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'SECIPITATION RATZS FRO!i VISIBLE AND INFRA-XED SGTELLITY IX4GES" 

.iCC3>!PLISHED RESULTS : 

3ur  previous work on rainfall retrieval from satellite imagery sought to 
r - ? t t i e v e  rainfall rates in three categories from GOES visible and infra-red 
+. . -~qes of convective precipitation cells. 
5v 'iu et al. (1985) (Enclosure 1). That work used statistical texture and 
rrid'cance features of the imagery to classify the rain in the categories of no, 
1iZL;t and medium intensity rain. 

T h i s  work was described in the paper 

4 nore advanced cloud pattern analysis algorithm was subsequently developed 
' :3  take the shape and brightness of the various clouds into account in a manner 
t i d r  is more consistent with the human analyst's perception of GOES cloud 
iTaTey7. The results of that classification scheme were compared with 
creci3itation probabilities observed from ships of opportunity off the U.S.  
e3s:- coast to derive empirical regressions between cloud types and precipitation 
.~roSability. The cloud morphology was then quantitatively and objectively used 
:J  lap precipitation probabilities during two winter months during which severe 
( x l d  a i r  outbreaks were observed over the northwest Atlantic. This work was 
par: of the Ph.D. research of Louis Garand. Table 1 summarizes precipitation 
probabilities associated with various cloud types. Fig. 1 compares maps of 
2recipitation probability derived from the cloud morphology analysis program for 
two months and the precipitation probabilty derived from thirty years of ship 
observation. 

Table 1: Frequency of occurrence of precipitation for various cloud classes 

Class Number of Cases Prob. ( X )  

Clear 
Stratus 
Scattered cumulus 
Scatt. stratocumulus 
Broken cumulus 
Cloud streets 
Rolls 
Polygonal open cells 
Convective open cells 
Bright closed cells 
Nimbostratus 
Altocunulus 
Altocumulus & other 
Thin cirrus 
Yultilayer ctrrus 
Cumulonimbus h cirrus 
Dense cirrostratus 
Overcast cumulonimbus 

37 
29 
101 
49 
15 
37 
4 3  
24 
13 
62 
84 
40 
29 
52 
106 
163 
33 
113 

0.0 
6.9 
7.9 
8.2 
20.0 
13.5 
41.9 
29.2 
55.6 
17.7 
52.4 
20.0 
24.1 
0.0 
14.2 
58.3 
2 7 . 3  
7 2 . 6  
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- .  r i g .  1. ?lean probability of precipitation retrieved from 11761 cloud 
images 128 x 128 Km for January and February 1954 and the 
thirty year clinatology of January from Isemer and Hasse's 
(1985) climatological atlas. 

4 somewhat unexpected result that emerged from Dr. Garand's analysis of the 
GOES tnagery was the development of a technique to derive surface air and dew 
poi2t temperatures in cloud capped marine boundary layers. 
appears that surface air temperatures over the ocean can be derived within an 
r.3.s. 2 K at a spatial resolution of 128 Km. Fig. 2 shows a time series that 
compares air temperatures measured by a buoy for two months with those derived 
from this technique. The cold air outbreaks that correspond to temperature 
changes of - 20 K are clearly determined by this technique. 
temperature maps obtained by this technique with those obtained from thirty 
years of ship data. 
satellite derived data. 

As a consequence it 

Fig. 3 compares air 

The influence of the Gulf Stream boundary is evident in the 

Fig. 2 .  Time series of observed and retrieved surface air temperatures 
from Julian days 1 - 60 ,  1984 at buoy 41001 (34 .9  N., 72.9 W.). 
Numbers on plot indicate Julian day. 
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3 e  cloud clsssification schene is iescribed in Garand’s thesis, and a 
n a n u s c r i p t  that describes t \ e  technique in a somewhat abr%dged form has Seen 
3:il:mitted for publication i n  J.<.A.!4.  (Enclosure 2 ) .  
!,ragram have been provided to Dr. Man Li Vu at the Goddard Space Flight Center. 
?s. Cindy Dixon, one of our graduate students is planning to join D r .  Wu this 
suiaer to work on applications of computer pattern analysis to satellite 
im. ge ry . 

Tapes containing the 
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Fig. 3 .  Surfaceair temperature distributions retrieved from 11761 
sample areas in GOES images during January and February 1984 
and the thirty year climatology from Isemer and Hasse (1985). 

A pattern analysis algorithm has also been developed to identify features 
This work comprised the M.Sc. thesis of 

Burfeind was able to locate the fronts on images of 
The results of that work are 

of images of extra-tropical cyclones. 
Mr. Craig Burfeind. 
cyclones in various stages of development. 
presented in Enclosure 3 .  

PXOPOSED RESEARCH: 

‘Je will conduct a more detailed analysis of the data that yielded the 
results shown in the enclosed figures. 
also be analyzed to provide additional validation of the image analysis 
algorithms. The results of those additional studies will be included in a 
description of our work that will be submitted to J.C.A.M. 

Data from the CASP/GALE experiment will 

. 
The mechanisms that produce precipitation differ in cumulonimbus and in 

nimbostratus clouds. We therefore propose to utilize information on the 
location of precipitating regions, such as cold or warm frontal zones in 
extra-tropical cyclones, to adjust the rainfall retrievals. This aspect of our 
2roposed effort will be based on Burfeind’s research. 
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The a v a i l a b i l i t y  of ground t r u t h  w i t h  which the  algoritha can be a d j u s t e d  
?as 5een a H i n i t a t i o n  t o  our  past efforts. Ve used s h i p  r eco rds  of t h e  e x i s t e n c e  
,>€ r 3 i 3  and NOAA o p e r a t i o n a l  r ada r s  in o u r  previous s t u d i e s .  We are  i n  t h e  
process  of a c q u i r i n g  d a t a  from r ada r s  t h a t  have Computer Analyzed P l a n  P o s i t i o n  
I x d i c a t o r ,  CAPPI, ou tpu t .  These r ada r s  are a l s o  r e g u l a r l y  c a l i b r a t e d  w i t h  
ded ica t ed  r a i n  gauges. Data from the FACE t r o p i c a l  r a i n f a l l  experiment i s  a l s o  
i n  hand. We propose t o  u s e  t h a t  d a t a  t o  develop improved r e t r i e v a l s  of r a i n f a l l  
from images ob ta ined  from t h e  AVrIRR and possi3ly from t h e  Opera t iona l  Line 
Scanner on t h e  m i l i t a r y  DMSP. The l a t t e r  imagins system measures r e f l e c t e d  
moonlight as w e l l  as s u n l i g h t  so t h a t  t h e  o b s e r v a t i o n  pe r iod  is  extended. I t  i s  
ny understanding t h a t  members of t h e  Goddard s t a f f  are looking i n t o  t h e  
f e a s i b i l i t y  of o p e r a t i n g  senso r s  on l?W?f and GOES-Next t h a t  measure n o c t u r n a l  
r e f l e c t e d  v i s i b l e  l i g h t .  
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University of U’isconsrn. Madison. U7 53706 

(Manuscript received I I  June 1984. in final form 3 January 1985) 

ABSTRACT 

Radiances from clouds observed in visible and infrared images obtained from the SMS-2. GOES-?. and 
GOES4 satellites have been used to estimate rainfall by means of a pattern recognition algorithm that was 
applied to single images. The algorithm classified rain into three classes: 0-no rain (0 5 R < 0.5 mm h-I): 1- 
light rain (0.5 5 R 5.0 mm h-’): and ?-ha\.> rain (5.0 mm h-’5 Rj. The rainfall rates used in the training 
set and those used to test the algorithm were derived from a set of twent?-nine Plan Position Indicator (PPI) 
displays obtained from NOAA operational radars. Data were derived from summer storms. tropical storms and 
cyclones. 

Rainfall from precipitating clouds was classified by a pattern recognition technique that used textural and 
radiance features in a hierarchic decision tree. The analysis was applied to regions 20 Y Zc! km in area that \sere 
measured in the visible spectral region with I X I km and 2 x 2 km resolution and in the infrared with 4 X 8 
km resolution. The radiance features used in this analysis were thc radiance maxima. minima. 2nd the means. 
The textural features that were used included the edge strengths per unit area and the maxima and means of 
the mean. contrast. angular second moment. and entrop) in four directions. 

Of the areas sampled in this stud>, approximatel? one-third were in class 0. one-half were in class I and one- 
sixth were in class ?. Case studies that employed data from both the visibie and infrared senson correctly 
identified rainfall classes 0 and ( I  + 2) in about 90% of the cases and identification into classes I and 2 was 
correct in about 70% of the cases studied. The corresponding skill scores were -80 and WT respectively. Data 
derived on11 from infrared images yielded comct  identification of 0 and (1  + 2)  classes in 85% of the caxs and 
identification of classcs 0. I and 2 was c o r n  in 6 5 8  of the cases. The corresponding skill scores were -658 
and 40% respectively. 

1. Introduction 

The latent heat released b) precipitation affects the 
heat budget of the atmosphere. Rainfall measurements 
are thus useful input to models of the eanh’s climate. 
Latent heat is also the main source of energy of hur- 
ricanes (see Anthes. 1982). Adler and Rodgers (1977) 
used satellite-borne microwave radiometn to measure 
the latent heat released in humcanes at large distances 
from shore based radars. That energy was directlj re- 
lated to the Hind speed measurement in the humcanes. 
Such considerations have motivated studies on the 
measurement of precipitation from space. A recent 
N A S A  workshop addressed itself to various methods 
that employed microwave. infrared and visible satellite 
imagery (see Atlas and Thiele. 1981). 

Microwave radiances respond direct]) to hydro- 
meteors: howeker. microwave data are available at 
twelve-hour intervals at best. While rainfall distribu- 

Space kience and Engineenng Center ’ Also affiliated with Central Meteorological Bureau, Beijing. Peo- 

** Department of Electncal and Computer Enpneenng 
ple’s Republic of China 

tions are not uniquely related to  the appearance of 
clouds seen in visible and infrared imagery, rainfall 
estimates can be derived more frequently from oper- 
ational geostationaq and sun synchronousl) orbiting 
meteorological satellites. Combining space borne mea- 
surements of precipitatior. that employ both methods 
could thus improve the temporal resolution of rainfall 
rate distributions as well as the accurac! of such de- 
terminations. 

Cloud observations in visible and infrared images 
obtained from satellites have been used to estimate 
rainfall rates over remote areas. The most widely em- 
ployed techniques described by Barren and Martin 
( I98 I ) and b! Atlas and Thiele ( 198 1 ) obtain rainfall 
rates from regressions against area or rates of areal 
growth of cold clouds. Techniques such as the ones 
developed by Griffith er a/ .  1978) require the analysis 
of sequential images which can be obtained from geo- 
stationary satellites. A somewhat different approach 
was developed by Follanske and Oliver ( 1975): that 
technique relied upon subjective cloud type identifi- 
cation in sample areas. Le.. the recognition of various 
cloud patterns by an experienced meteorologist. All of 
these rainfall estimation procedures are time consum- 

C 1985 American Meteorological Society 
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ing and labor intensive because the meteorologist is 
obliged to  exercise careful judgement. 

