4 3 s 2
Mean. MEAN 2 [12} 1 ] ; ] 6 1 3
Meun. CON 2 {13} i ! 2
Mean. ASM 2 [14] & 4 5 3 2 ] I 1
Mean. ENT 2 [15) 7 3 7 4 2 ] ]
RG 4 [16] 1
Max. ASM 4 [19) ] 2 3 1 2 2
Max, ENT 4 [20] : 4
Mean. MEAN 4 {21 1
Mean. ASM 4 23] 3 4 4 4
Mean. ENT 4 [24] 2 i 3 3

T

Radiance Infrared

features
Mean Grey Level (1} 8 2 1 2 2 2
Sid. Deviation [2 ]
Max. Grey Level 3] 1 1 1 3 1 2
Min. Grey Level [4] 2 7 2 1 3 1 1
Max Min Ratoe {3} ! 1
Gre» Level Range [6] ] i

Textural Pixel

features separation
RG 4 M 3 ! 2 3 3 2 3
Max. MEAN 4 [&] 2 2 1 3 ) H
Max. CON 4 [9] ] 2 1
Max. ASM 4 [10} 7 s 4 &
Max ENT 4 f11} ] N 1
Mean MEAN 4 2 3 K 4 2 ] e 2
Mean. CON 4 {13} 1 2 1 i
Mean. ASM 4 {14] 2 z 2 3 3 s i H
Mean. ENT 4 {13} 2 3 z B 2 3
RG & [16) :
Max. MEAN 8 117} 1 ] 2
Max. CON 8 [18] 1 1
Max. ASM 8 [19] 3 1 I 1 ] i
Max. ENT £ [20) 1 ] 1
Mean. MEAN g {213 j 1
Mean. CON & {22} 1 !
Mean. ASM 8 23} 1 z } 2
Mean ENT 8 [24) 2 2 2 ] 2 3

than the resolution of the infrared images and the clas-

sification divergence was greater (see Section 3c).

The different resolution of the visible image affects

some feature values. For example. on dav 186. all im-
ages have a resolution of 1 X 1 km. whereas on day
246 of 1979. the resolution was 1 > 1 km at 1930
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the effect o sireghuness i the visibre image. Datw are presented asa

funcion of ime to show the evolutor of thess 1evture features

GMT and 2 » 2 km for others. The visibie feature [14]
was much bigger for images with 1 » | km resolution
tharn thos 2 kmresalunon. Thisimphes that
the fraimng s and the test sets shouid be tzken at
the same resolutiorn.

A deiwied inspacuior of the features displaved in
Fig 2 shows that the contrast categon varied signifi-
cantiv. L'sually more thar 1two training sets were se-
lected 16 represent fow, medium and high contrasi cat-
egomes for both 1 > 1 km and 2 > 2 km resolution.
so that the test sets could be apphed 10 a proper training
set. Unfortunately. there were not enough scenes 10
permit that for all of the events. The training sets are
designated by an asterisk in Tabic 1. If more than one
training sel was considered for a given contrast cate-
gory. thase training sets are designated by an astensk
with subscript N in Table |. The schematic idea of the
diffierent types of training sets is shown in Fig. 3a.

swith 2
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e. Decision tree

The decision tree shown schematically in Fig. 3b
was used to separate the rainfall classes. I is described
as follows;

The analyvsis of an image commenced by checking
the visible contrast and the resolution of the test set to
decide which contrast categon applies to the test set.
The visible or infrared mean intensity grey level &
= [1] was then used 1o determine which training set
should be chosen inside the given contrast category.
The visible mean intensity grev level was preferable to
the corresponding infrared feature provided that visible
data were available. The decision rule determined by
the chosen training set was then used to discriminate
between the no rain. 0. and the rain. (1 + 2) classes.
In the cases tested. the separation was achieved with
visible features [1]. [3). [4]. [14]. [13]. [19]. [23] and
[24} and with infrared features {1). [3]. [4]. {10]. [14).
and [15] (see Table ). It was noted that the infrared
mean texture feature A& = [8] was highly vanable as
storms developed. If this texture feature was markedly
different from the infrared mean texture feature of all
of the training sets. then oniy the infrared intensity
features A = [1]. [3). and [4] and all of the visible fea-
tures were used to discriminate between rain and no

TRANING SETS

%w ME DIUM HIGH

CONTk ST (22) CONTRAST (22) CONTRAST (22)
| | 1 { 1 | [ | |

TRAINING SET TRAINING SET TRAINING SETY

() 1) 2y (0} (R (2) (o (1) (2}

FIGURE 3a DIFFERENT TYPES OF TRAINING SETS

TEST SET RAIN SAMPLES
[ Y ] : CLASS (142
4 : "
VIS (22) DETERMINE : i
ONTRAST CATEGORY] VS {4) OR IR {4)
i DE TERMINE TRAINNG
4 SET AND TwE
CCRRE SPONDING
viS (1. OR IR {1} DEC!SION RULE

DE TERMINE TRAINING

SEY ANT THE 1
CORRE SPONDING -‘ —
i DECISION RULE | DECISION RULE j
1 . 1 1
IR (8. DETERMINE P LIGHT RAIN HEAVY RAIN
FEATURES USED ; SAMPLES SAMPLES
| ~ [CLASS 13| lCLASS (2)
|
| oecison pe  |——
T
4
NC RAIN SAMPLES
CLASS (0)
FIGURE 3t DECISION TREE

FiG. 3. tay Concepi of training sets: (b: ranfall
classification decision tree
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TaBLE 4. Effect of radiance and texture features on classification of grid elements [Ne ram (0). rain (1 + 2)].

Class statistics

Features used for Vis:{1]. [3]. {4): Vis:{1] [3).[4]. [14]. [15) [19]. [23]. [24]
separation® Vis:[1]. IR:{ 1] IR:{1}. 3], [4] IR:[1). [3]. [4). [10). [14]. [15]

Resolution (km1** Bras*** |ncrain (0. rain (] + 2]

11 1.05 = 0.07 1.03 = 0.07 1.00 = 0.02

2x2 0.84 = 0.14 0.89£0.13 0.96 = 0.05

Correct classification®** [<)
I x 81 =1 84+ 1 94 = |
2x2 &0 =5 HER 92=13
Skill score*** [

1 50 =13 S8=8 §5=x2

2% 2 60 = 10 549 81 = 4
® Categon vis. contrast. CON[22)Low.

** No. of image pairs (1 x 1) km resolution.3.
No. of image pairs (2 X 2) km resolution:4.
*** Panofsky and Brer (1968).

rain classes. Otherwise. all of the features were used.
The reason for this decision is that the infrared large-
scale texture features vary greatly as clouds develop:
however. that variation appears 1o bear little direct re-
lationship to rainfall. The cases where this criterion
was invoked are designated by a plus in Table 1.

Afier determining that each grid element was either
in the “nonraining™ (0) or the “raining™ (1 + 2) classes.
those gnd elements in which rain was falling were sub-
sequently divided into classes 1 or 2. The features used
for this second classification were the visible and in-
frared radiance mean. maximum and minimum grey
levels. A = [1]. [3] and [4]. The feature [4] for visible
or infrared was used 10 decide which training set should
be used.

This pattern recognition algorithm was performed
on a Harris-800 computer. The computer time required
to analyze one test set was about two minutes.

4. Rainfall classification results

The effect of different features on the ability to sep-
arate the vanous classes was first investigated. Table 4
shows the separation between the rainfall classes. “rain™
(I + 2). and “no rain” (0). obtained by applving the
pattern recognition algorithm to visible and infrared
images using different features. The features that were
used to separate classes 0 and (1 + 2) are shown. This

table illustrates the relative importance of radiance and

texture features. Note that the first two columns sum-
marize results obtained when only radiance features
such as the mean [1]. the maximum {3] and minimum
[4] radiance grey levels were considered. The third col-

umn shows the effect of including numerous additional
texture features in the analvsis. The performance of
the rainfall retrieval algorithm is evaluated by tabula-
tions of the bias. the percentage of correctly classified
grid elements and the skill score percentage (see Pan-
ofsky and Brier. 1968).

It 1s noteworthy that the addition of eight texture
features in the analysis improves the skill score by more

TaBLE 5. Summan of rainfali classification
from infrared images oniy.”

Class Siatistics

Rainfall ratc
classificaton G& (=2 0.1 & 2%=

LR Conirast [22) Biac® [norain /0. rain /1 = 2j}

Low" 1.00 = 0.14
High™™" 1.07 = 0.12
Cerrect classification® {%)
Low & = 6 63 =3
High 8 =3 64 = 10
Skili score* [%]

Low "= 10 44 =4
High 66 = & 43 = 13

* Panofsky and Brer (1968:.
** LR. features & = [1]. [3]. {4}, |7} (%] [10]. {11, [12]. {14].
i3} were used 1o separale rain or no rain classes.
*** 1.R. features A = [1]. [3]. [4] were then used to divide the rain
class (1 + 2)into classes | or 2.
*LR. resolution: 4 > & km.
" No. of images: 11.
™' No. of images: 9.
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than 27 percentage points. In as much as most pre-
vioushy used rainfall estimation algorithms depended
only on vaniations of radiance features. itis encouraging
to pursue the use of textural informatiorn in this anal-
ysis. There is also an indication that visible images with
1 % 1 km resolution provide somewhat better estimates
of the occurrance of rain than the visible images with
2 X 2 km resolution.

Table 5 presents the classification of rainfall classes
0 and (1 + 2)in the left-hand column and 0. 1. and 2
in the nght-hand column. This analysis was conducted
with infrared data onlyv: it therefore simulates the ability
of the present algorithm to classify rainfall rates from
GOES data at night. The contrast texture feature [22
does not appear 1o affect the skill score. The skill score
for classification between no rain grid elements in class
0 and those with rain in (1 + 2)1s 67%: this compares
somewhat unfavorably with the skill score of 85% ob-
tained from visible and infrared data shown in the most
right-hand column of Table 4. It should be noted that
the 4 X § km resolution of the infrared sensor onh
reveals large scale convection while the visible sensor
can detect smaller scale convective activity. The clas-
sification between rainfall classes | and 2 is obtained
with radiance feaiures [1]. [3] and [4] and the skill
score for separation into three rainfall rate classes di-
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minishes to 44% . It is encouraging that no obvious bias
is evident in this classification scheme.

Table 6 presents the classification of rainfall classes
0 and (1 + 2)in the left column and into classes 0. 1
and 2 in the nght column when both visible and in-
frared images are analvzed. The contrast texture feature
[22] appears 10 affect the skill score slightlyv: the low
contrast cases appear to have skill scores about 3%
higher than the high contrast cases. However. the visible
images with 1 X | km resolution appear to provide
consistently higher skill scores than those with the lower
resolution. The classification into classes 0. 1 and 2 is
achieved with a skill score of 65% which is better than
the 44% skill score that was provided by the infrared
data only. No obvious bias is evident in this data.

The ability of the algorithm to provide objective dis-
plavs of rainfal} distributions is shown in Figs. 4. 5 and
6. These figures show results obtained from thunder-
storms. a tropical storm and a hurncane. respectively.
Figures 4. 5 and 6a. b show the visible and infrared
images from which the rainfall estimates were derived.
Figures 4. 5 and 6¢. d show the rainfall distributions
derived from the present algorithm and those indicated
by the NOAA radars respectively. The grey scale coding
in Fig. 6¢. d is white = no data. light grey = Q. grey
= |. dark grey = | or 2. and black = 2: the cross in-

TaBLE 6. Summan of rainfall classification from visible and infrared images.

Rainfall rate class

Class statistics

O0& (1 + 2 0.1& 2%

Number of Visibilits Contrast.
Image pairs CON|22 Resolution (km) Bias* [ne raintG; rain 7] - 2j}
e Vis 25 2 R4 78 son
; Low VIS 152 Ri4 18 03 = 008
Correct classification® [%)
High VIS 2y 2V Ri 478 %23 €z
Low Vi 2x 2 1R 8 223 S
Skil{ score* |%)
High VIS 22 VR4 7 8 %l oty
Low VIS 2 2 VR4 R E s i %

* Panofsky and Brier (1968).

** Separatior intc rainfall class “no rain™. (0). or “rain™, (1 + 2). for high contrast cases were achieved with VIS A = [1]. |

-~
a

I [43. 7],

[8). (101 [11) F12). [14]. [15]. [19). [23). [24] and L.R. k = [1}. [3]. [4]. [10). [14]. [15]
Separation into rainfall class “no rain™. (0). or “rain”. (1 + 2). for low contrast cases was achieved with VIS & = [1]. [3]. {4]. [14]. [15].

[19]. 123]. [24] and L.R. k = [1]. [3). [4]. {10). [14]). [15).

*** Subsequent separation of “rain” into classes (1) or (21 was achieved with VIS k = [1]. {3]. [4]. and LR. k = [1]. [3]. [4].
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F1G. 4. (a) Visible image obtained from the SMS-2 satellite on § July 1979 at 1700 GMT which shows
thunderstorms near Galveston. TX. (b) As in 4(a) except that the infrared image is shown.

dicates the location of radar and the dashed lines de-
lincate the coasts. While the details of the rain distri-
butions differ in the lauer two figures. the broad features
are similar. It may in fact be argued that the elevation
angie of the radar introduces a bias against heavy rain

observations at large distances from the radar. For ex-
ample. the satellite image (Fig. 5a) suggests that the
center of the tropical storm was more than {00 km
southwest of the Galveston radar. The satellite derived
rains are indicated as class 2 to the southwest of the
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F1G. 4 (c) Denved rainfall categon distnbuuon: white = nc datw. hight grev = 0. grey = | and black
= 2. dark grev = } or 2. id) Radar image obtained from the Galveston radar. The grey scale is the same as
for dic).
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F1G. 5. (a) Visible image obtained from the SMS-2 satellite on 25 July 1979 at 1930 GMT which shows
a tropical storm near Galveston. TX. (b) As in 5(a) except that the infrared image is shown.

radar while the radar designates them as class 1. A yet the radar suggests that the rainfall diminishes to
similar effect is evident in Fig. 6¢. d where the eve of class 0 at the bottom of Fig. 6d.
Hurricane Debbie is to the south of Daytona Beach Discrepancies occur most frequently at the edges of
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_ic) Derived rainfall categon distribution: white = no data. light grey = 0. grey
=

= | and black
_{d\ Radar image obtatned from the Galveston radar. The grey scale 1s the same as for Sty

the larger precipitating systems and near isolated cells.
where ambiguities in assigning radar-derived rainfall

1gation problerris. It was only possible to indicate that
rates 1o grid elements were the greatest because of nav-

rain was falling on some solated or edge grnd elements
because no training sets that adequately discriminated

327
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FIG. 6. (a) Visibie image obtained from the SMS-2 satellite on 3 September 1979 at 1800 GMT which
shows Hurricane Debbie near Daytona Beach. FL. (b) As in 6(a) except that the infrared image is shown.

between rainfall rates were derived for such isolated tively analyzed with pattern recognition techniques to
cells. determine rainfall rates in three operational radar
rainfall classes. It also showed that radiance features
provide some separation of rainfall classes in given
grids; however. a greater skill score was obtained when

This study has shown that single pairs of visible and  texture features were incorporated into the analysis.
infrared geostationary satellite images can be objec-  Specifically. the addition of texture features along with

5. Summary
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FIG. 6. {c) Derved rainfall category distribution: white = no data. light grey = 0. grey = | and black
= 2. (d» Radar imagz obtained from the Daytona Beach radar. The gres scale is the same as for 6ic}.
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radiance features raised the skill score in identifying
rain from 56 to 83%. Moreover. the classification into
three classes could be achieved with a skill score of
~66%. The best results were obtained from images
with high spatial resolution which revealed texture on
a scale of a few kilometers.