Lovejoy and Austin ( I  979) developed a pattern rec- 
ognition technique that estimated rainfall from visible 
and infrared GOES satellite images. Their technique 
anal!zed the statistics of radiances in both images. 
hlore recently. Negri €1 al. ( 19841 developed a simpli- 
fied and objective adaptation of the Griffith-M'oodle! 
technique. which avoids the need to trace the temporal 
de\ elopment of precipitating clouds. 

The present study developed a pattern recognition 
algorithm to derive rainfall rates from single visible 
and infrared images or infrared images onl!. The tech- 
nique that we used was an outgrowth of the preliminary 
study of Lee and Chin (1983). This technique deter- 
mines rainfall in 20 X 20 km grid elements on the basis 
of radiance and texture features. Radiance features are 
globai measurements of the 20 X 20 km grid elements 
containing information a b u t  the overall characteristic 
of the radiances within the grid element. Texture fea- 
tures are measurements that concern the spatial dis- 
tribution of the radiances. M'hen the grid contains ra- 
diances that var) little. the dominant properties ofthat 
grid are ?he radiance feature. M'hen the grid has a wide 
variety of radiances. the dominant propcny of that area 
is texture. The algorithm classifies rainfall into three 
classes that correspond to operational radar precipi- 
tation levels: O-no rzin (0 S R < 0.5 mm h-I): I- 
light rain (0.5 I R < 5.0 mm h-I): and ?-heavy 
rain (5.0 mm h-' S R). The rainfall rates used in the 
training sets for the development of the algorithm and 
those used to test the algorithm were derived from a 
set of twent! nine plan position indicator (PPI) displays 
obtained from 5 0 . 4 . A  operational radars. A training 
set contains tw'o subsets: 1 i the set of images that char- 
acterizes tl'pical cloud?ain patterns and 2 )  a corre- 
sponding sei of ground truth to identif! patterns ob- 
sen.ed in the first subset. The training set is used to 
estimate the conditional probabilit! distributions of 
the features extracted from I ). from which the decision 
rule (the rule for the identification ofthe various c!asses) 
is constructed. Data were obtained from summer 
storms. tropical storms and cyclones in the Gulf of 
Mexico coastal repon and near south Florida. 

2. Data sets 

a. Siivellitc daia 

Data were obtained from the geostationan. satellites 
GOES-:! during the summer of 1978. ShlS--7 during 
the summer of 1379 and GOES-4 during the summer 
of 1983. The sensors on these satellites produced images 
in the visible spectrum. 0.55 < X < 0.70 pm. and in 
the thermal infrared. 10.5 < h < 12.6 pm. The spatial 
resolution or the visible Sensors was either I k 1 km 
or 2 X 2 km while that of the infrared sensors Ha5 I 
X P km. The satellite data sources are summarized in 
Table 1. The infrared pixels were quantized into 256 

gre! levels that were calibrated in terms of brightness 
temperature. The images in the visible spectrum were 
quantized into 64 gre? levels; these levels were multi- 
plied by four to produce images that have a dynamic 
range that matches that in the infrared. 

Before commencing the pattern recognition analysis. 
the visible and infrared images were navigated with 
respect to terrestrial landmarks so that the radar images 
could be collocated. Yavigation problems were espe- 
cially troublesome when correlations were sought be- 
tween satellite and radar imageq of rapid]! developing 
cells that were either at the edges of larger systems or 
were completely isolated. The existence of rain was 
indicated but no attempt was made to categorize the 
intensity of the rainfall in such cases. 

Visible radiance le\-& were corrected to account for 
the effect of solar zenith angle on the illumination of 
the clouds by means of the empirical relationship de- 
\eloped b\ Raschke and Bandeen (1968). The satel!ite 
data cited in Table I were acquired from different sat- 
ellites o\.er several years. The calibration of the \.isible 
sensors was known to have drifted (see Muench. 198 1 ): 
accordingl). images of U'hite Sands. New Mexico and 
bright clouds were used to calibrate the relative re- 
sponse of the visible channel. Conversion from digital 
counts to  directional reflectivit? was achieved h\ the 
calibration method described by Smith et al. ( 1  98 1 ) .  
The intrinsic reflectivities of White Sands and bright 
clouds are independent of time so that the variation 
in the apparent reflectivities could be determined. The 
relative radiance values in all of the images obtained 
from a given satellite were thus restored to an approx- 
imately consistent set of values. 

Another source of errors was the lack of uniform 
response of all of the sensors that comprised the visible 
imaging system. This effect could introduce streakiness 
in  the image that could produce errors in the texture 
features. This effect wil l  be described in the next section. 
%lost of the data in  Table I were screened to minimize 
this effect over scenes of surfaces that were known to 
be uniform. 

Detailed analyses of satellite imager! revealed that 
the best results were obtained if the training and test 
data sets were obtained from the same satellite system. 
The reason for the incompatibility of data acquired 
from different satellites w a s  not readily apparent: how- 
ever. there are ample archkes of data from an\- given 
geostationan satellite so that we do not regard this as 
a significant problem. 

The 20 X 20 km grid elements that were used in this 
analysis were selected to match the resolution of the 
37 GHz channel of the Scanning Multifrequenc! Mi- 
crowave Radiometer of Nimbus 7. The grid elements 
contained a suficient number of independent mea- 
surements in the infrared images to be statisticall! use- 
ful ( - 13): the situation w'as better in the visible images 
where each grid element contained at least one hundred 
pixels. 
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T4BLE I .  Surnman of data sources 

Julian 
Date da) 

28 August IV78 240 

25 Jul) 1979 206 

26 Jul! 19'9 207 

-7 Sepiember !979 246 

I?Jul!  I979 I94 

6 Jul! 1979 I87 

I7 4ugust 1983 229 

Time 
(GMT) 

I . ( o ( I  
I930 

1730' 
1930 
2100 

I500 
1700*' 
1830.' 

I500 
1645 
I 800 
2030 
1030 

1800 
20Xl 

I900 

I6W* 
I '(". 
I sa>* ' 
1900' 
1930 

1530 
1800 

1830 
I900 

1800 
1900 
?Ooo 
2130 

Satellite 

GOES-: 
GOES-2 

SMS-2 
SMS-2 
SMS-2 

SMS-2 
SMS-2 
SMS-2 

SMS-2 
SMS-2 
SMS-2 
SMS-2 
SI\IS-' 

SMS-2 
SMS-2 

SMS-2 

SMS-2 
SMS-2 
SXIS-2 
SMS-2 
SMS-2 

SMS-2 
S M S 2  

SMS-2 
SMS2 

GOES4 
GOES-4 
GOES-4 
GOES4 

Resolution Conirast 

VIS IR \'IS 1R 

High High 
High High 

LOW Medlou 
Lou MedIlou 
Lou Med/lou 

Lou Medllou 
Lou Medilou 
Lou bled,'lou 

Lou Lou 
Lou Loa 
Lou Loa 
Lou Lou 
Lou Lou 

Lou Lob 
Lou Lou 

Hi@ High 

High High 
High High 
H;gh H:gh med 
Lou Lou 
Lou Lou 

High High 
High High 

High High 
High High 

High High 
High High 
High High 
High High 

N eatner 
s>stem 

Tropical storm 
Tropical storm 

Tropical storm 
Tropical storm 
Tropica! storm 

Tropical storm 
Tropical storm 
Tropical siorm 

Humcane 
Humcane 
Humcane 
Humcane 
H umcane 

Tropi.al stam 
Tropica! siinn 

Tropical storm 

Th u nderstoims 
Thunderstorm 
Th:: ndersto- 
Thundersiom 
Thunderstorm 

Thunderstorm 
Thunderstorm 

Thunderstorm 
Th u nderstorm 

Humcane 
Humcane 
Humcane 
Hlrmcdnc 

Radar . 
station 

GLS 
GLS 

GLS 
GLS 
GLS 

GLS 
GLS 
GLS 

D.49 
DAB 
D4B 
DAB 
DAB 

SI1 
SI1 

SI L 

GLS 
GLS 
GLS 
GLS 
GLS 

GLS 
G LS 

GLS 
GLS 

GLS 
GLS 
GLS 
G LS 

Denotes training XIS used to represent catrgonec charactenzed b! spatial resolution and \isible trxlurai contrast A = [Xj  More than 
one training se! uas used uhere *: or *' are designated 

Denotes uhere the infiared mean teitural fea:lrre. A = 18; restncis the numhen of infrared features 

I >  Radar dara assigned t h e  value tha? occupied the greatest fractional 
area. Ambiguities could arise around the edges of larger 

s!.stems w.here small precip,tation cells were lo- 
calized and e\olving rapid]!. Isolated cells also had to 
be carefull! so that their  1ocati,7, in as prop- 
erl? &.sighted among neighbonng grid e!ements The 
radar data could be displz\ed once i t  u s  djgitized. 
The anal!.sis of twent! 
satellite images nas  on the L:ni,.ersit\ of 
U.isconsin hlan-computer Interacti\.e Data ,4cquisition 
S\-stem (MclD,4S,: (see Suom, (,, d l , ,  19s31, - 

Rainfall rates here inferred from radar data that were 
obiained sirnultaneousl! w.ith the satrllite imagsn- (see 
Table 1 ). The radar data were obtained from National 
U'eather Sen.ice M'SR-57 units which haw I O  cm 
u a ~ e l e n g t h s  and a 230 km scan radius. Rainfall rates. 
R rmm h- ' i .  were computed from the mecisured radar 
refiecti\-ities. .Z (mm6 m-3). b! the relationship Z 
= 55Rl.": this relationship is in operational use for con- 
\.ecri\e precipitation. Complete PPI scans were ob- 
tained in m e n  minutes. and these scans were obtained 

and 

\s.iihin f i \  e minutes of the corresponding satellite im- 
age$. Microfilm images of PPI display were projected 
on a transparent grid arral- with 20 >. 2@ km spacing. 
Outlines of rainfall rate contours were manuall! traced 
on the gnd and the effects of ground clutter were also 
removed. The rainfall rate classes and coordinates of 
the grid were then digitized. If a grid element w'as par- 
tiall! filled b!. t\so rain classes. the grid element was 

3. Anal jsis 

u Tlic doL'isioti rirlc 
The maximum likelihood decision rule w'as used in 

this stud! to classif> the three rain classes denoted as 
u0. u,. and w2. A feature bector S = (.yI. s2: - -sk). 
characterizing the rainfall information in a grid ele- 
ment. was classified as class a, if 

ORIGINAL 
POOR QUALm 



p ( . G 1 ) P ( w , )  > p(Sju,)P(U: , ) . for all j # i. ( 1 )  

u-here p(< !u I )  is the conditional density function of X. 
and P(u:.,) is the u priori prohahilit) of Occurrence of 
rainfall class uI .  In this stud! the probability of occur- 
rence of all three rain classes were assumed to be the 
same. The conditional densit\ functions p(<[u , )  i = 0. 
1. and 7 w r e  assumed to be normall\: distributed and 
their means and covariances are estimated from a set 
of training samples. The components of the pattern 
recognition process. as depicted in Fig. 1. are training 
and classification. The following problems were then 
addressed: 1) what features should be extracted from 
each _end element to give a good representation of the 
rainfall rates: and 2 )  how does one choose the proper 
training sets3 

L i x I x t  ' 4 5 '  - 
i 

[INFRARED 
FEATURE EXTRACTION 

VISIBLE 
: x l X t ( I j ,  I ,  & 
; x I x t  (1 :  

I 

b F t ~ i . :  21 r" c.\-rrucrion 

M'r emplo>ed 24 features from each of the visible 
and the infrared images to determine the \,anous rain- 
fall classes: these radiance and textural features are 
summarized in Table 7 .  These features ha\-e k e n  more 
comprehensi\el> described by \Veszka et al. ( 19761 and 
Psribh ( lY77) .  