The results of this study are still preliminary. More
work is required to determine how well the rain rate
classification technique works in other regions and at
other seasons. Better pattern recognition algorithms
may be developed as more experience is pained.
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ABSTRACT

A scheme is presented for the automated classification of oceanic
cloud patterns. - The twenty classes reflect the rich variety of
morphologies that are detectable from space. A training set is defined
by 2000 samples-of size 128 X128 km taken over the Western Atlantic in
February 1984. The method uses visible and infrared images from a
geostationary satellite. Class discrimination is obtained from
thirteen features representing height, albedo, shaﬁe and multilayering
characteristics of the cloud fields. Two features derived from the

two-dimensional power spectrum of the visible images proved essential

for the detection of directional patterns (cloud "streets"”, rolls) and
open cells. Based on the assumption of multinormal distributions of
the features, a simple classification algorithm is developed. From

1020 independent samples. the consensus of two out of three expert
nephanalysts agreeing or not with the machine result suggests an
overall accuracy of 79% with the machine answer at least second best
89% of the time. The cloud climatology in twenty classes for January
and February 1984 are compared. Retrieved cloud fraction maps are also
compared with the observed fields from ships. _ The scheme is proposed
as a candidate for the International Satellite Cloud Climatology

Project.




1. INTRODUCTION

In this first of two articles, the design of an automated and
efficient cloud classification scheme is presented. The twenty classes
reflect the rich variety of morphologies that are detectable from
space. The cloud patterns are quantified with measures extracted from
visible and infrared images. These measures, or features, describe the
cloud fraction, height, albedo, shape and multilayering characteristics
of the cloud fields. The vector of features permits an objective
classification. Class-dependent relationships between cloud features

and meteorological parameters of interest are developed in the second

articlef ,Q’AMIJU{‘J, ’79?, ;\ﬁﬂfﬁ‘v PM?’)'

Various cloud classification schemes have been proposed in the
past. Scientists respoﬁsible for the International Satellite Cloud
Climatology Project (ISCCP, see Rossow et al., 1985), have conducted a
comparison between the existing techniques in order to decide which one
should be wused for a global five year climatology. One of their
conclusions is that "all methods, which work well for some cloud
types or climate regions, do poorly for other situations". The number
of classes for most algorithms is notably low. The cloud fields or
individual pixels are typically assigned one of three height classes:
low, middle and high. The ISCCP requirements presently include a fourth
class: deep convective. In addition, cloud optical depth and cloud size
distribution are also mentioned as desired parameters. This 1is an
implied admission that a more detailed classification, that includes

morphological considerations, is desirable.




A notable exception with regard to the number of classes is the
work of Shenk et al. (1976) who designed a 10-class scheme. Their four-
channel method was successful in detecting cirrus and multilayered
systems but the coarse resolution, 55 km at nadir, did not allow the
detection of much morphological detail in boundary layer cloud fields.
Parikh (1976) presented a review of various cloud classification
techniques. Basic concepts on tree structures, extraction of features
and the use pf discriminant functions applied to the cloud classifica-
tion problem are described. Among the new approaches that have been
tried, clustering in multispectral space (Desbois et al, 1982) is one
that has shown skill in segmenting cloud pictures into homogeneous
areas associated with cumulonimbus, cirrus or mixed cloud types. A
drawback of that method however, and of pixel by pixel methods in
general, 1s that by nature they are not suited for the detection of
mesoscale cloud patterns. The differentiation between open versus
closed cells, cloud "streets" versus ordinary cumulus fields or
stratus versus stratocumulus cannot be achieved satisfactorily from
scrutinizing multispectral histograms. The effect of cloud shape on
visible-infrared signgtures (Platt, 1983, Schmetz, 1984) has been
investigated with limited practical succes;.\ For realistic cloud
fields, multilayered systems in particular, several possible interpre-
tations of the signatures is the rule rather than the exception. The
basic problem of discriminating between broken cloud fields and over-
cast ones with variable optical depth still remains. In short, for the

purpose of detailed cloud classification, it appears that a set of



features specifically designed to 'see' the morphology is required.
Such features are in the realm of pattern recognition in the 1literal
sense of the term.

The wofk of Rochard (1978) and Brard (1980) represents a rare
effort aimed at the recognition of cloud field morphologies in detail.
Their scheme discriminates 13 classes from 8 features. The boundary
layer classes included open and closed cells, stratus and cumulus.
Directional patterns were however not considered.

Preferably, the scale of the analysis should be compatible with
numerical weather prediction models or general circulation models. The
ideal scale for _cloud pattern analysis, as it turns out, is similar to
that of those models. In their work on image modeling of cloud fields,
Garand and Weinman (1986), found that scale to be between 100 and 250
km. Such a scale (mesoscale) is large enough for the patterns to be
recognizable, the texture primitive of the patterns being of smaller
dimensions, yet small enough to insure a high probability of homogenei-
ty of the cloud pattern and its associated weather conditions.

One incentive to proceed with the development of this classifica-
tion scheme was the realization from the aforementioned work, ‘that two
simple power spectrum features provided reliable means to detect direc-
tionality and therefore cloud streets and rolls and to detect, 1in
addition, the presence of open cellular patterns. It remained to be
shown however that these features could permit the discrimination of
mesoscale cellular patterns from all other cloud types. A general cloud

classifier was therefore developed.



This study is 1limited to oceanic regions only. We 1limit our
attention.to the winter season in the Northern Atlantic. We make use
of a large data set ppvering an area of 20 degrees latitude by 20
degrees longitude fér the sixty days of January and February 1984.
Chapter 2 defines the twenty classes to be recognized. In Chapter 3,
following the description of the features for <classification, the
pattern recognition algorithm is presented along with the results on a
training set of 2000 samples and on an independent test set of 1020
samples. Monthly and seasonal maps of cloud fraction are shown in
Chapter 4 along with a comparison between satellite-derived and
observed fields‘(from ships) of total cloud fraction. Also, the clima-
tologies in twenty cloud classes for January and February 1984 are

compared.

2. DEFINITION OF THE CLOUD CLASSES

The nominal scale of analysis employed in this study is 128 X
128 km; the nominal resolution of the visible sensor is 1 km. Power
spectrum analysis, wusing fast Fourier transforms, is more efficient
with sizes that are powers of two; this is the reason for choosing the
particular number 128. This scale is too small to assign synoptic scale
classes such as cyclone vortices or fronts but it is large enough to
include several multilayered classes. With the inclusion of these
multilayered classes, there is actually no need to search for homoge-

neous areas and the analysis can be performed on a fixed grid of



contiguous areas. Also we emphasize that the classes are defined from
the viewpoint of a geostationary satellite. Thus, when compared to
ground observations, both the scale and the classes may be different.
For example, ground observers cannot report open cells or cloud
streets, two cloud types that are among those investigated. Invoking
this argument, human interpretation of the satellite pictures rather
than shipboard observations of cloud type will serve as "truth”. Three
expert nephanalysts were assigned to the verification of the classifi-
cation scheme on independent samples. The definition of the classes
and the assignment of a class number to the training set samples were
accomplished by the author.

The classes were first selected by experience from a series
of images: the samples of each scene were labeled into as many
classes as the cloud fields could be discriminated. The analyst (the
author) sought the mesoscale cellular patterns mentioned above, the
discrimination between cumulus and statocumulus, the detection of thin
cirrus, multilayered systems and cumulonimbus clouds. Once a total of
20 classes was reached, the analyst felt hard pressed to define more
classes without encountering a large number of ambiguous cases. The
thresholds in height and albedo were defined during the analysis
process. - A formal definition of the classes implies the description of
the discriminating functions. At this stage of the presentation
however, in order to clarify the goal of this study, it is appropriate
to describe the various morphologies to be recognized in words and

images, rather than by equations. The number ordering from from 1 to




20 closely follows the mean cloud top height from lowest to highest.
Class names are generic, except for mesoscale cellular convection
classes 7 to 11. The names streets, rolls, open and closed cells are,
however, pervasive in meteorological literature, occasionally mentioned
by name in cloud atlases such as those of Scorer (1972) or the World
Meteorological Organization (WMO, 1969), although these books are
concerned with cloud patterns as seén from the ground. Scorer's (1986)
book on cioud patterns as seen from satellite is closer to the needs of
this study. An entire chapter (six) is devoted to mesoscale cellular
patterns; these cloud patterns were also the scientific object of two
recent field experiments, the Air Mass Transformation Experiment
(AMTEX, 1975, East China Sea region, see Sheu and Agee (1977)) and the
Convection and Turbulence Experiment (KONTUR, 1981, North Sea region,
see Bakan (1985), Hoeber (1982)).

In the proposed classification scheme, the generic name
cirrus corresponds to any cirriform class (cirrus, cirrostratus, cirro-
cumulus) and the generic name altocumulus corresponds to either
altocumulus or altostratus. Cumulus, stratocumulus, stratus,
nimbostratus and cumulonimbus are, however, recognized specifically.

The abreviations VIS and IR are used to designate the visible and
infrared pictures, respectively. The algorithms for the estimation of
cloud fraction, height and albedo are described in Chapter 3. Fig. 2.1
provides one example for each class of visible-infrared pairs. The
reader is invited to examine these examples while reading the

description of the cloud classes.



Class 1. CLEAR
The cloud fraction is less than 1%. When clouds are present at such a
low cloud fraction, they are usually small cumuli. VIS: dark. IR:

dark.

Class 2. STRATUS

Low cloud deck with smooth surface, usually one cloud entity without
holes.

VIS: Albedo typically moderately bright (50 to 80%).

IR: Quite dark, sometimes clouds are not discernable from background.
Mean height is 1.4 km and does not exceed 2.5 km. Above that height,

this morphology belongs to class 12 (nimbostratus).

Class 3. SCATTERED CUMULUS

Low clouds with grainy texture. Cloud cover less than 50%.

VIiS: Albedo relatively low, 30 to 45% although the middle of the cloud
elements may be bright. The individual clouds are usually small and
numerous.

IR: Dark or grey, depending on height, and fairly uniform. The typical

height is 1.8 km and can reach 3.5 km.

Class 4. BROKEN CUMULUS
Very grainy texture with cloud fraction higher than 50%. The clouds

seem packed against one another resulting in numerous small background

areas.

VIS: Grey to semi-bright, mean albedo 43%.



IR: Grey, fairly uniform except for some towering cumulus not exceeding

5 km. Typical height: 2.5 km.

Class 5. SCATTERED STRATOCUMULUS

Low cloud deck with cloud fraction less than 50%. The clouds tend to
be connected in sizeable blobs so that most of the cloud fraction is
made up of a few clouds only, as opposed to the cumulus class.

VIS: Average brightness 40%. When brighter than 60%, the class becomes
11 (bright closed cells).

IR: Dark to grey. Mean height of 2.4 km, not exceeding 3.5 km.

Class 6. BROKEN TO OVERCAST STRATOCUMULUS
Same as class 5 but with cloud fraction higher than 50%.
VIS: Average brightness of 46%, not exceeding 60%.

IR: Mean height of 2.7 km.

Class 7. CLOUD STREETS

Low cloud pattern with obvious directionality. Typical cloud fraction
of ©58% but may vary from 15% to 90%. The 'streets' normally appear
made up of cumulus clouds and the texture is grainy.

VIS: Mean albedo of 43%. When compared to class 8 (rolls), the direc-
tional pattern usuwally has a shorter wavelength and the albedo is less.

IR: Fairly uniform height, 2.3 km on the average.

Class 8. ROLLS

This obviously directional pattern is at mid level. Fairly thick, large



roll clouds are~aligned usually with little spacing between them. Some
open cells may be embedded in the field.

VIS: Bright, mean albedo 75%. Mean cloud fraction of 93% and usually
not less than 60%.

IR: Grey to whitish, typical height: 4 km, less than 6 km.

Class 9. POLYGONAL OPEN CELLS

Open. cells presenting a honeycomb or polygonal texture with sizeable
holes or internal cavities in the middle of the cells. Small cumuli
are also often presént. Differentiated from class 10 by a lower cloud
fraction and larger holes. The most convective cloud elements are
individual towering cumuli as opposed to the entire doughnut shape
cloud pattern in ciass 10. The cloud ring surrounding the hole may be
incomplete whereas it is typically complete for class 10.

VIS: Moderately bright, average albedo 55%.

IR: Greyish brightness, darker in regions of small cumuli and brighter
for the more convective cells which may reach 5.5 km. Typical height

3.5 km.

Class 10. STRONGLY CONVECTIVE OPEN CELLS
Bright mid 1level cloud field characterized by doughnut shaped cloud
elements with holes a few km in diameter.
VIS: Bright, typical albedo 63%. Mean cloud fraction 93% and rarely
lower than 60%. The texture appears lumpy.
IR: Greyish to whitish with the holes usually perceivable. Mean height

of 4.4 km, may reach 6 km.




10

Class 11. BRIGHT CLOSED CELLS

Bright mid 1level <cloud field with large blobs. May appear lumpy
indicating towering cumulus. This class also encompasses the edge of
class 12. VIS: Bright, mean albedo 63%. Typical cloud fraction 80% but
may vary between 30 and 95% if the texture is lumpy and between 30 and
85% if the texture is smooth (edge of class 12). Above these upper
limits in cloud fraction, the sample belongs to class 12.