The radiance features are statistical parameters de- 
rived from all of the pixels in  each 20 %. 20 km grid 
element. The! include the maximum. minimum. and 
mean of the radiance Ere! levels. 

One of the texture features that are used to determine 
radiance variations is the edge strength per unit area 
defined b) the area a\.eraged Roberts gradient 

ESTIMATION OF 
DECISl3N RULE 

DENSITY FONCTIOWS 
P:XIOJc? 
p(XllA 
p [ x l l r  ?;: 

1 bl-d .V-d 

{ ! I ( I x .  n)  - 1017 + d. n + d); 

+ il(m + d, nj - I(m. n i d)lj ( 2 )  

where I(m. n )  are the radiances at specified Cartesian 
coordinates 117 and n. and d is the number of pixels 
- separating the AI X 'V points. The Roberts gradients. 
RG are designated as k = [7] and [ 161 in Table 2. 

Grey level difference statistics were additional texture 
features that were emploqed in this study. These quan- 
tities depend on the histograms of the distributions of 
radiance difference. At&). If  pairs of pixels are con- 
sidered within a 20 X 20 km grid element the gre! level 
radiance difference is: 

(3 )  

where both and 2 can assume values of either 0 or 
k d  d is the  distance separating the pixel pairs and H 
= arc tan(di2) = 0". 45".  90". I ? "  is the direction in 
which the pixel pairs are measured. The gre) diference 
g ma! assume \slues in the range 0. 1: - . 3 5 .  

The histograms h6&) of gre! lebel radiance differ- 
ences in a grid element provide a measure of the scale 
size of the cloud features. For example. if a gnd element 
contains clouds a,hose horizontal dimensions are large 
and whose texture is smooth compared to the selected 
pisel separation d. then grey level differences g - 0 
will be high& probable. On the other hand. if clouds 

g = iI (I?L n )  - I ( / , ?  + 2. I I  + 8,;. 

DECISION RULE. 
[INFRARED 

FEATURE EXTRACTION 

I ! x ! x t  UNKNOWN CLASS 
VISIBLE 

I r I 1 I - 
TESTING SETS 

FIG 1 Schematic diagrrrn; of :he paitem recopniiron algxithm 
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TABLE 2. Features' used to charactenze satellite images of clouds 

Feature 
number 

h Features 

Radtancc 

Mean gre) level 
Standard deLiation of gre? level 
Maximum prq lebel 
Minimum gre? level 
Maximumiminimum gre! lebel ratio 
Gre! lebel range 

7ex:urc 
Pixel separation d 
VIS IR 

-I 

7 

? 

Edge strength per unit area RG[ 71 - 4 
Maximum within 4 directions ME4N[F]. COS[9]. .4SU(lO]. ENT(1 I ]  - 4 

1'1 
IF;]-[ 1 I ]  

!I?]-[ i 51 Mean of 4 directions - 5lE4N[ 121. CO?;[l?]. 4SM[l4]. ENT[15] - 4 
[I61 Edge strength per unir area RG[ 161 4 8 

I I ']-i20] Maiinurn  within 4 dirmions MEAN[ 171. COY[ 181. 4Sali 191. EKT(2O) 4 8 
[' !]-[Z4] Mean of 4 directions hlE.4Yi21]. COY'j22j. 4SV[23] .  E'CTi241 4 I; 

- 

4 total of 24 features were considered for infrared images onl) and 48 features were considered for infrared and wsible images. 

are small or if the! are inhomogeneous in appearance 
compared to the pixel separation. then a larger range 
of p is more probable in a given grid element. The 
histograms h,d(g) will thus be spread over a larger range 
of g as graininess or streakiness increase. Note that the 
texture ma! be streaky in a particular direction so that 
the histogram must be specified as a function of ande 
8 as well as d. 

Four features that characterize the shape of h,.&) 
are calculated: 

Mean: 

Contrast: 

4ngular second moment: 

E ntrop!,: 

where .V is the total number of pixel pairs in  the grid 
element separated b! distance d and direction 0. 

The MEAN is the average of the gre? level radiance 
differences. Contrast. CON. is a measure of the local 
variation of radiances in a grid element. Large values 
of MEAN and CON in a given direction correspond 
to markedl! structured clouds such as cumulus with 

shadows. The maximum directional ME.rZN and COY 
are designated as k = [SI, [ 171 and k = [9]. [ 181. re- 
spectively. in Table 2. The mean of these quantities 
averaged over four directions are designated as k 
= [ 121. [2 I ]  and k = [ 1-71. [22] in Table 2. 

The angular second moment. .4SM. is a measure of 
the homogeneit! of gre! level differences over distances. 
d. and angles 8. A large ASM implies that although 
neighboring pixels ma! have different ere!' levels. the 
differences in  these levels at neighboring pixels are 
similar over man! pairs of pixels in the grid element. 
It  is high for cirrus or cumulonimbus an\.&. for decks 
of stratus. and for hmds  of cloud5 oriented in the di- 
rection ofP. The 4Shl can depend on angle ifthe clouds 
are banded in a dominant direction. The maximum 
.4SM in a g i \m  direction are designated as features k 
= [ I O ]  and [ 191 and the mean ASM over all directions 
are designated as i, = [ 141 and [27] in Table 2. 

Entrop!. EST. is a measure of the absence of a dis- 
tinct scak of organization. h is a feature thar is a max- 
imum w.hen all radiance differences g ha\e  an equal 
probahilit! of occumng The EVT is low when the 
lexture is smooth and when it is highl) structured. This 
dual \,slued dependence on he,&) arises because €UT 
is small when h6.@! = 0 and a 1 .  The latter effect is 
contributed b! the logarithmic contribution to ENT. 
Again E S T  depends on direction for features X = [ I  I ] 
and [ZO] and i t  can be averaged o\er all directions in 
features k = [ 151 and [24]. 

The corrected visible and infrared images or the in- 
frared images alone were processed on McID.4S. .A 
pre-processing step rejected clear grid elements in the 
\isible images that had maximum g r q  level intensities 
< 80. The 20 'x 30 km grid element5 containing clouds 
roughl! in  the same stage were identified on the basis 
of values of the textural contrast feature k = [ E ] .  



Thi. radiance and texture features can be regarded 
,,' c(rr7,pcments o fa  \'eCtor < = ( .V I .  .v:. s3. - * *.Y&) that 
.I ,!.\Ln+i. - CaCh 20 X 2@ hm grid element. The featfire 
, L.c,c,7$ nflp,e grid elements ?hat comprise a gi\en rain- 
( J I j  C ~ S S ~  in  each scene can be described by a mean 
,.t.L;i7r = (-pi. p:. p ; .  . . . . p,.) and a variance vector 
6 :  = ( c , I .  (T2-.  g3-. - * ui2j. assuming that i is normall\ 
t:!s!ri5~td and that all features are independent of each 

Bcc3usc these vectors can in principle ha\:e as many 
2q 4s components. not all of H hich contribute to the 
v-*;7?rarion of rainfall classes. the number of feaiures 
k,.,? 10 bt reduced. This was achieved b> a feature se- 
i:;tlc~n procedure u hich ranhed the features in the or- 
LIL- 0; the;; abilit! to separate the rainfall rate classes. 
7 - c : ~  v . 2 ~  iniplemented b! a di\ergence that normalized 
:!::~ sc*;TaraiiOR of the means of the feature b! the cum 
,6 the  \ ananccs. The di\ergence. for the feature .xA be- 
twccn rainfall rate categories i and i' is: 

p: h c r .  

i # i'. ( 8 )  

Di\ erpences were computed during the training 
p h s t  for all pairs of rainfall rate classes. Those features 
fLlr which the di\ergences ranked highest were chosen 
tCl dir;rimina!e between the \.anous rainfall rate classes 
IF, the  classification phase (see Swain and Davis. 19s:). 

Table 3 presents a summap ofthe number ofscenes 
::-. u h i < k  \snous features were ranhed in the order of 
(i:*;rssing d:\ ergencr: for $:parating classes 0 and ! I 
- 2 1 .  1.e.. ranA 1 w 2 s  the most e!Teit;\e discriminating 
I i . L i U x  while ranh 9 was the leas1 Thus \be find that 
f o i  t h c  separation of T a r ,  and no rai~?. \.isibie feaiurs 
i 11 ranked foremost in  eight scc'ilej. \,isible feature [ -3] 
rcin'hec! foremost in nine scenes. \+&le feature 1131 
ranhcd foremost in eight scenes. etc. Similarl?. infrared 
- L . . > ~ r c  i?] ranhed first in i i scenes. etc. 

The \isible radiance features A = [ I ] .  [3] and [I] 
um frrquentl! signifizani discriminating features: 
h m s e r .  texlurt. fea:ures k = [ 1 I ] .  [ 141 and [ 151 w r e  
d!s;' frequent!! signifixnt disxminatin: features 
U'hiie these ie\ture features affected the appearance of 
precipitating clouds. they ha\.e onl! been recognlzed 
s a @ w t i \ e l >  in pre\.ious studie5 as mentioned in thc  
inlroduction. Texture features defined o\er large pixel 
separations. a' = 4. appeared to be wrlakl! related 10 

rainfall. This is consistent with the findings of J'au and 
Rogers ! 984). H hich suggest that most precipiming 
cr!ls are sma!ler than - IC)  i m .  

The infrared radiance features X = [ I ] .  [I]  and 141 
were frequentl! significant in identif! ing precipitating 
regions. [i.e.. those designated ( 1  - 2 ) ] .  Houwer.  tex -  
tu re  features X = [ 101. [ 1 '] and [ IS]  were also signiii- 

. .  

cant. Here too. the texture features that were defined 
in terms of the smallest pixel separation were the most 
important. 