IR: Greyish , typical height 3.4 knm.

Class 12. NIMBOSTRATUS

Overcast bright stratum at mid level. The texture is usually smooth but
a somewhat more lumpy texture with cloud fraction higher than 95% will
also be labelled 12.

VIS: Very bright. Typical albedo 77%. Typical cloud fraction of 98% and
never less than 85%.

IR: Greyish to whitish, smooth. Mean height 4 km, may vary from 2.5 to

6 km.

Class 13. ALTOCUMULUS

Greyish mid level cloud deck, apparently single-layered.

VIS: Usually quite grey, typical albedo 34%. Typical cloud fraction 45%
but may vary from 1 to 100%.

IR: Greyish to whitish. Fairly uniform. Typical.height of 4.2 km and

may vary from 3.5 to 6 km.

Class 14. CUMULUS WITH ALTOCUMULUS
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This cloud field consists of a lower cloud deck of cumulus type and of
a mid IeQel cloud deck (between 2-6 km).

VIS: Typical albedo 47%. Higher deck made up of sizeable patches
whereas lower deck is typically grainy (cumulus).

IR: The lower deck is dark, the mid level deck is greyish to whitish.

Mean height of 4.8 km, not exceeding 6 km.

Class 15. STRATOCUMULUS WITH ALTOéUMULUS

Cloud field with apparent multilayering occuring between 2 and 6km,
with lower cloud deck typically stratocumulus.

VIS: Semi-bright, typical albedo 47%. Typical cloud fraction 72%.

IR: Varying tones between greyish and whitish. Mean top height 5.5 km,

not exceeding 6 knm.

Class 16. THIN CIRRUS

Fibrous texture, semi-transparent.

VIS: Low albedo, 25% on the average and less than 35%. Presence
detected from milky veil and sometimes not detected at all. Lower
cloud deck may be present.

IR: Whitish, often with considerable structure. Mean apparent height of
6 km with most of the cirrus field typically appearing in the infrared

image at lower heights.

Class 17. MULTILAYERS WITH CIRRUS
High clouds are obviously present from the infrared image and most

often lower level clouds as well and the visible image is greyish.
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VIS: Typical albedo 41%, covers the range 35-55%. The typical cloud
fraction is 87% but it is sufficient that 5% of high clouds (above 6km)
be present for the field to be classified 17. The overcast version of
this class will be classified 19 only if the percentage of high clouds
is greater than 85%.

IR: Considerable structure from greyish to white. Mean cloud top height

of 8.7 km.

Class 18. BRIGHT MULTILAYERS WITH CIRRUS/CUMULONIMBUS

General description as for class 17 except that the visible picture is
moderately to very bright (albedo greater than 55%). This class
encompasses isolated cumulonimbus or edges of cumulonimbus.

ViS: Bright, typical albedo 72%. Typical cloud fraction 94% but 5% or
more high cloud fraction is sufficient for the field to be classsified
18. The overcast version will be classified 20 only if the percentage
of high clouds is greater than 85%.

IR: Same as 17. Mean height 8.9 km.

Class 19. DENSE CIRROSTRATUS

Overcast field of high clouds with less than 15% of the pixels at
height below 6 km.

VIS: Grey, typical albedo 50%. Typical cloud fraction 97% and no less
than 90% (classified 17 in that case).

IR: White, possibly a small greyish region, indicating some mid-level

cloud deck. Mean height 10.3 km.

Class 20. OVERCAST CUMULONIMBUS
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High and bright overcast cloud field. Usually représents deep cumulo-
nimbus inrthe core of a vigorous cyclonic system or cold front. Less
than 15% of the pixels are below 6 km.
VIS: Very bright; typical albedo 87%. Typical cloud fraction 100% and
no less than 90X (classified 18 then).

IR : White. Typical height 10.7 km.

Fig. 2.2 summarizes the thresholds in height and albedo
mentioned in the description of the classes. The standard deviations
are also shown. The plot is an anticipation of the results obtained in
Chapter 3 with a large training set of cloud patterns. It should be
kept in mind that the natural limits of height and albedo are about
twice the standard deviations presented on the graph. The figure
indicates that although some classes (e.g. 1 and 2) are relatively well
separated, it is obvious that the discrimination cannot be accomplished
from albedo-height characteristics only. Boundary layer classes 3-7
form a closely packed group as well the higher albedo mid-level classes
8-12 and the altocumulus classes 13-15. Features describing the
morphology and the state of multilayering are essential to separate

those classes.
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Fig. 2.1 Example of 2 visib'e and intrared sair ot images tor each
cloud class; indicated by its number. The visible image is on top of

the correspondirs infrared image. Image size: 128 X 1238 km.
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mean cloud albedo for each cloud class, indicated by
its number. Associated standard deviations shown by bars.
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3. DESIGN OF A CLASSIFIER

3.1 Data set

In order to recognize all of the twenty classes just
defined, a large data set was required. Twenty nine images were
analyzed, one per day for the 29 days of February 1984 at 16 GMT, about
11-12 AM local time, for the Western Atlantic region defined in Fig.
3.1. The region is between 26 and 45 degrees latitude north and 60 to
80 degrees longitude west; the west side of the domain is defined by
the east coast of the United States.

This region and time of the year were chosen after the hard
copy archives were examined (Space Science and Engineering Center
Library, University of Wisconsin). Winter brings several cold air
outbreaks in thié area; these systems produce a significant number of
occurrences of mesoscale cellular patterns. February 1984 was
particularly interesting from that perspective. A secondary goal was to
produce the cloud climatology for that month, in order to illustrate

both real time and climatological applications of the method.

Exactly 204 contiguous boxes were analyzed for each scene
(one per day), as indicated in Fig.3.1, except for 3 days where small
parts of the images were missing. In all, 5845 samples were analyzed
for a coverage of 98.8% for the month (completeness implies 29 X 204 =
5916 samples). Analysis here refers to the extraction of features for
classification, a topic to be discussed in the following section. With

such a data base, all twenty cloud classes were represented a
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Fig. 3.1 Region of analysis seen in satellite projection.
Asterisk indicates Bermuda. The grid shows the 204 conti-
guous -areas to be analysed. Size of areas: 128 X 128
visible pixels at nominal 1km resolution.



15

significant number of times. A grid was superimposed on the satellite
image and a sample number was placed in the bottom of each box. The
author then subjectively assigned a _class number to each sample
identified by its number and keyed in that information in the record of
the features just extracted. The decision on the class was taken after
switching back and forth between the visible and infrared pictures.
A hard copy image of eaéh,scene was taken for both the visible and
infrared images and the record of the features was also printed. Thus
the analyst had all material for further analysis in hand.

Each visible image consists of m = 64 X 64 = 4096 pixels at 2
km resolution and each infrared image consists of n = 32 X 32 = 1024
pixels at 4 km resolution, the nominal resolution of the infrared
sensor (the actual footprint is 4 X 8 km with the same digital count
assigned to two 4 X 4 km pixels). It was deemed appropriate not to
degrade the visible resolution to that of the infrared in order to
preserve information on morphology. On the other hand, the full 1 km
resolution was not kept for computer time considerations. A philosophy
applied throughout in the feature extraction process is not to rely on
collocated visible and infrared pixels but rather to match cloud
fraction thresholds in both histograms. The visible image was reduced
to 2 km resolution by sampling every other line and row, a method
preferable to averaging to preserve cloud properties. Eight wvisible
sensors are disposed vertically to scan eight lines at a time as the
optical system scans from the left to the right side of the planet. It

was found by expanding full resolution visible images several times
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that horizontal stripes were often present at eight 1line intervals
indicating that one of the eight sensors was in error by a few digital
counts. That sensor turned out to be associated with odd lines; this
problem was then eliminated simply by sampling over even lines.

Each infrared grey level count corresponds to a radiance
which can be transformed into a temperature via the Planck function.
This temperature is called the brightness temperature. This transfor-
mation implies the assumption that the emitting surface is radiatively

black, i.e. its emissivity is unity.
3.2 Extraction of features for classification

Thirteen features are used to classify the cloud fields in this
study. About three times that number were initially defined as. we
could not know beforehand which features would provide best results. A
classification algorithm should use as few features as possible in
order to simplify the decision process and to shorten the computer time
devoted to feature extraction. In addition, the number of samples
necessary for reliable statistics increases rapidly with the number of
features as well as the nuﬁber of classes. The variety of features
finally selected reflected a balance of information on height (cloud
top, multilayering), shape (directionality, size distribution) and
albedo.

In choosing the features, obvious physical significance is a
desirable asset. Cloud fraction at low, middle and high altitude, cloud

top height and mean cloud albedo are among the features selected. In



Table 3.1 Designation of the features used for classifica-
tion in this study with associated 2-letter identification
code. Image source in parenthesis: IR: infrared, VIS:
visible, B&W: binary corresponding to visible cloud frac-
tion, PS: power spectrum. D, DC*, m defined in text.

Code Description Limits
CF Total cloud fraction (IR, VIS) 0-1
1o Low cloud fraction (IR) 0-1
MI Middle cloud fraction (IR) 0-1
HI High cloud fraction (IR) \ 0-1
HT Cloud height of uppermost layer (IR) 0-14km
LR Fraction of cloudy pixels with D < Dc* (VIS) 0-1
AL Mean albedo of cloudy pixels (VIS) 0-1
NC Number of clouds (B&W) 0-m/2
ML Multilayer index (IR) 0-1
BC Background connectivity (B&w) 0-1
cc Cloud éonnectivity (B&W) 0-1
ST Streakiness factor (PS) 0-1
SE Fraction of spectral intensity associated

with wavelengths between 20~40km (PS) 0-1
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addition, less conventional cloud field descriptors are employed such
as a multilayer index, a streakiness factor and connectivity indices
that are easy to relate to the visual appearance of the images. This
is an advantage over features that represent moments taken over
pictures, (see Haralick, 1976) as these features are often difficult to
interpret.

Every feature is identified with a 2-letter code for further
reference. Table 3.1 presents those features, along with their

physical limits.
3.2.1 Cloud fraction and height features (LO, MI, HI, CF, HT)

Because a good algorithm to define cloud fraction is essential,
considerable attention was devoted to this problem. A basic require-
ment iis that the scheme should be usable throughout the day, from
shortly after sunrise to shortly before sunset. Therefore, the geome-
try of the system has to be considered appropriately. Fortunately,
this problem is well understood and a good treatment of it can be
found in the series of three papers by Minnis and Harrison (1984,
hereafter MHA-a, b, ¢c). Three angles define the geometry: the solar
zenith angle (§), the satellite-viewing zenith angle (9) and the
viewing azimuth angle ({’) (see MHA-a, Fig.3). The three angles are
obtained from knowledge of day of the year, time of the day, satellite
position and field of view location. Considering those angular
factors, the wvisible brightness (or digital count) corresponding to a

reflectivity t at nadir is (MHA-a, Eq.6):
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D, = {8,(2)x,(%,9,%) cos(Z) B(0®,e)x"! 4+ noz}*. (3.1)

where X, (G) is the visible normalized directional reflectance and

A(ﬁ,@ . (P) is the visible, anisotropic reflectance correction factor;

Y refers to the spectral band. Both g;and XVvalues for water were
obtained empirically from a large data set of GOES images to gather
statistics from all possible angular combinations. A reasonable value
for t is 7% for water. The existence of this model, defined by its
tables of Sv and ly. was a decisive incentive to design our scheme to
be used with the natural satellite projection. The tabulated values of
gyand _xyfor water were provided by the authors of MHA a-c. The
constant B(0,t) is the hemispherically integrated brightness count at
$= 0. Dg , on the other hand, 1is the dark current constant. Its
meaning will become explicit below. In MHA-c, the average clear-sky
albedo (ocean plus atmosphere) over our region of interest (their
Fig.10, derived in November 1978) is 15%. Therefore, we shall use the
constant t = 0.15. So, Eq.(3.1) simply answers the question: given the
three relevant angles, what is the digital count that the satellite
would register corresponding to a clear-sky reflectivity of 15% at
nadir? The visible calibration is defined by the relation:

E=a'D? + b’ (3.2)

where E is in W/ma' and D is the satellite-observed digital count with
range 0-255. For GOES-EAST in early 1984 (subsatellite point: equator,
75 W, height of 36,000 km), the values suggested for a' and b' are

0.005393 and -2.67 W/ respectively. The value of d? is thus 496.
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The reflectivity is obtained from:

R = E/(XoCos (%)) (3.3)

where Ig= 336.43 W/ﬁz'is the fraction of the solar constant within the

spectral bandwidth of the visible sensor. A reflectivity of 15% corres-
ponds to 50.46 W/m® from (3.3) which in turn corresponds to a digital
count of 99.26 from (3.2). Using this value in (3.1), one gets the
value of B(0,15%) = 29408. Eq.(3.1) is universal and can be applied
over all oceans uncovered by ice. Only the satellite related
constants, Dy and B(O,t) need to be adjusted. The tables of and
are much more complicated over land as they depend on the reflective
characteristics of each type of surface.

As in MHA-a, the boundaries between low, middle and high clouds
are 2 km and 6 km and the height assignment is based on an assumed
vertical temperature 1lapse rate of 6.5 deg/km with the sea surface
temperature, Ts.‘as the lower boundary. The sea surface temperature is
found in the following manner:

1) The percentage of pixels in the visible image below D¢ (with t =
0.15), f(t), 1is calculated. If f(t) is greater than 5%, the average
brightness temperature of the warmest f(t) pixels in the infrared
histogram, ETZ), is calculated and Ts is estimated through Ts = ?T;) +
4. The offset of 4 K approximates the atmospheric correction; it was
obtained from comparisons of ship measurements of Ts versus infrared
brightness temperatures in clear areas observed in several images. In

Part 2, the accuracy of this technique for single retrievals is
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evaluated at 2.69 K (rms) but may be improved to 2.2 K upon subtracting
a class-dependent bias after classificatioh. If the inferred value of
Ts 1is off by 5 K or more from the monthly climatology, the climato-
logical value is assigned. More accurate and physically based methods
of sea surface estimation exist. For example, Bates and Smith (1985)
claim errors of less than 1 K. However, images from three infrared
channels are required; these were not always available. Also, it must
be kept in mind that, in our region of interest, for about 50% of the
time, the climalogical value of Ts is used due to excessive cloudiness.
In those cases, it is not possible to use infrared methods such as that
of Bates and Smith (1985).