Separating rainfall classes 1 and 2 was most fre- 
quentl! achieved with features [I]. [3] and [3] in the 
\isible and in the infrared images. No texture features 
were consistent11 able to contribute to this preliminan. 
separation. Accordingly. the classification was con- 
ducted in tuo steps: the no-rain and rain separation 0. 
and ( I  + 2 ) .  used features that differed from those used 
to subsequent11 separate between classes 1 and 2. 

d. F m w c  propcrric.c aud rraining sets 

The visible and infrared contrast features [22] are 
shoun in Fig. 2 a5 functions of time. The  points rep- 
resent each class mean of these features for rainfall 
classes 0. I and 2. These two figures show that the 
fcature values changed with time and varied uith storm 
s!sterns. S o  simple threshold could be found to sep- 
arate each c!ass for all cases. These figures show that 
clouds in different stages of convective activit! had dif- 
ferent feature \ alues. For example. on da\. 1 Sb of 1979 
at 1600 GMT. clouds were in a grou-th stage and at 
i900 GMT Fig. 2a shows that the clouds were in a 
deca! stage. This implied that the separation of rainfall 
classes should be performed by taking different con- 
vective activit!- stages into account. 

The contras? is a measure of convective activity so 
that this feature should be correlated in the visible and 
infrared channels. Moreoker. large values of visible 
contrast indicate that small scale con\ecti\e activit? is 
strong as in the earl! stages of cumulus growzh. .4s the 
cumulus clouds mature. anvils and cirrus shields ex- 
hibit loner contrast. Contrast. rather than infrared 
bnghtness temperature. w'as selected as an initial 
screening feature because some tropical stoms cml? 
_en'\\ to modest altitudes so tha: radiance features which 
depend on brightness temperature could miss such 
c1;ruds. For example. the active thunderstorm shown 
in Fig. 2a has greater contrast than the stable tropical 
storm s h o w  in  Fig 2d 4s a resu!t. feature [ 2 2 ]  w'as 
used to di\.ide training sets into three cksses. i.e.. high. 
med!um and low contrast [:,'I. 

A \isible contrast that was apprec~ab!! greater than 
t h e  infrared contrast was attributed to sireakiness in 
the \-isible image. Tne subsequent analysis of such an 
image uould on]? consider the \isibie features I ,  = [I]. 
['I. [4]. [SI. and [6] and all of the rele\an? infrared 
features. A n  example of such a case is shown in Fig. 
2c  lier re the high visible contrast. CON[22] > 150. is 
cleari! inconsistent \vith the intermediate infrared 
contrast. This figure can be compared to Fig. 2b in 
w hich \.isible and infrared contrasts are similar in mag- 
ni tude.  

I t  \#.as generall! preferable to utilize the visible con- 
trast after its \erisimili?ude was determined because 
thc spatial resolution of the visible channels was greater 
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TABLE 3 Xumber of images i n  uhich pattern recognition feaiurc [!I] uerr ranled 
betueen I and 9 for rainfall classification (01 no rain and ( 1 + 2 )  rain 

Rank 

4 - , features A 1 - 3 4 5 6 8 9 
Radiance 

Mean Gre? Level 
Max. Gre? Level 
Min. Gre! Level 

[ I 1  
[31 
141 

3 
I 
1 

I 
I 
4 

Texture Pixel 
features separation 

- -7 RG - 
hlax. MEAN 1 

Max. 4531 - 
Max. E N 1  - 
\!e3n. M E A S  - 
hlecln. COX - 
\lean. 4SM * 

Mean. E N 1  - 

1 

7 

7 

, 
4 

-7 

9 

1 4 
I 

9 4 , 
1 , 

I 
% 

z 

1 1 , 
! - 
I 
1 

7 

- RG 4 
Max. A S M  4 
Max. E S T  4 
Mcan. M E  4N 4 
Mean. ASS1 4 
Mean. ENT 4 

I 
I - -7 3 I -7 7 - - 

4 
I 

4 4 
3 

Radiance 
features 

1 Mean Gre) Lebel 
Std De\iation 
h1ax Grz! Lmel 
Min Gre! Letel 
Max Slifi Ratio 
Gre? Lexel Range 

1 

1 

Textural 
features 
- 
RG 
Max ME\\ 
Vax CO2 
hlzx \S\1 
Max E\T 
Mean \ I€ \ \  
Heir C O X  
W a n  4S\f 
\lean E I T  

RG 
hlax M E 4 2  
Max co\ 
Max 4SM 
\lax E\T 
Mean ME42. 
Mean CON 

- 

hlCdn 

Pixel 
separation 

4 
4 
4 
4 
4 
4 
A 

4 
4 

8 
8 
P 
P 
F 
8 
8 
a 

I 
3 

I 

3 
I 
i 

7 

1 1 

I hlean ENT 8 i24i 1 

than the resolution ofthe infrared images and the clas- 
sification divergence was greater (see Section 3c) .  

The different resolution of the visible image alkcts 

some feature values. For example. on da\ 186. all im- 
ages have a resolution of 1 X 1 km. w-hereas on day 
246 of 1979. tho  resolution \vas 1 >. 1 km at 1930 
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"UT I c CLASS 1 
+ CLASS 2 

L - 

c c 

:80: 153c k 
1 

160C 1 
I 

2000 

2 2 C t  
I 

1832 

200'. 

2200 

T ?  ' ! 1 ,/ 

The decision tree shown schematic all^ in Fig. 3b 
was used to separate the rainfall classes. 11 is described 
as follo\vs: 

The anal!.sis of an image commenced b! checking 
the visible contrast and the resolution of the test set to 
decide H hich contrast catego? applies to the test set. 
The visihle or infrared mean intensit! gre! le\.el k 
= [ 1 J n'as then used to determine which trainins set 
should be chosen inside the given contrast category. 
The visible mean intensit! ere! lebel was preferable to 
the corresponding infrared feature pro\.ided that visible 
data were a\.ailable. The decision rule determined by 
the chosen training se? was then used to discriminate 
between the no rain. 0. and the rain. ( 1  t 2 )  classes. 
In  the cases tested. the separation \\'as achieved a.ith 
\.isible feaiures [ I ] .  [-3j. i41. [ I ? ] .  I !?] .  [ ! 9 ] .  1231 and 
[24; and \iith infrared features [ : I .  [-3j. 141. [ IO] .  [13]. 
and [ 151 (see Table 3 ) .  I t  was noted thai ?he infrared 
mean relture feature X. = [8] was highl! \.anable as 
storms de~eloped. I f  this texture feature was markedl! 
different from the infrared mean texture feature of all 
of the mining sets. rhsn oni! ihe infrared intensit! 
features I, = [ I ] .  [-?I. and [a] and all of the \.isible fea- 
tures were used to discriminate between rain and no 

TRANINC, SETS 

I 
nlGn 

?T ( 2 2 )  C O N T R A S T  ( 2 2 1  C O N T R A S T  ( 2 2 )  

TEST SET r RAIN SAMPLES 
C . A S S  ! I * ? ;  3 r 

d ( 2 2 ;  3ETERUINE 
3 N r R A S T  CATEGOR 

1 VIS ' I  OR IE) I 1  f 
' DE ' E  RYlNE TFAINIYS 1 SE ANC HE 

COfiRE S W W 3 N G  
[ DEClSlOh 9JLE 

NS RAIN SAMPLES 

I I 3 E C l S l 3 h  RLlLZ 
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T ~ B L E  4 Erect of radiance and texlure feature., on classificauon of gnd elmwntr. ['Kc rain ( 0 )  rain I I * 2)]  

Class St31!SIlCS 

Feawres used for \'is:[ I]. 13). 141: Yis:[l] .  [1].[4]. [14]. [IC]. 1191. ( 2 3 ) .  1241 
separation' \'is:[ I ] .  IR:[ I] IR:[ I ) .  (31. [4] IR:[l] .  131. 14). [ IO].  [14]. [ I S ]  

Resolution (hrn I** Biu>*'* [ t i t ,  rain !O ra:n il a 2 , ]  

1 x 1  
2 x 2  

1.04 2 0.07 
0.84 f 0.14 

1.03 z 0.07 
0.89 i 0. I3 

81 2 I 
PO 2 5 

84 2 I 
78 f 5 

l.00 = 0.02 
0.96 -c 0.05 

9-41 I 
92 f 3 

SA/// (Lor(**** I%] 
l > l  502  13 5 1  z 8 hc I 2  
2 r 2  6 @ =  IO 54 I 9  HI = 4  

Carego? \ I S  contrast. C0\ [22]  Lou 
*' No of image pairs ( I  X I 1 hm resolution 3 

l o  oOrnage pairs ( 2  > 2 )  hm resolution 4 
**' Panofshb and Bner ( 1966) 

rain classes. Othewise. all of the features were used. 
The reason for this decision is that the infrared large- 
scale texture features vary greatly as clouds develop: 
hou,ever. that variation appcars to bear little direct re- 
lationship to rainfall. The cases where this criterion 
was invoked are designated bc a plus in Table 1.  

.4fter determining that each grid element was either 
in the "nonraining" (0) or the "raining" ( 1 + -3) classes. 
those grid elements in which rain was falling were sub- 
sequentl! divided into classes 1 or 2 .  The features used 
for this second classification were the visible and in- 
frared radiance mean. maximum and minimum grey 
levels. X. = [I]. [3] and [4]. The feature (41 for visible 
or infrared was used to decide which training set should 
be used. 

This pattern recognition algorithm was performed 
on a Hams-800 computer. The computer time required 
to analyze one test set was about two minutes. 

4. Rainfall classification results 

The effect of different features on the abilit! to s e p  
arate the various classes was first investigated. Table 3 
shows the separation between the rainfal! classes. "rain" 
( 1  + 2). and "no rain" (0). obtained h) applying the 
pattern recognition algorithm to visible and infrared 
images using different festures. The features that were 
used to separate classes 0 and ( 1  + 2)  are shown. This 
table illustrates the relathe importance of radiance and . 
texture features. Note that the first two columns sum- 
marize results obtained when onl? radiance features 
such as the mean [ I ] .  the maximum [3] and minimum 
[4] radiance gre). levels were considered. The third col- 

umn shows the effect of including numerous additional 
texture features in  the anal!sis. The performance of 
the rainfall retrieval algorithm is ebaluated b! tabula- 
tions of the bias. the percentage of correctl! classified 
grid elements and the skill score percentage (see Pan- 
ofsk! and Brier. 1968). 

It is note\sorth! that the addition of eight texture 
fearures in the anal!,sis improbes the skill score b! more 

T4BLE 5 Summan of rainfali dassificauon 
from infrared iriages oni! ' 

Lou " 
High'" 

LOU 
High 

ht. z 6 
Hf f 7 

61 f 3 
64 = 10 

SAili w,)re* [e 1 
LOU c-  z 10 41 2 4 
H igh 6t> I b 4 3 -  13 

Panofsk? and Bner (1968;. 
** 1 .R .  fea:ures A = [I] .  131. Ilj. l y j .  [&I.  [IO]. [ I l l .  [12]. 1141. 