2) If the percentage of totally clear pixels. f(t) is smaller than 5%,
we assumed that there are‘no holes sufficiently large in the cloud
field for an accurate surface temperature assignment. Therefore, in
that case, the climatological value for the month of February was
assigned (one degree scale). The mean of Ts for a particular month is
usually within 1.5 K from the all-time climatology for that same month
(see the National Oceanic and Atmospheric Administration (NOAA) publi-
cation: Monthly Oceanographic Summary for one-degree grids of Ts and
deviation of Ts from climatology for our region of interest). NOAA
polar orbiting satellites continuously monitor the sea surface tempera-
ture globally; available values for Ts are usually less than a week
old. When possible, one may prefer to use this product as opposed to a
climatological value in overcast conditions. In any event, for the

purpose of cloud classification, the accuracy on Ts obtained by the
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present method is sufficient.

Two modes are used to find the cloud fraction: a wvisible
mode based on an albedo threshold and an infrared mode based on  a
height threshold. We define Dc as the cloud-no cloud threshold in the
visible histogram and Tb as the cloud-no cloud temperature threshold
from the infrared histogram. The usual mode (83% on the February data
set of 5845 samples) is the visible mode.

1) Visible mode
In the visible mode, the digital count threshold, Dc* is obtained

from:

R =

where Dm is an offset equal to 20 counts. This corresponds to an
albedo threshold of 22% (for utilization with other platforms, it is
suggested to use B{(0, 22%) in Eq. (3.2) and Dm = 0 in Eq. (3.4)).
Corresponding to Dc*, one gets the cloud fraction CF = CF(VIS). The
offset was obtained from extensive experiments with cloud fields of all
types with various viewing geometries. Images consisting of 64 X 64
pixels at 2 km resolution were thresholded to binary images (black and
white) based on Dc*. Both the real image and the binary images were
enlarged to fill the entire video screen of the MCIDAS system (Suomi et
al., 1983). Then the analyst would switch back and forth between the
two images, collocated on the screen, to subjectively estimate the
quality of the thresholding procedure. It was found that Dm = 20 counts

systematically provided a satisfactory threshold. Between D¢ and Dc*,
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it 1is admitted that clouds may be present but the assumption is that
the field of view of pixels with such grey counts is less than 50%
cloud covered. No attempt was made to calculate the cloud fraction of a
single‘ field of view within the limits 0 and 1. Thus, the cloud
fraction defined here may be termed "effective". We assume that, to a
large extent, possible errors due to underestimation of cloud fraction
within a field of view when the pixel is assumed completely clear are
compensated equally by possible errors of overestimation when the pixel

is assumed completely cloud filled.

2 ) Infrared mode

The visible threshold Dc* fails for low-albedo pixels which may
be completely cloud filled with semi-transparent clouds. Cirrus fields
often present such characteristics: a low albedo (lower than Dc*) in
the visible matchéd by the appearance of a veil of variable brightness
in the infrared. Thus, a second mode is necessary.

In the infrared mode, any pixel corresponding to a height of 1 km
or more is assumed cloudy. We then find the infrared cloud fraction
CF(IR). ' If CF(IR) is greater than CF(VIS) by 5% or more, then the
infrared mode is chosen. The value of Dc (equal to Dc* up to now) is
lowered so that CF(VIS) = CF(IR). Since errors on sea surface
temperature are typically much less than 6.5 K, 1 km is a safe margin
for such errors resulting in errors on height (recall that a lapse rate
of 6.5 K/km is assumed for height estimation). On fhe other hand,

pixels of albedo lower than Dc* and of apparent height below 1 km can
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safely be assumed clear in most cases.

The cloud top temperature, TT, 1is obtained from the brightness
temperature corresponding to the 97th percentile in the infrared
histogram. Fdf clear skies, TT = Ts. The cloud top height, HT is
obtained through HT= (Ts - TT)/6.5. It is understood that the true
height may differ from HT. The temperature lapse rate for boundary
layer cloud fields is often close to 10 K/km (dry adiabatic), as
opposed to 6.5 K/knm, and the surface air temperature is more
appropriate than Ts as lower boundary. As a classification feature
however, HT is not required to represent the true height and a
unique, robust definition of each feafure is desirable. After classi-
fication, one may estimate the true height from an assumed class-
dependent temperature lapse rate. In addition, it should be noted that
feature HT 1is not designed to obtain the representative cloud top
height of the entire cloud field but that of the uppermost layer.

When there are large séa surface temperature gradients, such as
in the midst of the Gulf Stream, the infrared mode‘may be selected even
in clear conditions. To avoid this problem, if the sea surface
temperature difference from climatology across the box is greater than
6.5 K (thus apparent cloudy pixels above 1 km height may be registered)
and if HT < 2 km, the infrared mode is skipped; sea surface temperature
differences acoss a box will never reach the 13 degrees corresponding
to a 2 km apparent height.

From knowledge of the cloud fraction, CF, an important physical

parameter is the apparent cloud base temperature, Tb, which is the
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temperature corresponding to CF in the infrared histogram; pixels of
brightness temperature higher than Tb are assumed clear. Having
extracted Ts and Tb, the formal definitions of the low cloud amount
(LOo), the middle cloud amount (MI) and the high cloud amount (HI)
follow:

i) LO is the percentage of pixels with brightness temperature T such
that Tb < T § Ts - 13 with LO = 0 if Tb < Ts - 13.

ii) MI is the percentage of pixels such that 2 km < HT 6 Kkm.

iii) HI is the percentage of pixels with HT > 6 km.

From the above definitions, it is clear that CF = LO + MI + HI.
To avoid redundancy, all four cloud fraction features were never used

together.
3.2.2 Visible reflectance features (AL' LR)

The mean cloud albedo, AL, is computed over the cloudy pixels (not
the entire scene). The mean value of the digital count squared over
all cloudy pixels, Gs, 1is first calculated (Eq. 3.5 below). Then the
value of AL is obtained from Eq. 3.6. Designating the number of pixels
in the visible histogram with grey count i by hv(i), we can state

formally that:

Gs = 12 hav(1) / I hv(4) (3.5)
i=Dec, 255 1=Dc,255
AL = (a'Gs + b'")/(Io cos(Z)) (3.6)

A second albedo related feature used in this study is the percen-
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tage of the cloud fraction for which the pixels have a reflectance
below Dc*. Obviously this number, LR (for low reflectance) is zero if
the visible mode is taken since in this case Dc = Dc*. Formally, for

Dc < Dc¥*:

LR = I {{hv(i)) /E {1hv(i)}
1=Dc,Dc#* 1=Dc, 255 (3.7)

The feature LR is most useful in detecting thin cirrus clouds.

3.2.3 Multilayer index ‘ﬂAL)

A simple multilayer index feature, ML, proved very useful for
quantifying the degree of multilayering in a cloud field. As will be
shown in section 3.4, mutilayered systems are present about 40% of the
time and this importance is reflected in our classification by several
multilayered classes (14 to 18).

The multilayer index is defined as the percentage of the cloud
field with height 2 km or less below the cloud top height HT. Defining
g(z) as the grey level corresponding to height z and hir(i) as the
number of pixels with grey level i in the IR histogram, ML is defined

as:

ML= I hir(i) / I hir(4)
1-31.255 1-32.255 (3.8)

8, = 8(AT-2km) ; g, = g(z(Tb))

Thus a single layer cloud field, by definition, is one with all of
its cloudy elements within a 2 km thickness slab in the atmosphere with
an upper limit approximately at the cloud top (in fact the upper 1limit

is the coldest pixel, we recall that 3% of the pixels correspond to an




26

apparent height above HT). C;oud fields with ML < 0.7 correspond to
infrared images with significant structure. ML is a good descriptor of
the variability 6f grey tones that one can perceive in the infrared
picture. A similar index, defined from z(Tb) and upwards as opposed to
HT and downwards could also have been defined. We preferred however to
give emphasis to the presence of upper level decks than to lower level
decks in our definition of multilayering. For example, a cloud field
with CF = 50%, HI= 5% and LO = 45% will have a very low value of ML,
ML = HI/(HI+LO) = 0.1, even though 90% of the field belongs to the

lower laver.
3.2.4 Connectivity features ( NC) CC) BQ,)

These features are derived from binary images, the black and white
pictures corresponding to CF. Pixels with the same color connected
only diagonally belong to a different cloud (background) entity
wheareas pixels with the same color connected to the east, west, north
or south neighbors belong to the same cloud (background) entity. The
number of clouds, NC, and the number of background areas, NB, are
defined in this manner. We then obtain the cloud’size distribution as
well as the background size distribution. Let us define by hc(i) and
hb(j) the number of pixels associated with cloud or background entity i
and j, respectively; i=1, 2...NCand j =1, 2,...NB. Further let
all clouds and background areas be ordered from smallest to largest.
Then the cloud connectivity, CC, is defined as:

cc {hc(k)/(mCF) CF =0 (3.9)

1 CF =0
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where k is the cloud entity such that the inequalify:

Z hc(4) 2 mCF/2
i=1,k

is satisfied from the summation of the cloud entities ordered in size.

Similarly, the background connectivity, BC, is defined as :

hb(k')/ (m(1-CF)) CF =1
s -f

(3.10)
1 CF =1

where k' designates the background entity for which the inequality}

I b 2 -
P J) 2 m(1-CcF)/2

is satisfied from the summation of the background entities ordered in
size. Thus in the above equations, hc(k) and hb(k') are the median
sizes of the NC clouds and NB backgroud areas, respectively. Fig. 3.2
illustrates the extraction of the connectivity features.

Theoretically, NC (or NB) may reach a maximum value of m/2
(checkerboard pattern). In the present case with m = 4096 and 2 km
resolution, the maximum number of clouds encountered was 340. The
reader interested in vertical retrievals will find it useful to know
the 1location and size (hb(NB)) of the largest hole in the cloud field
obtained here. CC is most useful for differentiating cumulus and
stratocumulus with CC smaller for cumulus (highly disconnected ele-
ments) and higher for stratocumulus (clouds more highly connected into
a few entities).. For stratus decks, CC is normally near unity. BC
turns out to be a good detector of holes and is notably low for open

cells.




Fig. 3.2 Examples of connectivity indices on an 8 X 8
pixels grid. Clouds are black. a) Simulated cumulus with
NC = 13, NB =1, €C = 1/16 = .063, BC = 1. b) Simulated
open cells with NC = 3, NB = 8, CC = 33/38 = .868, BC =
4/26 = .154.
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3.2.5 Power spectrum features (51',55)

Two-dimensional power spectra are very useful to obtain information
on the extended structure of a cloud field, that is on the dominant
wavelengths and orientations characterizing it. Garand and Weinman
(1986’ have provided examples of two-dimensional power spectra taken

over cloud areas. Utilizing the same notation as in their paper, the
VFourier transform of the image f(k,l) is:

Qu,v) = IIKLKXI Lzl £(k,1)exp{-21in(ku/K + 1v/L)} (3.11)
k=0 1=0
u=0,1,...,K-1 ;s v=0,1,...,L-1
with K,L as spatial dimensions. The power spectrum intensity PS(u,v) =
IQ(u,v):", is defined as the sum of the squared values of the real and
imaginary parts of the Fourier transform A(Rosenfeld and Kak (1982)).

The orientation, @ and wavelength )\ assocjated with any (u,v)

component are readily obtained from: =
3

= tan'l(u/v) (-7/2 S & S n/2, off x axis) (3.12)
and

A= sp(u2+v2)"! (3.13)

with r the unit resolution of the pixels and S = K = L is the linear
dimension in pixels of the scene, assumed square. The power spectrum
is symmetric with respect to the origin. It is clear that streaky
patterns have streaky power spectra and circular patterns, such as
those of open cells, tend to have their dominant components all around
the origin. Overcast or clear fields will tend to have all the energy

at or near the origin (infinite wavelength). From this experience, a



29

streakiness factor is defined in the following manner:

i) Find the maximum value, PSm of PS(u,v), (u,v) qb (0,0).

ii) Threshold all vaiues of PS{u,v) below 20% of PSm to zero. This
eliminates the influence of high frequency components which are
irrelevant to the appearance of the mesoscalé morphologies and
contribute only to local grey tone variability. To eliminate a possible
false peak due to having one of the eight sensors off (producing hori-
zontal stripes), the component corresponding to such 8 km periodicity
(the (0, 16) in our case as derived from (3.13)) is set to zero.

iii) From this thresholded power spectrum, estimate the absolute value

of the correlation coefficient, weighted by PS(u,v), as a measure of

streakiness:
ST = Isxy] / (sxsy)? (3.14)
With: sy =3Iz VZPS(U,V) R sxy = I I uVPS(ﬂ.V) y Sx = L I u2PS(u V)
e o v o v » b4

u=0,1,...8-1 ; v=0,1,...5-1 3 (u,v) = (0,0) .

Recognizing that if the pattern is oriented in the north-south or east-
west direction, the measure is misleading as ST = 0, ST is also
evaluated from a set of axis rotated 45 degrees from the nominal set
and the maximum of the two estimates of ST is retained. ST is an
essential feature for the detection of directional patterns: classes 7
and 8.

Observation of open cellular patterns have shown that the typical
size of open cells is 30 km (Agee and Dowel (1976), Beniston (1985)).

Considering this, we designed our second power spectrum feature, SE for
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spectrum energy or intensity, to be the fraction of intensity in the
power spectrum characterized by wavelengths between 20 and 40km. Let

the radius rd in the power spectrum be defined as:

rd = (u? + v2)! (3.15)

then, defining TE as the total intensity in the power spectrum,
excluding the (0,0) component (which represents the mean grey level)
SE is defined as:

SE =1 IPS(u'v')/TE (3.186)
u' v'

with (u',v') such that: tdl < rd(u',v') < 'dz

The thresholds that we used in}rd are 3.1 and 6.1 correspondiﬁg to
wavelengths of 41.3 km and 21.0 km, respectively, from Eq. (3.13). The
value of SE turned out to be clearly higher for open cellular patterns,
classes 9 and 10, as opposed to all other classes.

Bunting and Fournier (1980) were among the first to test spectral
classifiers. Their results were somewhat disappointing: an accuracy of
46% for a 6-class scheme. Later, their work was pursued by Logan et
al. (1983). Our experience reveals that power spectra do reveal unique
information on the mesoscale organization; however, it is not a good
idea to rely uniquely on such features. In near overcast situations,

power spectra reveal little information.

3.2.6 Feature extraction example
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Fig. 3.3 Example of a cloud field belonging to class 7
(cloud streets) with parameters: CF = .363, LO = .320, MI
= ,043, HI = 0, HT = 2.33 km, LR = 0, AL = .581, NC = 179,
ML =1, BC = .208, CC =. 036, ST = .915, SE = .228, Tb =
280.5 K Ts = 288.2 K. The four images are : a) visible,
b) binary, C) power spectrum of the visible image (only
the 32 X 32 center portion of the 64 X 64 spectrum is
shown) and d) infrared.
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Fig. (3.3) shows an example of the visible, infrared, binary and
power spectrum images for a cloud field along with the 13 features
(see Table 3.1) extracted from those images. The sample is a typical
class 7 field (cloud streets). The field is single layered, has a high
streakiness factor and correspondingly a streaky power spectrum and
numerous small clouds which result in a low cloud connectivity.

The quality of the thresholding procedure to obtain the cloud
fraction can be appreciated by comparing the visible and binary images.
The major component at (1, 8) in the power spectrum cofresponds to an
orientation of -7 degrees off the x axis and a wavelength of 16 km from
Eqs. (3.12) and (3.13), in agreement with the hard copy image.

Except for CF = 0 indicating class 1, no one feature, alone is
decisive in inferring a class. Together however, this set of features

is very powerful, as we are about to demonstrate.

3.3 Classification methodology and results
3.3.1 Multivariate Gaussian discriminant function

A sample is defined by its features. Let x represent the vector
of features and c¢ the number of classes. A common way to design a
classifier (Duda and Hart, 1973) is to opt for some discriminant

function g‘(x),'i=1,...c and to assign the sample to class i if

giGa >g Ga for all j = 1
3 (3.17)

Due to its analytical tractability, the multivariate normal (or

Gaussian) density is the most widely used discriminant function. The
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general multivariate normal density is written as:

~ 1
p;(x) = ~3G-i)T gy 3.18
i (2m) /2 lIiII expl-(x-u))" I G-0))) (3.18)
where ¥y = EG) amd I - E (G GEET)
XeX xex 1

with E the expected value operator and X; the ensemble of samples
belonging to class i. In Eq. (3.18), d is the number of features or
dimensionality, ,4(‘: is the d-dimensional mean vector of the features and
£& is the d X d covariance matrix. 2& is symmetric and positive definite.
Thus, such a classifier is completely defined by 4 and fo’for each class
i1 with g (x) = p¢(x) used in Eq. (3.17). The notation Y = N(M, &)
indicates that the vector Y belongs to a multivariate normal population
characterized by A{.‘andf,‘. This type of classifier is the basis of our

classification algorithm to be described in section 3.3.3.

3.3.2 Theoretical separability estimates from Monte Carlo

simulations

A very useful tool to test the theoretical sepafability of the
data is to generate artificial samples, that is, sample populations for
each class having the same mean and covariance matrix as the real data.
These artificial samples are then classified by using Eq. (3.18) in Eq.
(3.17). The result 1is an upper limit to the separability of the
classifier. If this limit increases as we change the features, it

means that the new choice of features is more appropriate. If on the
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other hand the theoretical limit decreases while the apparent separabi-
lity of the real data increases, this is an indication of
toverfitting' and results on independent data{are prone to be poorer
than those claimed from the training set. If we decompose the
covariance matrix 2{{ into the lower triangular matrix A such that AAr
= JE( (Martin et al., 1965), a vector Y beionging to the desired

distribution N( Ay, €&;) is generated from:

-

(Scheur and Stoller, 1962) with each of the d components of r obtained
from an ordinary univariate Gaussian random generator belonging to
N(0,1). We wused the Box-Muller method (see Forsythe et al, 1973,

chapter 10).

3.3.3 C(Classification algorithm and results on awdependent
data set

The classification process was supervised in this study. In
supervised classification, the analyst labels each sample with a class
number and trains the classifier to assign the proper class. The
algorithm is built in two stages, as shown in Fig. 3.4. In Stage 1, the
sample is assigned a temporary class using a multivariate. normal
discriminant function. Thus, Stage 1 is a one-step method as opposed to
a hierarchical method. Fﬁr that reason, it is very efficient as well as
simple. Stage 2 has an error-correcting function only, that is, the

result of Stage 1 is checked according to some simple criteria based on
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the most discriminatory feature(s) between the class found in Stage 1
and the class that waé selected second best. Stage 2 was designed
after it was realized that the vast majority of errors were samples
that belonged to the second best choice from Eq. (3.17). This was
fortunate for it saved much effort in trying to find the ultimate tree
structure. With 13 features and 20 classes, the numﬁer of possible
combinations is enormous. A revealing example of this situation is the
work of Mui and Fu (1980) on automated classification of nucleated
blood cells in 17 classes.

a) Stage 1

A summary of the classes assigned to the 5845 samples extracted
from February 1984 pictures revealed that most classes had at least 100
samples. From images taken in January 1984 over the same region, a
small set (96) of extra samples were taken so that each class now had
over 100 samples. Then, exactly 100 samples per class were randomly
selected to define a training set of 2000 samples.

In order for all the features to have similar weight, they were
normalized to zero mean and unit variance. The means of the features
and their standard deviations over all the 2000 samples are given in
Table 3.2. The feature vector x is transformed to x, its normalized

version, through:

R = (% = g) /o0
& - u%) /o* (3.20)

- -d .
with ,q * and @ * being the means and standard deviations 1listed in

Table 3.2. For the remaining part of this study, the feature vector?t



Table 3.2 Means and standard deviations of the 13
features for the ensemble of 2000 samples forming the
dependent data set.

Feature Mean Stand. dev.
ST .5595 «2684
SE .1821 «1571
AL .5165 .1977
HT 4.7470 2.9740
BC .5781 .3665
LO «1600 .2258
MI .3843 3394
ML .8127 .2776
CF .6760 .3222
NC 30.58 41.08
LR .0479 .1361
ccC «7944 .3147

HI «1317 .2842
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refers to the normalized feature vector and the circqulex accent is
dropped. Table 3.2 was obtained following the final labeling of the
samples (not the initial one with 100 samples per class). The features
are not norméliy distributed over the ensemble of the data. This 1is
not a problem since the only concern is that the assumption of normal
distributions holds for the features within each class.

Extensive tests were made to find out the optimum set of features to
be used collectively in Eq. (3.18). A useful criterion is the

divergence D;SKbetween two classes i and j for feature k:

D gyl (3.21)

ijk °ik+ ajk
It {s easy to see (from the overlap of circular areas centered at
M;Kand,l,ﬁxand of radius 0{Kand fi\( , respectively) that a feature. with
Dk > 1 has discriminatory skill whereas one with Di{jx < 0.5 has poor
separating power. Another useful tool in selecting the features is
their correlation coefficient between themselves over the ensemble of
data, as shown in Table 3.3. Only one out of two or more highly corre-
lated features ( r > 0.7) is retained. Using the divergence criterion,
the information from Table 3.3 (and similar information from other
features being investigated) along with Monte Carlo testing of the
separability, we wultimately found an optimal set of features to be
used in Stage 1. The number of features in the set is 11; they are ST,
SE, AL, HT, BC, LO, MI, ML, CF, NC and LR. The other two features
defined in chapter 2, CC and HI, will be used in Stage 2 only. One can
see from Table 3.3 that the maximum correlation between any two

features among the eleven selected for Stage 1 is 0.63 only. Most
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correlation coefficients are very low indicating minimal redundancy.
For the boundary layer classes. numerical instability may occur
when inverting the feature covariance matrix as CF = LO + MI exactly
for all the samples of the class (HI = 0). This problem is easily
solved by adding Gaussjian noise in the proportion of one tenth of a
percent to CF. 1In this manner, all covariance matrices are invertible.
In addition, for some classes, a particular feature may be a constant
resulting in a zero element on the diagonal of the covariance matrix.
For example, ML = 1 for all samples of classes 1 to 7. Again, this is
easily solved by not allowing the diagonal elements of the covariance
matrix to be below a preset minimum value; the value selected is 0.005.
This is equivalent to adding noise to that feature in the proportion of
0.7% of one standard deviation (recall that all features have unit
étandard deviation over the ensemble of data) and therefore this proce-
dure does not affect the separability.
pointing as we knew from unsupervised classification testing (where the
computer defines classes with means as separated as possible, see
Garand (1986, Appendix A) or Duda and Hart (1973, section 6.9)) that
97% separability could be achieved from the selected set of 11 fea-
tures. We found that the cause of the low separability was simply
imperfect labeling of the samples. Indeed, with twenty classes, many
border~line cases are to be expected and subjective decisions based on
height and albedo characteristics are subject to error. Thus a good

"truth" set 1is difficult to build from the subjective judgement of

The first result was a separability of 54%. This was disap-
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nephanalysts;alone. Therefore, we adopted the following man-computer
interactive.felabeling procedure, a methodology where the human still
supervises the labeling process, but is helped in his task by objective
measures extracted by the computer:

1) Print the 1identification number of all incorrectly classified
samples, their actual class number and in whiéh class they are
apparently misclassified. From the hard copy images, decide |if
relabeling is desirable. Examine the printout of the features to
understand the logic of the classifier.

ii) Resubmit. If the separability still increases, both from the
actual data and from Monte Carlo simulations based on the updated means
and covariance matrices, go back to i.

The first iterations represent long hours of work as each of the
few hundreds misclassified samples was considgred individually.
Examination of the features often proves useful since each feature
7providg§ a q;rferent way pf congidering the sample. The first
iterations rapidly increases the separability. As the jiterations
progressed, the analyst was training himself in defining precisely what
was previously all subjective, clarifying all the decision thresholds.
Theoretical separability topped at about 95% while actual separability
topped near 83%. It was realized that trying to go beyond that result
led to overfitting.

As was previously mentioned, it turned out that 85% of the
misclassified samples were the second choice of the classifier. This

led to the error-correcting Stage 2.
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2) Stage 2

The second and final stage was appended to Stage 1 resulting in a
new series.of iterations. Let C1 be the first choice of the normal
density classifier, in other words the result of Stage 1 and let C2 be
the second best choice. Based on at most two features, a decision is
made to change or not or not to change the result to C2. In Stage 1,
using all 11 features together led to some errors because for most
pairs of classes, only 1 to a few features are required. The others are
irrelevant. We opted for a simple decision rule that did not require
new storage of constants: assign the sample belonging to class i = C1

to class jJ = C2 if:

(x, - u,,)? (x,-u,,)?
. *x T Yk > 1 K4k
k=1,kmax aik k=1, kmax ojk

where Kk is a feature identifier and kmax is either 1 or 2. Table 3.4

(3.22)

shows the features used in Stage 2 for all pairs (C1, C2) to decide
between €1 and C2. Where there is no entry, Eq. - (3.22) is skipped.
This is based on experience that either the ambiguity C1 wversus C2
néver occurs or that no improvement in their separability can be
achieved from Eq. (3.22). Where the entry in Table 3.4 is symmetric,
only one feature is used (kmax = 1) and where it is not symmetric, two
features are used (kmax = 2). For example, an ambiguity between
classes 2 and 12 is resolved from features HT and LO. The reader may
appreciate that the feature(s) selected in Table 3.4 are the most
relevant to the pair (C1,C2) considered. Note that Eq. (3.22) is

= 2
executed regardless of how large the ratio pgq(X)/pca(x) may be from
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‘Table 3§
Stage

nb

OJAOL WD

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

Sequence‘of conditional

class, C1l:

Conditional statement

Cl =1, CF > 0.01

CF < 0.01

Cl =4, C2=7, ST > 0.5

Cl =9, C2 =14 or 15, SE < 0.1
Eq. (3.26) satisfied

C =9, ST > 0.9

C =7, ST < 0.5

cC=5, 6 or 11, BC > 0.9, CC > .85
and HT < 2km

C=5o0or 6, AL > 0.6

C =5 or 6, HT > 3.5km

C = 14 or 15, HT > 6km, AL > .55
C = 14 or 15, HT > 6km, AL < .55
C =6 or 13, HT < 3km, BC < 0.1
C =10, AL < 0.3

C =9, CF < 0.2

C =5, CF > 0.5

C =6, NC > 80

C =6, CF < 0.5

C=3, CF > 0.5

C =4, CF < 0.5

C =4, ST > 0.5

C =17, AL > 0.55 .. .

C =18, AL < 0.55

C = 11 or 12, HT < 1.5km

C =12, CF < 0.85

C =11, CF > 0.95

C = 12, HT > 6km

C =18, HI > 0.9, ML > 0.9

C =17, AL < 0.25

2nd best class from Stage 1;

statements

2. The decision on the right is executed
statement is satisfied. C:
Stage 1; C2:

defining
if the

class chosen from

E: exit Stage 2.

Decision

OOOOOOOQOOOOOOOOOOOOOO naNnaaanao
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c2, E

1, E

7, E

Cc2, E

c2

8, E

3, go to 19

2, E
11, E
13, E
18, go to 23
17, go to 22
4, go to 20
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go to 20

-
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Stage 1: attempts to improve the results using that ratio failed.

For the_ sake of elegance and simplicity, it was planned to use
only Eq. (3.22) in Stage 2. We found however that by adding simple
conditional statements, the result could still be improved. Eq. (3.22)
sets decision thresholds. Most of these thresholds are satisfactory.
We may however insist on a specified threshold. Usual practice sepa-
rates scattered from broken fields with a threshold on CF of 50%. Thus
we have set that threshold exactly using a conditional statement for
pairs of classes (3,4) and (5,6). Similarly we specifically force the
clear class to have less than 1% cloud cover. Other statements arise
from experienée that Eq. (3.22) is not successful with only two
features. Note that the sample may be relabeled in a class different
than C2. In all, 29 such conditional statements were implemented in
Stage 2. There 1is no room here to comment on each of them but the
reader will find the reasoning behind most of these statements fairly
Bﬁvidus. The entire Stage 2 is prébiﬂed in Table 3.5. The fifth
statement corresponds to Eq. (3.22); it is the most important statement
since it applies for all Cl1 values whereas other statements apply for a
particular value of Cl1.