*I* 1 R .  features A = [ I  j. [ij. [4] sere then used to di\ide the rain 
1 1  5 ;  were used to scparaie rain or no rain classes. 

ciass ( 1  4 2 J  into classe!. i or 2 
' 1.R resolution: 4 F hm. 

No. of Images. I I 
t+t No of images 4.  

*. 
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than 27 percentage points. In as much as most pre- 
viousl> used rainfall estimation algorithms depended 
onl1. on variations of radiance features. it is encouragjng 
to pursue the use of textural informatioxi in this anal- 
ysis. There is also an indication that visible images with 
1 1 km resolution provide somew hat better estimates 
of the occurrance of rain than the visible images with 
2 X 2 km resolution. 

Table 5 presents the classification of rainfall classes 
0 and ( I + 2 )  in the left-hand column and 0. 1. and 2 
in  the right-hand column. This analysis was conducted 
with infrared data only: it therefore simulates the abiliry 
of the present algorithm to classify rainfall rates from 
GOES data at night. The contrast texture feature [XI 
does not appear to affect the skill score. The skill score 
for classification between no rain grid elements in class 
0 and those with rain in  ( 1  + 2) is 67%: this compares 
somehhat unfa\-orabl> with the skill score of 8 5 5  o b  
tained from visible and infrared data shown in the most 
right-hand column of Table 4. It should be noted that 
the 4 x 8 Lm resolution of the infrared sensor onl! 
rewals large scale convection while the visible sensor 
can detect smaller scale convective activity. The clas- 
sification be twen rainfall classes 1 and 2 is ob;ained 
with radiance feaiures [ I ] .  131 and [4] and the skill 
score for separation into three rainfall rate classes di- 

minishes to 445.  I t  is encouraging that no obvious bias 
is evident in this classification scheme. 

Table 6 presents the classification of rainfall classes 
0 and ( 1 + 2) in  the left column and into classes 0. 1 
and 2 in the right column when both visible and in- 
frzircd images are anal>zed. The contrasr texture feature 
[ 2 2 ]  appears 10 affect the skill score siightlF: the low 
contrast cases appear to have skill scores about 5% 
higher than the high contrast cases. However. the visible 
images with 1 X 1 km resolution appear to provide 
consistent11 higher skill scores than those with the lower 
resolution. The classification into classes 0. 1 and 2 is 
achieved with a skill score of 65% which is better than 
the 44% skill score that was provided b\ the infrared 
data onl). No obvious bias is evident in this data. 

The abiiit! ofthe algorithm to pro\,ide objecti\e dis- 
p1aJ.s ofrainfall distributions is shown in Figs. 4. 5 and 
6. These figures shou results obtained from thunder- 
storms. a tropica! storm and a humcane. respecti\,el!. 
Figures 4. 5 and 6a. 0 show the visible and infrared 
images from which the rainfall estimates were derived. 
Figures 4. 5 and 6c. d show the rainfall distributions 
denled from the present algorithm and those indicated 
b> the NOX.4 radars respecti\.el> . The gre! scale c d i n g  
in Fig. 6c. d is white = no data. light grey = 0. grey 
= 1. dark grey = I or 2. and black = 2:  the cross in- 

TABLE 6. Summan of rainfall clvsification from visible and infrared images 

Rainfall rate class 

Class statistics 

0 6r ( I  * 2 ) -  0. 1 6L 2*** 

il 

F 

V s i  hi!i t> Contrast. 
C o y x )  

Hi& 
High 

Lou 
Lou 

High 
HI& 

Lou 
Lou 

Resolution (hm) Bid;* [ncs ruinfO rain 'I * 2;j 

'Is' A !, I.R.: 4 Y 8 
VIS: 2 x - 

1.00 1 0.14 
l .M! 1 0.1 I 

I 00 2 0.02 
0 96 f 0.04 

"lS' I ' 
VIS. 2 x 2 1.R.. 4 \ 8 

'Is' I 
VIS. 2 x 2 I.R.: 4 x 8 

VIS I X  I l R  4 r 8  
VIS 2 x 2 

'Is ' " I R .  4 x 8  
VIS 2 r 2 

9; I.; 
90 2 3 

94 I I 
92 5 3 

Skill score. 1% ] 

82 I 5  
74 i 4 

85 2 2 
80 1 1 

70 2 12 
4 1  2 I 

61 1 4  
58 2 7 

' Panafsh! ana Brier I 1968 1. 
** Separaiior. into rainfall class "no rain". (0) .  or "rain". ( I  - 2) .  for high iontrasi cases were achie\ed uith \'IS I ,  = [ I ] .  13j. 1-41. ['I. 

Sepiration into rainfall class "no rain". (0). or "rain". ( I  + 2). for low contrast cases was achie\ed with VIS I, = [I]. [3]. [4]. [ 141. [IS]. 

**. Subsequent separation of "rain" into classes ( 1  ) or ( 2 )  was achieved with \'IS I, = [ I  I. [!I. [a]. and 1.R. k = [I]. [3]. [4]. 

[8). [IO]. ! ! I ] .  [Ir]. [14]. [15j. [19].[2?]. j24)and I.R. A = [1].[3].[4]. [IO]. [14j. [IS] 

[19].12?].['4]an3i.R.I;= [1].[3].[4].[10].[14].(15j. 
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FIG. 1. (a) Visible h u g e  ohtained from the SXlS-2 wtellire on 5 July 1979 at 1700 GhlT which shous 
thundentorms near Galbeston. TX. (b) .As in 4(a) except !hat the infrared image is shown. 

dicates the location of radar and the dashed lines de- 
lineate the coasts. While the details of the rain distri- 
butionsdiffer in the latter two figures. the broad features 
arc' similar. I t  may in fact be argued that the elevation 
ansle Of the mdar introduces a bias against heavy rain 

obserx'ations at large distances from the radar. For ex- 
amplr.. the satellite image (Fig. Sa) suggests that the 
center of the tropical storm was more than 100 km 
south\\est of the Galveston radar. The satellite derived 
rains Are indicated as class 2 to the southwest of the 



FIG. 3 IC) Dcn\ed rainfal! caiego? distnbutior.. uhite = no data. !igh: grc! = 0. gr?! = ! and hlach 
= 2 ,  dark gre! = I or 2 id)  Radai image ohtain-d from the Gal\eston radar The grc:, scale IC rht same a> 
for ~ I C I .  



FIG. 5. (a) Visible image obtained from the SMS-2 satellite on ZS July 1979 at 1930 GMT which shows 
a tropical storm near Galveston. TX. (b) As in 5(a) except that the infrared image is shown. 

radar while the radar designates them as class 1. A yet the radar suggests that the rainfall diminishes to 
similar effect is evident in Fig. 6c. d where the eye of class 0 at the bottom of Fig. 6d. 
Hurricane Debbie is to the south of Daytona Beach Discrepancies occur most frequently at the edges of 
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the larger precipitating s\stems and near isolated cells. 
H hers ambiguities in assigning radar-deri\ed rainfall 
rates to grid elements here the greatest because of na\- 

igation problems. It Has on]! possible to indicate that 
rain Has falhng on some isolated or edge grid elements 
because no training sets that adequatel? dwriminated 
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FIG. 6. (a)  Visible image obtained from the SIVIS-? satellite on 3 Scptembrr 1979 at 1800 GMT which 
shows Hurricane Debbie near Da)tona Beach. FL. (b) As in 6(a) except th31 the infrared image is shown. 

benveen rainfall rates were derived for such isolated 
cells. 

5.  Summary 

This study has shown that single pairs of visible and 
intixed geostationaq~ satellite images can be objec- 

tively analyzed with pattern recognition techniques to 
determine rainfall rates in three operational radar 
rainfall classes. It also showed that radiance features 
provide some separation of rainfall classes in given 
grids; however. a greater skill score was obtained when 
texture features were incorporated into the analysis. 
Specifically, the addition of texture features along with 
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radiance features raised the skill score in identifying 
rain from 56 to 83%. Moreover. the classification into 
three classes could be achieved with a skill score of 
-66%. The best .results were obtained from images 
with high spatial resolution which re\ealed texture on 
a scale of a few kilometers. 

The results of this stud! are still preliminar).. More 
work is required to determine hoH well the rain rate 
classification technique works in other regions and at 
other seasons. Better pattern recognition algorithms 
ma! be developed as more experience is gained. 
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ABSTRACT 

A scheme is presented for the automated classification of oceanic 

cloud patterns. - The twenty classes reflect the rich variety of 

morphologies that are detectable from space. A training set is defined 

by 2000 samples-of size 128 X128 km taken over the Western Atlantic in 

February 1984. The method uses visible and infrared images from a 

geostationary satellite. Class discrimination is obtained from 

thirteen features representing height, albedo, shape and multilayering 

characteristics of the cloud fields. Two features derived from the 

two-dimensional power spectrum of the visible images proved essential 

for the detection of directional patterns (cloud "streets", rolls) and 

open cells. Based on the assumption of multinormal distributions of 

the features, a simple classification algorithm is developed. From 

1020 independent samples, the consensus of two out of three expert 

nephanalysts agreeing or not with the machine result suggests an 

overall accuracy of 79% with the machine answer at least second best 

89% of the time. The cloud climatology in twenty classes for January 

and February 1984 are compared. Retrieved cloud fraction maps are also 

compared with the observed fields from ships. _The scheme is proposed 

as a candidate for the International Satellite Cloud Climatology 

Project . 

: 
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1. INTRODUCTION 

In this first of two articles, the design o f  an automated and 

efficient cloud classification scheme is presented. The twenty classes 

reflect the rich variety of morphologies that are detectable from 

space. The cloud patterns are quantified with measures extracted from 

visible and infrared images. These measures, or features, describe the 

cloud fraction, height, albedo, shape and multilayering characteristics 

of the cloud fields. The vector of features permits an objective 

classification. Class-dependent relationships between cloud features 

and meteorological parameters of interest are developed in the second 

Various cloud classification schemes have been proposed in the 

past. Scientists responsible for the International Satellite Cloud 

Climatology Project (ISCCP, see Rossow et al., 1985). have conducted a 

comparison between the existing techniques in order to decide which one 

should be used for a global five year climatology. One of their 

conclusions is that "all methods, which work well for some cloud 

types or climate regions, do poorly for other situations". The number 

of classes for most algorithms is notably low. The cloud fields or 

individual pixels are typically assigned one of three height classes: 

low, middle and high. The ISCCP requirements presently include a fourth 

class: deep convective. In addition, cloud optical depth and cloud size 

distribution are also mentioned as desired parameters. This is an 

implied admission that a more detailed classification, that includes 

morphological considerations, is desirable. 
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A notable exception with regard to the number of classes is the 

work of Shenk et al. (1976) who designed a 10-class scheme. Their four- 

channel method was successful in detecting cirrus and multilayered 

systems but the coarse resolution, 55 km at nadir, d i d  not allow the 

detection of much morphological detail in boundary layer cloud fields. 