Table 3.6 shows the results after Stage 1 énd Table 3.7 provides
the final result following Stage 2. An improvement of 11% is gained
from the 83% obtained from Stage 1. Stage 2 is particularly beneficial
in correcting errors between class pair (3,5) using the new feature CC
and errors associated with class 17 using the new feature HI with AL

and ML. Errors between pairs (6,7) and (3,7) are corrected by using ST
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and the discrimination of open cells from rolls is solved through the
combination of their most characteristic feature, namely BC and ST
résﬁéctively. Comparing the entries on the diagonals of Tables 3.6 and
3.7 reveals that all classes benefit from Stage 2 except a loss of 1
sample for classes 4 and 14 and a loss of 2 samples for class 6. Note
that systematic errors have disappeared. In the course of the
iterations that 1led to the development of Stage 2, the theoretical
separability increased only marginally, from 95% to 97%, whereas the
practical separability inceased to 95%. At that point, we considered
that our pattern recognition algorithm was final. As depicted in Fig.
(3.4), a dominant asset of the classifier is its simplicity. The model
is entirely defined by the feature means and covariance matrices for
each class presented in Appendix, the definition of Stage 2 from Tables
3.4 and 3.5 and the normalization constants of Table 3.2.
From Table 3.7, the new number of samples in each class
vafigg from 28 iﬂﬁgléss 4 to 184 inrélass 17. Thisr represents a
substantial change from the initial partition of 100 samples per class.
These changes are due not only to labeling errors but also to redefini-

tion of some classes during the analysis process.

Tables 3.8 and 3.9 provide the non-normalized means and
standard deviations of the features for each class. Fig. 2.2, the
plot of HT versus AL, was based on these tables. Table 3.8 reveals the
quality of the features chosen. One to a few features are maximized or

minimized in each class. The reader will notice, for example, that the
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streakiness factor is clearly higher for the directional classes 7 and
8 while SE is also distinctly higher for open cellular patterns, i.e.
classes 9 and 10. The background connectivity, BC, is minimized in
classes 8, 9 and 10 revealing the presence of holes in those cloud
fields. The multilayer index is low in multilayered classes 14 to 18.
The cloud connectivity permits ready separation of cumulus and
stratocumulus. The detection of thin cirrus is greatly facilitated from
feature LR in conjunction with HT. Tables 3.8 and 3.9 are a compact
objective description of the classes presented subjectively in Chapter

2.

3.3.4 Results on independent data

In order to test the validity of the pattern recognition
algorithm, an independent data set made of 5 images with 204 samples
per scene was assembled. Thus, the independent set has a total of 1020
samples, all taken at 18 GMT in 1984. The actual dates are January 8
and 22 aﬁa Febru;fy 7, Siand 12; | | |

An example of machine classification for January 8, 1984 at 18GMT
_ is provided in Figs. 3.5a,b. We had the data for all days of January
at 18 GMT and February at 16 GMT and 18 GMT on tape. Since the depen-
dent set was derived from February, 16 GMT data, it was desirable to
consider January data for the independent data set. Three of the days
were, however, taken in February 1984 but those scenes differ in time
by two hours from those of the training set. The reason for not taking
all images of the test set in January was to provide a good representa-

tion of all cloud classes from only 5 images. For example, there were
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no extensive areas of stratus in January (class 2 for which February 12
is a good case) and no extensive areas of open cells (classes 9 and 10
for whicﬁ'February 7 and 8 are good cases). In addition, we recall
that only about one third of each image was selected for the training
set. Considering those factors, the test set is considered to be at
least 80% independent of the training set and all 1020 samples differ
from those used in the training set.

In addition to the author, two senior meteorologists worked
on the verification to be presented here. Among other credentials,
both researchers have had many years of experience analyzing digital
visible and infrared GOES imagery. We refer to these consulting
analysts as Analyst 1 and Analyst 2. Each analyst worked separately,
following the procedure outiined here:

1) The visible and infrared images are displayed on the video screen of
MCIDAS. The grid of analysis with 204 grid boxes is superimposed on
the images.

2) The analysts have a hard copy of each of the 5 grids with the
machine class number assigned by the algorithm in the middle of the
box. They also have the worded description of the 20 classes and the
examples presented in Section 2. The task is to examine both wvisible
and infrared images for each sample and to correct the computer answer
if need be. If they do find an error, the analysts are asked to
provide two numbers: the corrected class number and the class number
that they feel is second best. The purpose of the second number is to

find out how many times the computer has selected the second best
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choice.
3) The information provided by each analyst is keyed in the computer
to derive statistics.

The results are presented in Tables 3.10 to 3.13. Table 3.10
shows the overall accuracy inferred from each analyst. These results
indicate that while the two consulting analysts agreed with an overall
accuracy of about 73%, the author was estimating that same statistic
considerably higher at 87%. Having designed the classifier, the
author certainly had more experience with the particular choice of
classes selected while the consulting analysts may have had a different
view of what each class is or should be. It may be argued that the
author is biassed towards agreeing with the machine result. This
argument is partially dismissed upon noting that the author flagged the
samples as incorrectly classified while the consulting analysts flagged
them as correctly classified for 3.0% of the data set with respect to
Analyst 1 and for 5.3% of the data set with respect to Analyst 2. More
importanly, Table 3.11 indicates that the consulting analysts agreed on
75.2% of the samples to be either right or wrong. Thus for 24.8% of
the samples, one of them flagged the result as right while the other
flagged it faulty. Obviously, this means that the machine result for
those samples 1is either right or fairly close; if it is ultimately
considered right, the accuracy inferred from the consulting analysts
would rise to 83.8%.

The indication that the machine result is virtually always close

is provided by Table 3.12. For only 2.9% of the time, all 3 analysts



Table 3.10 Overall accuracy (%) estimated by different
analysts for the 1020 samples of the independent data sgt,
with and without considering cases where the machine
selects the second best choice.

Analyst Strictly correct At least 2nd best
AUTHOR 87.1 95.6
ANALYST 1 73.1 82.5
ANALYST 2 72.3 81.3

Table 3.11 Percentage of agreement between analysts on
samples being correctly or incorrectly classified.

agree agree overall

correct incorrect agreement
AUTHOR/ANALYST 1 68.1 9.9 78.0
AUTHOR/ANALYST 2 ' 65.0 7.6 72.6
ANALYSTS 1 and 2 59.0 16.2 75.2

Table 3.12 Percentage of the samples for which none, one,
two or all three analysts agree that the machine result is
right. Results given for strictly correct and for machine
result at least second best among twenty classes.

Number of analysts 0 1 2 3
agreeing

Stricly correct 6.1 14.8 24.2 54.9
at least 2nd best 2.9 8.2 20.6 68.3

Consensus: at least two analysts agree:

Stricly correct: 79.1
at least 2nd best: 88.9



-Table Z/ I3 Consensus of correct classification for each
class. Machine number of samples for each class given
next to the number of those samples for which at least two
out of three analysts agree with the machine result.
Resulting percentage of agreement 1is shown in right
colunmn.

Class Machine number Number for which Percentage of
of samples consensus agrees of agreement
1 22 22 100.0
2 20 20 100.0
3 90 89 98.9
4 14 12 85.7
5 41 39 95.1
6 17 17 100.0
7 78 72 92.3
8 79 74 93.7
9 78 : 60 76.9
10 56 36 - 64.3
11 102 17 75.5
12 40 30 75.0
13 9 4 44 .4
14 30 19 63.3
15 24 19 79.2
16 61 61 100.0
17 72 71 98.6
18 123 122 99.2
19 22 22 100.0

20 42 41 97.6
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agree that a sample is incorrectly classified and does not qualify as
second best. This results matches the 97% theoretical separability
obtained from Monte Carlo simulations. Table 3.12 describes a
consensus that we present as our final estimate of the ciassifier
accurac&: two out of three analysts agree that the overall accuracy is
79.1%. If second best choices are considered as correct, the overall
accuracy rises to 88.9%. It was previously admitted that the test set
could have partial dependence with the training set. The results for
the two January days (408 samples which are totally independent from
the training set) were very similar to the numbers quoted above: 77.4%
stricly correct and 86.7% at least second best. Thus, the results
presented in Tables 3.10 to 3.13 are in all likelihood representative.
Table 3.13 presents, class by class, the results of the
classification based on this consensus adopted as a method of
verification. It is seen that 12 of the 20 classes scored above 90%.
Boundary layer classes, including stratus, streets and rolls are
particularly well classified as well as high-level cloud classes; in
particular, all thin cirrus (class 16) samples detected by the machine
were confirmed by the analysts. The result for class 13 (44%) is not
representative, being derived from only 9 samples (the result was 85%
correct on the dependent set); most of the errors in class 13 are
actual cirrus seen as single layered clouds at mid-level. There is a
problem in overselecting class 10, convective open cells, when some
small holes are present in a mid level overcast. For multilayered

classes 14 and 15, an acknowledged problem is their selection when thin
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cirrus overrides cumulus or stratocumulus. The machine interprets the
higher deck as altocumulus because the apparent height is below 6 km
and because the cloud albedo is higher due to the presence of the lower
deck. The solution to this problem would probably require an additio-
nal spectral channel sensitive to the presence of ice crystals.

The need for an objective method of classification is confirmed by
examination of the agreement between the three analysts which is below
79%. We stressed that this agreement is on a single number to be
selected as right or wrong. In an experiment prior to the verification
experiment described above, Analyst 1 and Analyst 2 were asked, for the
same 1020 samples, to label the samples with a class number from 1 to
20, without having the machine result as information (only the descrip-
tion of the classes and the catalog of four examples for each class
shown in Garand (1986)). The agreement was surprisingly low: 37% on a
strict basis (as opposed to 75% when they were given the machine
answer), raising to 55% if their second choice was considered. This
result shows once again, this time without leaving any doubt, that
objective classification provides results that are more reproducible,
less ambiguous than the subjective techniques used in the past.

3.3.5 Computer time

We now examine the computer time required to use the proposed
feature extraction and classification scheme. It requires 2.5 s per
box on a medium size computer (IBM 4381). Virtually all the time is
devoted to feature extraction, the classification taking less than 0.1

s. The most time consuming part, about 1.2 s (it wvaries with
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morphology), goes into the estimation of the connectivity indices as
each cloud or background element is catalogued individually. The
algorithm is not optimized for efficiency; the author gave only
reasonable attention to this aspect. Yet, the 204 boxes of our 20 X 20
degree demain can be classified in about 8.5 minutes. At the scale of
(128 kmfb, the entire planet, land and ocean areas included (31130
boxes), coqld be analyzed in 21 hours with the same computer, if the
scheme was generalized for usage over land masses and for all seasons.
Optimizing the code and using a larger computer, we hypothesize that a
factor of 2 could be gained. Daytime only application leads to another
reduction factor of two. Further, a gain by a factor of 3 to 4 would
be obtained if it was shown that the résults of the classification are
not significantly deteriorated from using a resolution of 4 km in the
visible as opposed to 2 km. Still, the task is costly for a single
computer as maps are desirable every three hours. However, this task
is perfectly suited for parallel processors since each box is
considered independently from the others. We conclude that, with
vectorized machines or cooperation between various satellite data

centers, the method could satisfy the time requirements of ISCCP.
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4. CLIMATOLOGICAL APPLICATIONS
4.1 Cloud type climatology for January and February 1984 in twenty

classes. .

Table 4.1 provides the number of occurrences of each cloud type
for January and February 1984. Table 4.2 gives the means of conven-
tional cloud parameters for the same period. Although the cloud frac-
tion for the two months was virtually the same, 63%, January was
characterized by a value of HI 6.9% higher, compensated by a LO value
5.4% lower than in February. As a consequence, the mean value of HT is
higher in January by 700 meters. The mean albedo is similar for the
two months. Cumulonimbus cloud classes, 18 and 20, account for 25.1%
of the samples in January whereas they account for only 16.5% in
February. February was characterized by several cold air outbreaks,
including a spectacular event that lasted four days between the 7th and
the 10th. As a result, mesoscale cellular patterns (classes 8, 9, 10)
are more numerous in February. Stratus, class 2, tend to occur
extensively or not at all; extensive stratus occurred February 12 and
13 but no such cases happened in January resulting in a marked
discrepancy for that class. Another remarkable result, which applies to
both months, is that broken cumulus occurs less than 1% of the time as

opposed to 11% for scattered cumulus.

As will be shown in Part 2, each cloud class is associated with
a different probability of precipitation. Having a scheme as detailed

as this one permits more accuracy than using only global statistics
¥ such as those provided in Table 4.2.



~ Table 4.l Nunmber of occurrences of each cloud type for

January and February 1984, and resulting percentage of
occurrence.

January February
Class nb % nb %
1 325 5.49 289 4.94
2 20 0.34 141 2.41
3 638 10.78 641 10.97
4 29 0.49 50 0.86
5 296 5.00 473 8.09
6 48 0.81 184 3.15
7 190 3.21 166 2.84
8 123 2.08 141 2.41
9 126 2.13 193 3.30
10 ' 53 0.90 112 1,92
11 304 5.14 315 5.39
12 182 3.08 295 5.05
13 113 1.91 149 2.55
14 195 3.30 210 3.59
15 192 3.25 : 210 3.59
16 662 11.19 412 7.05
17 . 681 11.51 729 12.47
18 906 15.31 601 10.28
19 257 4.34 170 2.91
20 576 9.74 364 6.23
Total 5916 5845

Table 4,2 cloud parameter means for January and February
1984 over the entire domain.

Feature January February
CF 0.638 0.630
Lo - 0.073 0.127
MI 0.327 0.337
HI 0.239 0.170
HT (km) 5.8 5.1

AL 0.526 0.503




Table 4.3a Given a cloud type observed from ship, proba-
bility of presence of other cloud types in winter (Dec.,
Jan., Feb), for the oceanic region bounded by 30-45N
latitude and 60-90W longitude (after Hahn et al., 1982).
Ac: altocumulus, As: altostratus, Ci: cirrus, Sc: strato-
cumulus, Cb: cumulonimbus, St: stratus, Cu: cumulus, Ns:
nimbostratus. A X indicates a pair of types that are never
reported together by observers.

Given Probability of cooccurrence

As/Ac Ns Cu Sc Cb None
Cs 60 12 22 44 6 18
As/Ac 0.4 21 58 8 12
Ns 1 63 2 23
Cu X X 57
Sc/st : X 40
Cb 48

Table 4..36 Probability of occurrence of each loud type
for same time period and region as in Table 34 , and

percentage of occurrence alone or not (after Hahn at al.,
1982).