Parikh (1976) presented a review of various cloud classification 

techniques. Basic concepts on tree structures, extraction of features 

and the use of discriminant functions applied to the cloud classifica- 

tion problem are described. Among the new approaches that have been 

tried, clustering in multispectral space (Desbois et al, 1982) is one 

that has shown skill in segmenting cloud pictures into homogeneous 

areas associated with cumulonimbus, cirrus or mixed cloud types. A 

drawback of that method however, and of pixel by pixel methods in 

general, is that by nature they are not suited for the detection of 

mesoscale cloud patterns. The differentiation between open versus 

closed cells, cloud "streets" versus ordinary cumulus fields or 

stratus versus stratocumulus cannot be achieved satisfactorily from 

scrutinizing multispectral histograms. The effect of cloud shape on 

visible-infrared signatures (Platt, 1983, Schmetz, 1984) has been 

investigated with limited practical success. For realistic cloud 
- \  

fields, multilayered systems in particular, several possible interpre- 

tations of the signatures is the rule rather than the exception. The 

basic problem of discriminating between broken cloud fields and over- 

cast ones with variable optical depth still remains. In short, for the 

purpose of detailed cloud classification, it appears that a set of 
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features specifically designed to 'see' the morphology is required. 

Such features are in the realm of pattern recognition in the literal 

sense of the term. 

The work of Rochard (1978) and Brard (1980) represents a rare 

effort aimed at the recognition of cloud field morphologies in detail. 

Their scheme discriminates 13 classes from 8 features. The boundary 

layer classes included open and closed cells, stratus and cumulus. 

Directional patterns were however not considered. 

Preferably, the scale of the analysis should be compatible with 

numerical weather prediction models or general circulation models. The 

ideal scale for cloud pattern analysis, as it turns out, is similar to 

that of those models. In their work on image modeling of cloud fields, 

Garand and Weinman (1986), found that scale to be between 100 and 250 

km. Such a scale (mesoscale) is large enough for the patterns to be 

recognizable, the texture primitive of the patterns being of smaller 

dimensions, yet small enough to insure a high probability of honogenei- 

ty of the cloud pattern and its associated weather conditions. 

One incentive to proceed with the development of this classifica- 

tion scheme was the realization from the aforementioned work, that two 

simple power spectrum features provided reliable means to detect direc- 

tionality and therefore cloud streets and rolls and to detect, in 

addition, the presence of open cellular patterns. It remained t o  be 

shown however that these features could permit the discrimination of 

mesoscale cellular patterns from all other cloud types. A general cloud 

classifier was therefore developed. 
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This study is limited to oceanic regions only. We limit our 

attention to the winter season in the Northern Atlantic. We make use 

of a large data set covering an area of 20 degrees latitude by 20 

degrees longitude for the sixty days of January and February 1984. 

Chapter 2 defines the twenty classes to be recognized. In Chapter 3, 

following the description of the features for classification, the 

pattern recognition algorithm is presented along with the results on a 

training set of 2000 samples and on an independent test set of 1020 

samples. Monthly and seasonal maps of cloud fraction are shown in 

Chapter 4 along with a comparison between satellite-derived and 

observed fields (from ships) of total cloud fraction. Also, the clima- 

tologies in twenty cloud classes for January and February 1984 are 

compared. 

2. DEFINITION OF THE CLOUD CLASSES 

The nominal scale of analysis employed in this study is 128 X 

128 km; the nominal resolution of the visible sensor is 1 km. Power 

spectrum analysis, using fast Fourier transforms, is more efficient 

with sizes that are powers of two: this is the reason for choosing the 

particular number 128. This scale is too small to assign synoptic scale 

classes such as cyclone vortices or fronts but it is large enough to 

include several multilayered classes. With the inclusion of these 

multilayered classes, there is actually no need to search for homoge- 

neous areas and the analysis can be performed on a fixed grid of 
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contiguous areas. Also we emphasize that the classes are defined from 

the viewpoint of a geostationary satellite. Thus, when compared to 

ground observations, both the scale and the classes may be different. 

For example, ground observers cannot report open cells or cloud 

streets, two cloud types that are among those investigated. Invoking 

this argument, human interpretation of the satellite pictures rather 

than shipboard observations of cloud type will serve as "truth". Three 

expert nephanalysts were assigned to the verification of the classifi- 

cation scheme on independent samples. The definition of the classes 

and the assignment of a c las s  number to the training set samples were 

accomplished by the author. 

The classes were first selected by experience from a series 

of images: the samples of each scene were labeled into as many 

classes as the cloud fields could be discriminated. The analyst (the 

author) sought the mesoscale cellular patterns mentioned above, the 

discrimination between cumulus and statocumulus, the detection of thin 

cirrus, multilayered systems and cumulonimbus clouds. Once a total of 

20 classes was reached, the analyst felt hard pressed to define more 

classes without encountering a large number of ambiguous cases. The 

thresholds in height and albedo were defined during the analysis 

process.' A formal definition of the classes implies the description of 

the discriminating functions. At this stage of the presentation 

however, in order to clarify the goal of this study, it is appropriate 

to describe the various morphologies to be recognized in words and 

images, rather than by equations. The number ordering from from 1 to 
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20 closely follows the mean cloud top height from lowest to highest. 

Class names are generic, except for mesoscale cellular convection 

classes 7 to 11. The names streets, rolls, open and closed cells are, 

however, pervasive in meteorological literature, occasionally mentioned 

by name in cloud atlases such as those of Scorer (1972) or the World 

Meteorological Organization (WMO, 1969), although these books are 

concerned with cloud patterns as seen from the ground. Scorer's (1986) 

book on cloud patterns as seen from satellite is closer to the needs of 

this study. An entire chapter (six) is devoted to mesoscale cellular 

patterns: these cloud patterns were also the scientific object of two 

recent field experiments, the Air Mass Transformation Experiment 

(AMTEX, 1975, East China Sea region, see Sheu and Agee (1977)) and the 

Convection and Turbulence Experiment (KONTUR, 1981, North Sea region, 

see Bakan (1985), Hoeber (1982)). 

In the proposed classification scheme, the generic name 

cirrus corresponds to any cirriform class (cirrus, cirrostratus, cirro- 

cumulus) and the generic name altocumulus corresponds to either 

altocumulus or altostratus. Cumulus, stratocumulus, stratus, 

nimbostratus and cumulonimbus are, however, recognized specifically. 

The abreviations VIS and IR are used to designate the visible and 

infrared pictures, respectively. The algorithms for the estimation of 

cloud fraction, height and albedo are described in Chapter 3. Fig.  2.1 

provides one example for each class of visible-infrared pairs. The 

reader is invited to examine these examples while reading the 

description of the cloud.classes. 
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Class 1. CLEAR 

The cloud fraction is less than 1%. When clouds are present at such a 

low cloud fraction, they are usually small cumuli. VIS: dark. IR: 

dark. 

Class 2 .  STRATUS 

Low cloud deck with smooth surface, usually one cloud entity without 

holes. 

VIS: Albedo typically moderately bright (50 to 80%). 

IR: Quite dark, sometimes clouds are not discernable from background. 

Mean height is 1 . 4  km and does not exceed 2 .5  km. Above that height, 

this morphology belongs t o  class 12 (nimbostratus). 

Class 3. SCATTERED CUMULUS 

Low clouds with grainy texture. Cloud cover less than 50%. 

VIS: Albedo relatively low, 30 to 45% although the middle of the cloud 

elements may be bright. The individual clouds are usually small and 

numerous. 

IR: Dark or grey, depending on height, and fairly uniform. The typical 

height is 1.8 km and can reach 3 .5  km. 

Class 4 .  BROKEN CUMULUS 

Very grainy texture with cloud fraction higher than 50%. The clouds 

seem packed against one another resulting in numerous small background 

areas. 

VIS: Grey to semi-bright, mean albedo 43%. 
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1.R: Grey, fairly uniform except for  some towering cumulus not exceeding 

5 km. Typical height: 2.5 km. 

Class 5. SCATTERED STRATOCUMULUS 

Low cloud deck with cloud fraction less than 50%. The clouds tend to 

be connected in sizeable blobs so that most of the cloud fraction is 

made up of a few clouds only, as opposed to the cumulus class. 

VIS: Average brightness 40%. When brighter than 60%. the class becomes 

11 (bright closed cells). 

IR: Dark to grey. Mean height of 2.4 kin, not exceeding 3.5 km. 

Class 6. BROKEN TO OVERCAST STRATOCUMULUS 

Same as class 5 but with cloud fraction higher than 50%. 

VIS: Average brightness of 46%, not exceeding 60%. 

IR: Mean height of 2.7 km. 

Class 7. CLOUD STREETS 

Low cloud pattern with obvious directionality. Typical cloud fraction 

of 58% but may vary from 15% to 90%. The 'streets' normally appear 

made up of cumulus clouds and the texture is grainy. 

VIS: Mean albedo of 43%. When compared to class 8 (rolls), the direc- 

tional pattern usually has a shorter wavelength and the albedo is less. 

IR: Fairly uniform height, 2.3 km on the average. 

Class 8. ROLLS 

This obviously directional pattern is at mid level. Fairly thick, large 
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roll clouds are aligned usually with little spacing between them. Some 

open cells may be embedded in the field. 

VIS: Bright, mean albedo 75%. Mean cloud fraction of 93% and usually 

not less than 60%. 

IR: Grey to whitish, typical height: 4 km, less than 6 km. 

Class 9. POLYGONAL OPEN CELLS 

Open cells presenting a honeycomb or polygonal texture with sizeable 

holes or internal cavities in the middle of the cells. Small cumuli 

are also often present. Differentiated from class 10 by a lower cloud 

fraction and larger holes. The most convective cloud elements are 

individual towering cumuli as opposed to the entire doughnut shape 

cloud pattern in class 10. The cloud ring surrounding the hole may be 

incomplete whereas it is typically complete for class 10. 

VIS: Moderately bright, average albedo 55%. 

IR: Greyish brightness, darker in regions of small cumuli and brighter 

for the more convective cells which may reach 5.5 km. Typical height 

3.5 km. 

Class 10. STRONGLY CONVECTIVE OPEN CELLS 

Bright mid level cloud field characterized by doughnut shaped cloud 

elements with holes a few km in diameter. 

VIS: Bright, typical albedo 63%. Mean cloud fraction 93% and rarely 

lower than 60%. The texture appears lumpy. 

IR: Greyish to whitish with the holes usually perceivable. Mean height 

of 4.4 km, may reach 6 km. 
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Class 11. BRIGHT CLOSED CELLS 

Bright mid level cloud field with large blobs. May appear lumpy 

indicating towering cumulus. This class also encompasses the edge of 

class 12. VIS: Bright, mean albedo 63%. Typical cloud fraction 80% but 

may vary between 30 and 95% if the texture is lumpy and between 30 and 

85% if the texture is smooth (edge of class 12) .  Above these upper 

limits in cloud fraction, the sample belongs to class 12. 

IR: Greyish , typical height 3 .4  km. 

Class 12. NIMBOSTRATUS 

Overcast bright stratum at mid level. The texture is usually smooth but 

a somewhat more lumpy texture with cloud fraction higher than 95% will 

also be labelled 12. 

VIS: Very bright. Typical albedo 77%. Typical cloud fraction of 98% and 

never less than 85%. 

IR: Greyish to whitish, smooth. Mean height 4 km, may vary from 2 . 5  to 

6 km. 

Class 13. ALTOCUMULUS 

Greyish mid level cloud deck, apparently single-layered. 

VIS: Usually quite grey, typical albedo 34%. Typical cloud fraction 45% 

but may vary from 1 to 100%. 

IR: Greyish to whitish. Fairly uniform. Typical height of 4 . 2  km and 

may vary from 3 . 5  to 6 km. 

Class 14. CUMULUS WITH ALTOCUMULUS 
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This cloud field consists of a lower cloud deck of cumulus type and of 

a mid level cloud deck (between 2-6 km). 

VIS: Typical albedo 47%. Higher deck made up of sizeable patches 

whereas lower deck is typically grainy (cumulus). 

IR: The lower deck is dark, the mid level deck is greyish to whitish. 

Mean height of 4 . 8  km, not exceeding 6 km. 

Class 15. STRATOCUMULUS WITH ALTOCUMULUS 

Cloud field with apparent multilayering occuring between 2 and 6km, 

with lower cloud deck typically stratocumulus. 

VIS: Semi-bright, typical albedo 47%. Typical cloud fraction 72%. 

IR: Varying tones between greyish and whitish. Mean top height 5 . 5  km, 

not exceeding 6 km. 

Class 16. THIN CIRRUS 

Fibrous texture, semi-transparent. 

VIS: Low albedo, 25% on the average and less than 35%. Presence 

detected from milky veil and sometimes not detected at all. Lower 

cloud deck may be present. 

IR: Whitish, often with considerable structure. Mean apparent height of 

6 km with most of the cirrus field typically appearing in the infrared 

image at lower heights. 

Class 17. MULTILAYERS WITH CIRRUS 

High clouds are obviously present from the infrared image and most 

often lower level clouds as well and the visible image is greyish. 



12 

VIS: Typical albedo 41%, covers the range 35-55%. The typical cloud 

fraction is 87% but it is sufficient that 5% of high clouds (above 6km) 

be present for the field to be classified 17. The overcast version of 

this class will be'classified 19 only if the percentage of high clouds 

is greater than 85%. 

IR: Considerable structure from greyish to white. Mean cloud top height 

of 8 . 7  km. 

Class 18. BRIGHT MULTILAYERS WITH CIRRUS/CUMULONIMBUS 

General description as for class 17 except that the visible picture is 

moderately to very bright (albedo greater than 55%). This class 

encompasses isolated cumulonimbus or edges of cumulonimbus. 

VIS: Bright, typical albedo 72%. Typical cloud fraction 94% but 5% or 

more high cloud fraction is sufficient for the field to be classsified 

18. The overcast version will be classified 20 only if the percentage 

of high clouds is greater than 85%. 

IR: Same as 17. Mean height 8 .9  km. 

Class 19. DENSE CIRROSTRATUS 

Overcast field of high clouds with less than 15% of the pixels at 

height below 6 km. 

VIS: Grey, typical albedo 50%. Typical cloud fraction 97% and no less 

than 90% (classified 17 in that case). 

IR: White, possibly a small greyish region, indicating some mid-level 

cloud deck. Mean height 10.3 km. 

Class 20. OVERCAST CUMULONIMBUS 



13 

H’igh and “right overcast cloud field. Usually represents deep cumulo- 

nimbus in the core of a vigorous cyclonic system or cold front. Less 

than 15% of the pixels are below 6 km. 

VIS: Very bright: typical albedo 87%. Typical cloud fraction 100% and 

no less than 90% (classified 18 then). 

IR : White. Typical height 10.7 km. 

Fig. 2.2 summarizes the thresholds in height and albedo 

mentioned in the description of the classes. The standard deviations 

are also shown. The plot is an anticipation of the results obtained in 

Chapter 3 with a large training set of cloud patterns. It should be 

kept in mind that the natural limits of height and albedo are about 

twice the standard deviations presented on the graph. The figure 

indicates that although some classes (e.g. 1 and 2) are relatively well 

separated, it is obvious that the discrimination cannot be accomplished 

from albedo-height characteristics only. Boundary layer classes 3-7 

form a closely packed group as well the higher albedo mid-level classes 

8-12 and the altocumulus classes 13-15. Features describing the 

morphology and the state of multilayering are essential to separate 

those classes. 
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Fig. 2.2 Mean height of uppermost cloud layer (km) versus 
mean cloud albedo for each cloud class, indicated by 
its number. Associated standard deviations shown by bars. 
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3. DESIGN OF A CLASSIFIER 

3.1 Data set 

In order to recognize all of the twenty classes just 

defined, a large data set was required. Twenty nine images were 

analyzed, one per day for the 29 days of February 1984 at 16 GMT, about 

11-12 AM local time, for the Western Atlantic region defined in Fig. 

3.1. The region is between 26 and 45 degrees latitude north and 60 to 

80 degrees longitude west; the west side of the domain is defined by 

the east coast of the United States. 

This region and time of the year were chosen after the hard 

copy archives were examined (Space Science and Engineering Center 

Library, University of Wisconsin). Winter brings several cold air 

outbreaks in this area; these systems produce a significant number of 

occurrences of mesoscale cellular patterns. February 1984 was 

particularly interesting from that perspective. A secondary goal was to 

produce the cloud climatology for that month, in order to illustrate 

both real time and climatological applications of the method. 

Exactly 204 contiguous boxes were analyzed for each scene 

(one per day), as indicated in Fig.3.1, except for 3 days where small 

parts of the images were missing. In all. 5845 samples were analyzed 

for a coverage of 98.8% for the month (completeness implies 29 X 204 = 

5916 samples). Analysis here refers to the extraction of features for 

classification, a topic to be discussed in the following section. With 

such a data base, all twenty cloud classes were represented a 



Fig. 3.1 Region of analysis seen in satellite projection. 
Asterisk indicates Bermuda. The grid shows the 204 conti- 
guous areas to be analysed. Size of areas: 128 X 128 
visible pixels at nominal lkm resolution. 
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significant number of times. A grid was superimposed on the satellite 

image and a sample number was placed in the bottom of each box. The 

author then subjectively assigned a class number to each sample 

identified by its number and keyed in that information in the record of 

the features just extracted. The decision on the class was taken after 

switching back and forth between the visible and infrared pictures. 

A hard copy image of each scene was taken for both the visible and 

infrared images and the record of the features was also printed. Thus 

the analyst had all material for further analysis in hand. 

Each visible image consists of m = 64 X 64 = 4096 pixels at 2 

km resolution and each infrared image consists of n = 32 X 32 = 1024 

pixels at 4 km resolution, the nominal resolution of the infrared 

sensor (the actual footprint is 4 X 8 km with the same digital count 

assigned to two 4 X 4 km pixels). It was deemed appropriate not to 

degrade the visible resolution to that of the infrared in order to 

preserve information on morphology. On the other hand, the full 1 kn 

resolution was not kept for computer time considerations. A philosophy 

applied throughout in the feature extraction process is not to rely on 

collocated visible and infrared pixels but rather to match cloud 

fraction thresholds in both histograms. The visible image was reduced 

to 2 km resolution by sampling every other line and row, a method 

preferable to averaging to preserve cloud properties. Eight visible 

sensors are disposed vertically to scan eight lines at a time as the 

optical system scans from the left to the right side of the planet. It 

was found by expanding full resolution visible images several times 
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that horizontal stripes were often present at eight line intervals 

indicating that one of the eight sensors was in error by a few digital 

counts. That sensor turned out to be associated with odd lines; this 

problem was then ‘eliminated simply by sampling over even lines. 

Each infrared grey level count corresponds to a radiance 

which can be transformed into a temperature via the Planck function. 

This temperature is called the brightness temperature. This transfor- 

mation implies the assumption that the emitting surface is radiatively 

black, i.e. its emissivity is unity. 

3.2 Extraction of features for classification 

Thirteen features are used to classify the cloud fields in this 

study. About three times that number were initially defined as we 

could not know beforehand which features would provide best results. A 

classification algorithm should use as few features as possible in 

order to simplify the decision process and to shorten the computer time 

devoted to feature extraction. In addition, the number of samples 

necessary for reliable statistics increases rapidly with the number of 

features as well as the number of classes. The variety of features 

finally selected reflected a balance of information on height (cloud 

top, aultilayering), shape (directionality, size distribution) and 

albedo. 

In choosing the features, obvious physical significance is a 

desirable asset. Cloud fraction at low, middle and high altitude, cloud 

top height and mean cloud albedo are among the features selected. In 



Table 3.1 Designation of the features used for classifica- 
tion in this study with associated 2-letter identification 
code. Image source in parenthesis: IR: infrared, VIS: 
visible, B&W: binary corresponding to visible cloud frac- 
tion, PS: power spectrum. D, DC*, m defined in text. 

Code 

CF 

Lo 

MI 

HI 

HT 

La 
AL 

NC 

ML 

BC 

cc 
ST 

SE 

Description Limits 

Total cloud fraction (IR, V I S )  0-1 

Low cloud fraction (IR) 0-1 

Middle cloud fraction (IR) 0-1 

High cloud fraction (IR) 0-1 

Cloud height of uppermost layer (IR) 0-14km 

Fraction of cloudy pixels with D < Dc* (VIS) 0-1 

Mean albedo of cloudy pixels ( V I S )  0-1 

0-m/2 Number of clouds (B&W) 

Multilayer index (IR) 0-1 

Background connectivity ( B t W )  0-1 

Cloud connectivity (S&W) 0-1 

Streakiness factor (PS) 0-1 

with wavelengths between 20-40km (PS) 0-1 
Fraction of spectral intensity associated 
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addition, less conventional cloud field descriptors are employed such 

as a multilayer index, a streakiness factor and connectivity indices 

that are easy to relate to the visual appearance of the images. This 

is an advantage over features that represent moments taken over 

pictures, (see Haralick, 1976) as these features are often difficult to 

interpret. 

Every feature is identified with a 2-letter code for further 

reference. Table 3.1 presents those features, along with their 

physical limits. 

3.2.1 Cloud fraction and height features (LO, MI, HI, CF, HT) 

Because a good algorithm to define cloud fraction is essential, 

considerable attention was devoted to this problem. A basic require- 

ment is that the scheme should be usable throughout the day, from 

shortly after sunrise to shortly before sunset. Therefore, the geome- 

try of the system has to be considered appropriately. Fortunately, 

this problem is well understood and a good treatment of it can be 

found in the series of three papers by Minnis and Harrison (1984, 

hereafter MHA-a, b, c). Three angles define the geometry: the solar 

zenith angle ( 3  1 ,  the satellite-viewing zenith angle (8) and the 

viewing azimuth angle ( c y )  (see MHA-a, Fig.3). The three angles are 

obtained from knowledge of day of the year, time of the day, satellite 

position and field of view location. Considering those angular 

factors, the visible brightness (or digital count) corresponding to a 

reflectivity t at nadir is (MHA-a, Eq.6): 
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(3.1) 
0 

where ( 5 )  is the visible normalized directional reflectance and 

is the visible, anisotropic reflectance correction factor; 

Both &and X3values for water were 

obtained empirically from a large data set of GOES images to gather 

&( 5 ,  
Vrefers to the spectral band. 