Type % of occurrence alone multilayers
Clear 8

Ci 29 5.2 23.8
As/Ac 39 4.7 34.3

Ns 9 2.1 6.9

Cu 26 14.8 11.2
St/Sc 50 20.0 30.0

Cb 5 2.4 2.6
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An attempt was made to compare.our results to statistics of
cloud type obtained from ships. Hahn et al. (1982) provided a compre-
hensive study of cooccurrence of cloud types over the ocean, based on
twelve years of observations. Fortunately, one of their grid boxes
represents the same region as the one studied here. Their results are
condensed in Table 4.3. Among other questions, we are interested in
knowing the percentage of multilayered systems. According to Table
4.3b, that percentage 1is 42.8% since single layered cloud fields,
including clear sky, occur 57.2% of the time. We assume that cloud
classes 1 to 11 and 13 are single layered. From Table 4.3a, if we
further assume that cirrus associated classes 16, 17 and 19 are multi-
layered 82% of the time, nimbostratus (class 12), 77% of the time and
cumulonimbus classes (18 and 20) 52% of the time, then, by pooling the
data for January and February together, we obtain that 41.1% of the
cloud systems are multilayered. This result compares well with the

climatological estimate of 42.8% based on ship observations.

Other comparisons are directly possible. The clear class
occurred 5% of the time versus 8% from ship climatology. Perhaps, the
difference is the result of the scale of analysis, which is much larger
from satellite (128 X 128 km) than from the ground (about 40 X 40 km).
As another example, Hahn's data suggest that cumulus alone happens
14.8% of the time whereas our limited data yield 14.5%, if classes 3, 4
and 7 are booled as cumulus-alone classes. A more relevant exercise
would be to compare directly coincident satellite versus ship-observed

cloud classes, especially multilayered systems. For example, the data
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for classes 14 and.15 suggest that altocumulus (Ac) occurs the same
proportion. of the time with either cumulus (Cu) or stratocumulus (Sc)
whereas Table 4.3a reveals that the pair Ac/Sc occurs almost three
times more often than the pair Ac/Cu. From such studies, one could
fill in, statistically, what the satellite cannot see, namely what is
underneath the higher cloud deck.
4.2 Monthly , seasonal maps of cloud fraction
4.2.1 Monthly maps

Figs. 4.1a and 4.1b show the mean cloud fraction for January and
February 1984. The interpolation procedure is that of Hibbard and
Wylie (1985) and the computer system used is MCIDAS (see Suomi et al.,

1983). The maps are produced from 29 satellite measurements for each of

the contiguous 204 grid boxes. As seen in the previous section, the
overall cloud fraction for the two months was the same. The detail
shows noticeable differences, however. January is characterized by a

marked north-south gradient, south of latitude 35 N, whereas no such
feature occurs in February except in the south-east part of the domain.
Both months have a strong maximum (above 80% ) in the latitudinal belt
37-40 N south of Nova Scotia. January shows a second maximum of 83% off
Cape Hatteras. The extended region of high cloud fraction in January
indicates the mean track of the frontal systems that frequently
occurred in that month. The lack of gkadient of cloud fraction towards
the tropics in February may be explained by the few cold air outbreak
episodes that penetrated far south.

4.2.2 Seasonal maps and comparison with ship data
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Fig. 4.l satellite retrieved mean cloud fraction for: a)
January 1984 (N = 5916) and b) February 1984 (N = 5845).
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We have compared our estimates of cloud fraction with ship
observations. Figs. 4.2a and 4.2b are seasonal maps, with January and
February pooled together, of cloud fraction obtained from ships and
satellite respectively. These maps are produced from 1275 coincident
ship reports and satellite retrievals at 18 GMT. The matching procedure
is explained in Part 2. We recall that ground observers report the
cloud cover in octas, that is with increments of 0.125. The results
show good agreement in the general pattern and its details. However,
the cloud fraction observed from ships is often 10 to 20% higher than
the satellite estimate. It is a known fact that ground observers
overestimate (often by one to two octas) cloud fraction due to angular
perspective, especially for low cloud fields with true cloud fraction
in the range 30-70%. Minnis and Harrison (1984a) reported similar
findings (see also references herein).

Fig. 4.2c presents the satellite retrieved cloud fraction for the
two months using all the data (11,761 retrievals). While Figs 4.2b and
4.2c used the same method for the estimation of cloud fraction, Fig.
4.2c was produced with complete sampling: 9.2 times more data samples.
The result is a smoother pattern where, in particular, the closed low
near Bermuda vanishes. This result emphasizes the need for good
sampling and resolution for a geophysical field as variable as cloud
fraction. We have presented maps of cloud fraction (CF). Maps of
other parameters of interest, such as LO, MI, HI, HT, Ts, Tb and AL are

also available from the present method.
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Fig. 4,2~ Mean cloud fraction for January + February 1984.
a) Observed from ships b) retrieved at the location of the
ships (N = 1275, distributed over 32 grid points).




Fig. ‘//9- Continued. c) Satellite retrieved mean cloud
fraction for January + February 1984 using complete
sampling (N = 11761, distributed over 204 grid points)
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5. SUMMARY AND CONCLUSION

An automated algorithm to classify clouds in twenty classes has
been  presented. A novel aspect ié the attention given to mesoscale
cellular patterns: directional patterns such as cloud streets and rolls
are detected (we believe for the first time) as well as open cells from
features derived from the two-dimensional power spectrum of the visible
images. Multilayered systems, including thin cirrus, are separated into
several classes. In addition, cumulus, stratocumulus and stratus are
specifically recognized. A consensus of three expert nephanalysts
estimated the accuracy of the scheme at 79% with the machine answer at
least second best among twenty classes 89% of the time. The classifier
itself is very simple. A first stage tentatively assigns a class from
a one-step decision rule that finds the class with highést probability
of existence, given an eleven-dimensional vector of features. The
second and last stage merely corrects possible errors of the first
stage based on a small subset of features most relevant to the class
selected in the first stage. All the features bear physical meaning,
can easily be interpreted with what can be seen from the hard copies.
The features provide a detailed description of the cloud field in terms
of effective cloud fraction and albedo, height, multilayering, size
distribution, shape, directionality strength, existence of holes,
connectivity etc... Thus, the classification is quantitative, that is,
it does not merely provide a class number but it also provides a set a
physical descriptors that can be further utilized.

A comparison was made of the climatologies of twenty cloud classes
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for January and February 1984. | Significant differences in the
distribution of the cloud classes were found in the two months even
though the mean cloud fraction and mean albedo were virtually
identical. Moreover, the cloud fraction maps for the two months were
significantly different despite, as mentioned, the same overall mean
clqud fraction.

The <cloud classification algorithm should be applicable over all
oceans uncovered by ice. Perhaps the classification is too detailed
for use over the tropics where, for example, rolls and open cells are
rare, but having too many classes is not a problem since related
classes can be merged.

The computer time, 2.5 s per 128 X 128 km box (on a medium size
computer: IBM 4381) or 8.5 minutes for the 200 boxes of a 20 X 20
degree region, may satisfy the requirements of ISCCP, especially if
vectorized machines are used.

The scheme will be used in the First ISCCP Regional Experiment
(project FIRE, in 1987) to quantify marine stratocumulus fields off the
coast of California. It is also intented to generalize the scheme for
use over land. This will require regularly updated maps of surface
albedo and knowledge of the surface temperature.

The quantification of cloud fields in terms of fractional
coverage, height and albedo is fundamental to the understanding of
climate mechanisms. But cloud fields are also spatially organized 1in
recognizable mesoscale morphologies which may be revealing of the

physical state of the atmosphere. This aspect is the object of Part 2.
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APPENDIX. Covariance matrices of the features.

Table A.1 provides the normalized variances of features HI and CC,
which may be used in Stage 2 of the classifier. Table A.2 provides the
normalized covariance matrices of the 11 features used in Stage 1. The
normalized means can be derived from Table 3.8 using Eq. (3.20) and the

normalization constants of Table 3.2,



Table A.1 Normalized variances for CC and HI. Some of
these are wused in Stage 2, with minimum value set to
0.005.

Class cc HI
1 1.257 0.0000
2 0.007 0.0000
3 0.137 0.0000
4 0.861 0.0000
5 0.465 0.0000
6 0.340 0.0000
7 1.239 0.0000
8 0.053 0.0000
9 0.638 0.0000
10 0.000 0.0000
11 0.219 0.0000
12 0.005 0.0000
13 1.325 0.0001
14 1.113 0.0002
15 0.567 0.0002
16 0.793 0.0812
17 0.262 0.8612
18 0.004 0.8244
19 0.000 0.0467

20 0.000 0.0253
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ix. Introduction

% Currently, there are many regions
.over the ocesns, vhere no surface or
upper-air dats sre asasured by
.conventionsl amethoda. Although upper-eir
temperasture and huaidity soundings cen be
‘obtained froas infrered and sicrowvave
seassuresents fros satellite-borne
radiometers. the surface pressure is not
at present being mesasured operestionelly
.using these methods. Accurste
surfece-pressure seassurenents are needed
to obtain good wveather forecaats.

Atteapts have been made to manuslly
essign quentitstive perameters to
lerge-scale vorticea observed in
satellite veather imsges. Troup and
Streten (1972) devised a cyclone
clessification acheme according to
developaental stage by seans of an
objective set of rules aspplied to e
sstellite picture to clesaify the
cyclone. The surfece-presasure field vas
statistically derived using the cyclone
cless end the clisstology for that class.
Guyner (1978) used both the large-scale
shape end smell-scale features to derive
several meteoroclogical peraseters. Thias
enalyais vas conducted by a human
snslyst. Such analyata masy become less
sttentive after looking at sany such
satellite pictures.

No previous attespts have been sade
to sutoaaticelly classify cyclone images
or to derive meteoroclogical psreseters
fron sstellite images by means of
cosputer analysis. This atudy is e first
attempt to sutomaticelly clesssify
cyclones over the ocesn. Once sn
objective technique for obtaining
peraseters froa the shespe, size, snd
orientetion ia deviaed, a reqresaion
scheme using climatology can be applied
to the desta without concern for errors
~induced by subjective bisses. This paper
‘presents an autosetic sstellite-isage
clasaification technique that pleces
:cyclones into five classes wvhich are
comparable to the five classes defined by
Troup snd Streten (1972) (aee Figure 1).
' The slgoritha presented here
classifies oceenic extrstropical cyclones
into one of these five classes, locstes
the cyclone center and the appropriste
fronts, and derives a set of objective
parameters that describe the size, shape
‘and orientation of the storm systes. All
this is done without sanual intervention.

The technique can be divided into
four ateps:

1) The image of the cyclone ia extracted
from the GOES hemispheric picture by
seans of the NcIDAS imege display ayates
(Suomi et. el., 1983). This is

done aoc that analysea can be done on enly

Craig R. Burfeind end Janes A. Veinasn

Departaent of Meteorology
Univeraity of Wiasconain-Nadison 33706

Type B

Type Dy

' Figure 1: Schematic diagram of the six cloud patiern

classifications defined by Troup and Sueten
(1972).
{the extratropical cyclone in question.
This procedure uses the position of the
?24 hour LFX forecest cyclone-center as an
‘approximate indicator to initiste the
_sesarch for the cyclone.

2) The cyclone ia placed into one of five
‘classes. In order to do this, objective
paraseters that describe the appearance
of the systes are celculsted and used to
deteraine the cyclone type.

3) The center of rotstion is located
using the cyclone clesa and the visible
inage.

4) The fronts are located using the
clsas, the cyclone center, and the
.visible imsge ss input inforsetion.,

Fifteen cesea are anaslyzed in this study.
Their time of observation, locstion, and
original aspstial resolution are
susmarized in Taeble 1.

II. Preprocessing of GOES Visible and
Infrared Ineges of Extratropical Cyclones

At any given there are numerous
cyclone systems in various atages of
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developsent over the ocsans. In order to
siaplify the snslyais, the extratropical
cyclones are exesined one at ¢ time.

This is done by extracting a single
cyclone from the the GOES hemiapheric
picture. Becesuse image enelysis is

computationally intensive. one desires to
aneslyze an image which has the fevest

nusber of pixels possible.

The posaition of the lov-presaure
center predicted by the 24 h LFM forecast
is used as the firat gueas to locate the
cyclone center. An aree vwith dimensions
of 5120 ka in the letitudinel direction
and 3840 km in the meridionel direction
with & pixel resclution of 16 ka by 16 ka
is extrscted fros the full-disk viasible
and infrered pictures to produce inages
consisting of 320 pixels in the east-veat
direction, end 240 pixels in the
north~south direction. These images.
both visible and infrared, ars extracted
from GOES pictures so that the center of
the cyclone is one-third of the distance
from the northern edge to the southern
edge and one-half of the distance between
the eastern end western edges of the
320 X 240 image. These 320 X 240 pixel
images are then resmapped into a Mercetor
projection with the sese nusber of
pixela. This procedure is applied to
both the viaidle and the infrared images
to reacve large shape distortiona caused
by the location of the ators relative to
the GOES satellite locstion. This alsoc
allows all pictures to be anslyzed in the
same projection, which is important in

ithe derivetion of & single technique for

clessifying storas st different
lstitudes. Finally, the 320 X 240 pixel
issges are degraded by everaging over
8 X 6 pixel boxes to produce images
consisting of 40 X 40 pixela esch having
@ resclution of 128 ka by 96 ka.

The aize of extrstropicsl cyclones

.cen vary over en order of segnitude; 1t
:4s, therefors, desirable to acsle all
'eyclone isages so thst an imege can be
jereatad in which all possible cyclones
'cover epproxisately the sese ares in the

'40 X 40 pixel imege.

To produce this

‘imege. ssaller c€yclones are enlarged by a

greater factor then lerger cyclones.

The

jresolution will be different for each

‘eyeclone picture.

This eres noraslization

i1e importent so that only one

cleassification and location schese needs

‘to be developed, instead of having an

;enalysis which depends upon the size of
‘the cyclone.

The norsslizetion process uses asny
digital image processing techniques,
.dncluding brightness noraaslizstion,
:threshholding to produce a binsry image,
!-p-ttnl filtering to reduce noise, and

jextreaction froms the original full

|resolution visible inmage to produce the
Inor..lt:od inege. Froa the noraseslized
1isage, the angle of orientetion, slong
|with verious aize paraseters esre
ideternined for the cyclone’s image.
{Brightness norsalizetion is performed to
lcorrect for 1imb darkening produced et
ilnrgo sclar zenith engles.

‘111, Clessification of the Degree of
;Dcvcloplont of Extretropicel Cyclones
;Using the Viaible laege

The clessificetion of the cyclone’s
degree of developaent ia schieved by
deteraining several features of the
cyclone images, which are then used as
indicators to classify the cyclone type.
In order to identify the properties of
the cyclone image, the scaled cyclone
image nust be further simplified.

A decision tree atructure (see Figure
2) is used to classify the extretropical
cyclones. At each node of the tree, one
feature is used to determine whether the
cyclone fita & certsin clase. If so, it
is clessified and the procedure is
complete. Othervise, the next feature ias
extracted end another decision takea
place.

The firat festure which ia needed to
Classify cyclone systess is the
orientation angle of the aajor axis of
the elliptical approximation of the
original visible image. The original
image is fit to en ellipse so thia
analysesa can be coapleted. The angle of
orientation is teken to be zero if the
mejor axia of the ellipse is oriented
along en esst-vest line and 90 degrees if
the cyclone’s major axis is slong @
north-south line. This angle is used to
deteraine if @ cyclone is in the wave
stage as opposed to a more developed
cyclone. Cyclones with amsller angles
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Wrap around to south Separated center
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TYPESBDy TYPEC TYPEC TYPE Dx

Elongaled left arm

no yes
I TYPE B TYPE Dy
- Figure 2 : Decisison tree structure for classitying cyclones.

are thus classified as vave-stage
cyclones (denoted W). It is found
enpirically that e cutoff of 50 degrees
besat aeparates vave-stege cyclones from
the other types of cyclones.

The resmaining festures are derived
froa an image which s & subset of the
scaled viaible isage. A high-resclution
image wvhich consisists of the center core
of the cyclone systesm is extrected froa
the original Mercator visible imsge. The
center point and the size of this
high-resclution center section is
deternined froa the centroid of the
degraded scaled image. Siaijler
degradation is agein applied to the
scaled image to produce a noise-free,
binary image of the center spirals of the
ayatea. This finel imeage is used for
cyclone classification.

The pattern-analysis algoritha
searches for dry tongues by looking for
the first continuocua, horizontal atring
of pixels with a velue of 200 on the ssst
edge of the picture. Froa this
continuous string, it searches toweards
the weat until it finds & cleer srea. It
then continuea to search towverda the veat
for a cloudy ares and repeats the aase
procedure again, esch tise counting the
nuaber of pixels in the clear area. When
& clear area ia located, the prograa
searches towards the south to deteraine
whether the cyclone has begun to wrap up.
A cyclone is considered to heve wvrapped
up 1f there are at lesst twvo pixels
extending toward the east fros the

southwestern ara of the systen. This
procedure yields two features--the nusber
of cleer slots end en indication as to
vhether the cyclone has wrepped up.

The binary isege is used to classify
the cyclones which did not fall into the
¥ cleas, by looking for the dry tongue.
If no dry tongue is present, then the
eyclone 1is clessified as ¢ type A. 1f o
dry tongue is present, the elgoritha
asearches to the south to deteraine
vhether the cyclone has begun to wrep up
or checks for two slots of dry eir
betveen the edges of the entire cyclone,
thus indicating that the cyclone haas
wrapped eround itself ¢ second tise. If
either of these features sre present, the
cyclone is clessified as @ type C;
otherwise, it is clessified as & type B.

At this point ell cyclones which can
be clasaified as ¥, A, B, or C have been
clasaified. Also, the aslgoritha hes
saved certain reference points on the
inage for later use in determining the
cyclone center. In order to claasaify the
typea Dy and Dy, the progres
checks types B and C to see if they are
not ectuslly of type D, since all type
D’a would have been included in the
clessification of type B or C up to this
poeint.

Firat & check is sade to detersine
vhether the vwrapped-sround cloud band of
a type B or C ia connected to the aasin
cloud bend. The segaented image is used
to determine if the cloud band is
continucus by coaparing the label on the
center apiral region with the lebel on
the frontsl band. If the lebels are the
sane, the cloud band is continuous and
the cyclone classificetion is left
unchanged. If the regions have different
labels, the cyclone system is clesssified
as @ type Dx. I1If the center spirasl
is disconnected froa the mein cloud band,
it is classified ss & dissipating
cyclone.

Secondly, type B cyclones are checked
to determine if the cloud band to the
west, which has not wrapped around |is
elongsted. This is done Dy cosparing the
lengths.of the vestern ara eand the
easatern ars sasocieted with the cold
front.

IV. Location of the Cyclone Center

A different technique for locating
the cyclone center is used for eesech of
the five classes. Using points aaved

i previously es sterting locetions, the
| progream moves predeterained distances
. from these locations to determine the
| eyclone center.

This section of the program takesa ss
! input the three locstiona on the spirelas:

| the locetion of the southwestern edge of

ﬁth. dry tongue, the center of the

: northern edge of the cloud band which ias

- wrapped sround to the south, and the
western edge of the cloud band which has
wvrapped around & second tise to the eaat
of the second dry tongue.

For type ¥ cyclones, the cyclone



Center s loceted wvhere the thickeat
bulge is found in the band of cloudiness,
©or where the curveture of the cloud banda
changes sign. In either csae, this is
wvhere the cloud band ia thickest in the
sest-wvest direction. The semse procedure
that ia used for type ¥ cyclenes ia alsc
used for type 4 cycliones. The only
difference is thet the clessification of
type A cyclone uses the entire imesge end
not only the high-resclution csnter
section. For type B cyclonas, the point
located at the southwestern edge of the
dry tongue is used as @ starting point
for locating the cyclone center. This
point 4is aleoc used for type Dy. It

ves empirically detersined that the
center of the cyclone should be placed at
the point one pixel to the socuth of the
point saved in the sbove procedure. 1f
the cyclone is deterained to be a type
Dy, then the cloud band ia searched

to find the aocuthern-sost tip of the
vestern cloud leg of the type Dy. It

ia thia point thet is given as the
cyclone center in type Dy cyclonea.

For type C cyclones, two possibilities
exiat. The first is thet the cyclone has
only begun to wrep arocund to the south,
but hes not sterted to fora the second
dry tongue. The second is thst it hes
begun to wrep up, thus foraing a second
slot of dry air es the cyclone is
traversed fora east to weat. For the
first case, the algoritha begins
searching froa the point on the northern
edge of the bend which has wrapped to the
south towarda the northeast until 41t hess
located the northesatern-sost edge of the
cloud band. The cyclone center is placed
two pixela to the west of this point,
which corresponda to the vertex of the
spiralling band. In the second case, the
cyclone center is pleced one pixel to the
north of the point which is defined es
the western edge of the cloud band which
has begun to vrep around a second tisme to
the eaat. This once agsin places the
center at the vertex of the spirelling
cloud band. If the cyclone is clsssified
aa a type Dy, then the cloudy ares
closest to the center of rotation is
located. This cloudy aree is
disconnected from the aain cloud
structure es indiceted above. The
centroid of this region ias deterained and
ia taken to be the cyclone center.

V. Location of the Front

The finsl analysis done by this
algorithes is to roughly locaste the cold
front, or the occluded front. 1In the
case of the type ¥ system, the wars front
is alao located. It should be pointed
out that for disaipating cyclones (type
D’a) no front is located.

The originsl Mercator visible image
is the atarting point in the frontsl
snelysis. A binsry image is created froam
this image. A filter is placed over this
binary imege to remove the noise and
rough edges vhile reteining the genersl
shepe of the frontal cloud bendas. The
front is deterasined by moving away fros

the center of rotstion in predeterained
directions until the frontsl cloud bsnds
ere loceted. These points sre marked end
saved. After ell points which make up
the front ere located, the front ias
snoothed by plecing & running mean
through the points.

VIi. Results

The relative sres of the cyclone
cloud (Table 2) shows no strong
corraletion to the type ©of cyclone. Thia
indicatea that any cyclone type cen vary
in eize. The value of theta changes as
the cyclone satures. Ssall englesa ere

noted in developing cyclones since the
cold air is still to the north and hes
not begun to sveep socuthward to overtake

the wars air.

As the cyclones develop,

lsrger sngles sre found es the tilt of
the syatea becomes nore negstive due to

the southward sweeping cold air.
deacription of the cyclone aystea.

Data Type Area Str Connect Theta
(x103 kn) (deg)

1 L+ 92.77 1.00 87.1
2 c 54.95 1.00 139.5
3 B 34.76 1.00 97.3
4 DX 92.77 0.94 100.5
S ] 105.71 0.99 74.4
6 c 93.58 1.00 106.9
? v 78.68 1.00 33.6
[ ] B 82.43 1.00 101.3
9 A 108.52 1.00 75.6
10 A %2.57 1.00 93.1
11 L 96.76 1.00 33.0
12 DY 104.27 1.00 101.7
13 DX 38.86 0.73 74.2
ie DX 79.64 0.93 114.9
15 B 88,61 1.00 94.7

Table 2 : Cyclone classification and features

for each data set.

A comparison ¢f the results of this
atudy with the resultas obtsined froa
human anslysts wves perforaed. Six
neteorologista, all of whoa heve had
experience in enalyzing satellite imagery
or a atrong synoptic aeteorology
background, snalyzed the 15 cases to
locate the low pressure center and the
fronta. The sean lov pressure center
location and the mean frontal position
along with the stendard deviation for

‘each of the 15 date sets wvere calculated
 for the six analyses.

! Teble 3 displays the distance between
| the cyclone center found by the computer
algoritha and the aean center location
found by the snalysta. Along with these
values, the stenderd deviation for the

human anslysts and the ratio of the

| computer‘s distance from the mean to the

i human analysta’ stendard deviation is
tabuleted. Except for one very bad case
(data set 4), the results show that the

! computer analysis is within one stsndard

'd.vl-tton half of - the time and elwvays
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Subjective Objective Retio
Std. Dev. Dist. fros Neen Dat from Mn
Data Set t(ka) Stad dev
1 177 37 0.21
2 91 183 1.70
3 131 183 1.22
4 10¢ 407 3.9
S 276 141 0.951
6 98 161 1.6¢
Y4 178 258 1.49
e 254 217 0.8%
9 q44¢ 61e 1.38
10 n7A Rn/A N/A
11 187 136 0.73
12 701 1086 1.8S
13 20 32 0.46
ie 202 101 0.30
f 13 343 268 0.768
Table 3 : Coaparison of stenderd devistion of low pressure

center position for & group of huzan snslysts
versus distance from the sean for the computer

elgoriths.

within two atendard deviations.

These

results slsoc show that the cases in which
the computer slgoritha hed difficulty in
locating the center and the fronta, the

hunman anslysta alac produced & wide range

of results.

Teble 4 gives the sanme paraneters for

the frontal position,

The coaputer

algoritha did poorly on date aets 9 end
13, vhile the distances for the reseaining
Ceass are approxisstely equal to one

atanderd deviation or lesa.

Oversil, the computer nlgortthi

showed the poorest results for type A

cyclones, especially data set 9.

Thia ia

due to the lack of large-scele atructurs
encountered in type A cyclones when
comparad to the other typea. Since the
computer needs structure to serve as a
guide in locating featuraes of the

_extratropical systes, it wes unable to

perfora es well for these cases. Also,
1f more type A cyclones would be analyzed
eand used as training sets for the
coaputer algoritha, perforaance aight be
improved.

The coaputer seemed to yield the beat
analyais on type C cyclones. This ia
aainly due to the atructure sassocisted
with the apirelling center of rotation.

_The algoritha is able to locate many

reference pointa on the spiralling cloud
bands to use in gfdentifying the low
preasure center. Type C cyclones,
eapecially data aet 1, also shovw well
defined snd nerrow frontal cloud bands
wvhich meke the sssociated frontasl
poaition essay to locate. ‘
Theae pattern snalyses were conducted
on an IBM AT-99 personal cosputer
equipped with en 80287 coprocessor chip
rnd 512 kb of random access aemory. The

Subjective Objective Rstio
Std. Dev. Dist. from NMean Dist froa Nn
Data Set k) C(hm) Std dev
1 143 44 0.31
2 86 24 0.28
3 75 a0 1.07
4 N/A N/a N/A
S 125 312 2.50
6 118 91 0.77
? 151 141 0.93
8 11e 41 0.36
L 170 1273 7.49
10 | 72 N/A N/ZA
11 185 49 0.26
12 N/A N/7A N/A
13 N/A N/7A N/A
i1e N/sA N/A N/7A
as 77 136 1.77
Teable 4 : Comparison of stsndard deviation of frontal

position for ® group of husan enelysts versus
the aversge distance from the husan frontal
position mean for the computer algorithm.
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extended "Turbo-Pescel”™ softwere aystes
wvas used for progresaing these
algorithes. The entire snslysis took
approxinetely 3 ainutes from beginning to
end for esch cyclone. VUhile the parsonsl
computer is in no wey Overburdened by
these procedures, the anslysis could be
perforaed such more repidly on e
ainicosputer equipped with & parallel
arrey procsasor.

VII. Sussary

An algorithas was developed that
objectively snslysed synoptic-scealae
satellite imeges depicting vericua stasges
of development of extratropicsl cyclones.
The images were anslyzed to ssaign @
category to the cyclone based on its
stage of developsent. Once classified,
the rotetion center and the fronts
sssociated with the cyclone were located.

Thia clessificetion scheas along with
the psransters derived from the astellite
insges may ultisstely used to empirically

derive surface-pressure fields. Thus,
the surfeace-pressure field could be

. derived froa the large-scsle features of
;tho extratropicsal cyclone imeges. Thia
,would be similer to the work-done by

either Nagle and Heyden (1971) or Troup

‘and Streten (1972). This technique would

be esapecislly useful over dets-sperse

,Tegions of the oceans, where little

surfece-pressure date are availeble.
This study desonstretes that pattern
snslysis techniques asy perait the
developaent of rapidly executed,
objective computer-gssisted analyses of
satellite images. These snalayses sre
able to diatinguish cyclonea in eny of
their stages of developaent. It ies
toqlxzcd thet not all cyclone shepes will
be snslyzed correctly, but as sore
c€yclones sre analyzed, the program can be

.1gprq!od to accoaodete tha more

cosplicated cloud ghepes associsted vith
verious cyclone aystess. Thias se only
the beginning of the "lesrning™ stege for
the cosputar eslgoritha. It ia evident
thet the progres can becoaes such aore
precise as more sstellite imeges are
enalyzed.
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