, 9)  

statistics from all possible angular combinations. A reasonable value 

for t is 7% for water. The existence of this model, defined by its 

tables of &and &, was a decisive incentive to design our scheme to 

be used with the natural satellite projection. The tabulated values of 

&and 7I)for water were provided by the authors of MHA a-c. The 

constant B(0.t) is the heaispherically integrated brightness count at 

on the other hand, is the dark current constant. Its 

meaning will become explicit below. In MHA-c, the average clear-sky 

albedo (ocean plus atmosphere) over our region of interest (their 

Fig.10, derived in November 1978) is 15%. Therefore, we shall use the 

constant t = 0.15. So, Eq.(3.1) simply answers the question: given the 

three relevant angles, what is the digital count that the satellite 

would register corresponding to a clear-sky reflectivity of 15% at 

nadir? The visible calibration is defined by the relation: 

5= 0. Do ' 

E - a'D2 + b' (3.2) 

where E is in W/m& and D is the satellite-observed digital count with 

range 0-255. For GOES-EAST in early 1984 (subsatellite point: equator, 

75 W, height of 36,000 km), the values suggested for a' and b' are 

0.005393 and -2.67 W/m respectively. The value of I$ is thus 496. a# 
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The reflectivity is obtained from: 

z where b= 336.43 W/m is the fraction of the solar constant within the 

spectral bandwidth of the visible sensor. A reflectivity of 15% corres- 

ponds to 50.46 W/m* from (3.3) which in turn corresponds to a digital 

count of 99.26 from (3.2). Using this value in (3.1). one gets the 

value of B(0,15%) = 29408. Eq.(3.1) is universal and can be applied 

over all oceans uncovered by ice. Only the satellite related 

constants, 00 and B(0,t) need to be adjusted. The tables of and 

are much more complicated over land as they depend on the reflective 

characteristics of each type of surface. 

As in MHA-a, the boundaries between low, middle and high clouds 

are 2 km and 6 km and the height assignment is based on an assumed 

vertical temperature lapse rate of 6.5 deg/km with the sea surface 

temperature, Ts. as the lower boundary. The sea surface temperature is 

found in the following manner: 

1) The percentage of pixels in the visible image below Dt(with t = 

0.15). f(t), is calculated. If f(t) is greater than 5%. the average 

brightness temperature of the warmest f(t) pixels in the infrared 

histogram, T(t), is calculated and Ts is estimated through Ts = T(t) + 

4. The offset of 4 K approximates the atmospheric correction: it was 

obtained from comparisons of ship measurements of Ts versus infrared 

brightness temperatures in clear areas observed in several images. In 

Part 2, the accuracy of this technique for single retrievals is 

- - 
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evaluated at 2.69 K (rms) but may be improved to 2.2 K upon subtracting 

a class-dependent bias after classification. If the inferred value of 

Ts is off by 5 K or more from the monthly climatology, the climato- 

logical value is assigned. More accurate and physically based methods 

of sea surface estimation exist. For example, Bates and Smith (1985) 

claim errors of less than 1 K. However, images from three infrared 

channels are required; these were not always available. Also, it must 

be kept in mind that, in our region of interest, for about 509; of the 

time, the climalogical value of Ts is used due to excessive cloudiness. 

In those cases, it is not possible to use infrared methods such as that 

of Bates and Smith (1985). 

2) If the percentage of totally clear pixels, f(t) is smaller than 5%, 

we assumed that there are no holes sufficiently large in the cloud 

field for an accurate surface temperature assignment. Therefore, in 

that case, the climatological value for the month of February was 

assigned (one degree scale). The mean of Ts for a particular month is 

usually within 1.5 K from the all-time climatology for that same month 

(see the National Oceanic and Atmospheric Administration (NOAA) publi- 

cation: Monthly Oceanographic Summary for one-degree grids of Ts and 

deviation of Ts from climatology for our region of interest). NOAA 

polar orbiting satellites continuously monitor the sea surface tempera- 

ture globally: available values for Ts are usually less than a week 

old. When possible, one may prefer to use this product as opposed to a 

climatological value in overcast conditions. In any event, for the 

purpose of cloud classification, the accuracy on Ts obtained by the 



2 1  

present method is sufficient. 

Two modes are used to find the cloud fraction: a visible 

mode based on an albedo threshold and an infrared mode based on a 

height threshold. We define Dc as the cloud-no cloud threshold in the 

visible histogram and Tb as the cloud-no cloud temperature threshold 

from the infrared histogram. The usual mode (83% on the February data 

set of 5845 samples) is the visible mode. 

1) Visible mode 

In the visible mode, the digital count threshold, Dc* is obtained 

from : 

Dc* - Dt + Dm (3.4) 

where Din is an offset equal to 20 counts. This corresponds to an 

albedo threshold of 22% (for utilization with other platforms, it is 

suggested to use B(0, 22%) in Eq. (3.2) and Dm = 0 in Eq. (3.4)). 

Corresponding to Dc*, one gets the cloud fraction CF = CF(V1S). The 

offset was obtained from extensive experiments with cloud fields of all 

types with various viewing geometries. Images consisting of 64 X 64 

pixels at 2 km resolution were thresholded to binary images (black and 

white) based on Dc*. Both the real image and the binary images were 

enlarged to fill the entire video screen of the MCIDAS system (Suomi et 
. 

al., 1983). Then the analyst would switch back and forth between the 

two images, collocated on the screen, to subjectively estimate the 

quality of the thresholding procedure. It was found that Dm = 20 counts 

systematically provided a satisfactory threshold. Between Dt and Dc*. 
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it is admitted that clouds may be present but the assumption is that 

the field of view of pixels with such grey counts is less than 50% 

cloud covered. No attempt was made to calculate the cloud fraction of a 

single field of view within the limits 0 and 1. Thus, the cloud 

fraction defined here may be termed "effective". We assume that, to a 

large extent, possible errors due to underestimation of cloud fraction 

within a field of view when the pixel is assumed completely clear are 

compensated equally by possible errors of overestimation when the pixel 

is assumed completely cloud filled. 

2 ) Infrared mode 

The visible threshold Dc* fails for low-albedo pixels which may 

be completely cloud filled with semi-transparent clouds. Cirrus fields 

often present such characteristics: a low albedo (lower than Dc*) in 

the visible matched by the appearance of a veil of variable brightness 

in the infrared. Thus, a second mode is necessary. 

In the infrared mode, any pixel corresponding to a height of 1 km 

or more is assumed cloudy. We then find the infrared cloud fraction 

CF(1R). If CF(IR) is greater than CF(V1S) by 5% or more, then the 

infrared mode is chosen. The value of Dc (equal to Dc* up to now) is 

lowered so that CF(V1S) = CF(1R). Since errors on sea surface 

temperature are typically much less than 6 . 5  K, 1 km is a safe margin 

for such errors resulting in errors on height (recall that a lapse rate 

of 6 . 5  K/km is assumed for height estimation). On the other hand, 

pixels of albedo lower than Dc* and of apparent height below 1 km can 
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safely be assumed clear in most cases. 

The cloud top temperature, TT, is obtained from the brightness 

temperature corresponding to the 97th percentile in the infrared 

histogram. For clear skies, TT = Ts. The cloud top height, HT is 

obtained through HT= (Ts - TT)/6.5. It is understood that the true 

height may differ from HT. The temperature lapse rate for boundary 

layer cloud fields is often close to 10 K/km' (dry adiabatic), as 

opposed to 6.5 K/kn, and the surface air temperature is more 

appropriate than Ts as lower boundary. As a classification feature 

however, HT is not required to represent the true height and a 

unique, robust definition of each feature is desirable. After classi- 

fication, one may estimate the true height from an assumed class- 

dependent temperature lapse rate. In addition, it should be noted that 

feature HT is not designed to obtain the representative cloud top 

height of the entire cloud field but that of the uppermost layer. 

When there are large sea surface temperature gradients, such as 

in the midst of the Gulf Stream, the infrared mode may be selected even 

in clear conditions. To avoid this problem, if the sea surface 

temperature difference from climatology across the box is greater than 

6.5 K (thus apparent cloudy pixels above 1 km height may be registered) 

and if HT < 2 km, the infrared mode is skipped: sea surface temperature 

differences acoss a box will never reach the 13 degrees corresponding 

to a 2 km apparent height. 

From knowledge of the cloud fraction, CF, an important physical 

parameter is the apparent cloud base temperature, Tb, which is the 
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temperature corresponding to CF in the infrared histogram; pixels of 

brightness temperature higher than Tb are assumed clear. Having 

extracted Ts and Tb, the formal definitions of the low cloud amount 

(LO), the middle cloud amount (MI) and the high cloud amount ( H I )  

follow: 

i) LO is the percentage of pixels with brightness temperature T such 

that Tb < T 6 Ts - 13 with LO = 0 if Tb < Ts - 13. 

ii) MI is the percentage of pixels such that 2 km < H T 4  6 krn. 

iii) HI is the percentage of pixels with HT > 6 km. 

From the above definitions, it is clear that CF = LO + MI + HI. 

To avoid redundancy, all four cloud fraction features were never used 

th 

together. 

3.2.2 Visible reflectance features 

The mean cloud albedo, AL, is computed ove ot 

the entire scene). The mean value of the digital count squared over 

all cloudy pixels, Gs, is first calculated (Eq. 3.5 below). Then the 

value of AL is obtained from Eq. 3.6. Designating the number of pixels 

in the visible histogram with grey count i by hv(i), we can state 

formally that: 

Gs = c i2 b(i) / 1 hv( i )  
I-D c ,25 5 l=Dc,255 

AL = (a'Gs + b')/(Io cos(C)) 

cloudy pixels ( 

A second albedo related feature used i n  this study is the percen- 
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tage of the cloud fraction for which the pixels have a reflectance 

below Dc*. Obviously this number, LR (for low reflectance) is zero if 

the visible mode is taken since in this case Dc = Dc*. Formally, for 

Dc < Dc*: 

LR = {i hv(i)}  / C {i hv(i))  
i=Dc, Dc* i=Dc, 255 (3.7) 

The feature LR is most useful in detecting thin cirrus clouds. 

3.2.3 Multilayer index c ML) 

A simple multilayer index feature, ML, proved very useful for 

quantifying the degree of multilayering in a cloud field. As will be 

shown in section 3.4, mutilayered systems are present about 40% of the 

time and this importance is reflected in our classification by several 

multilayered classes (14 to 18). 

The multilayer index is defined as the percentage of the cloud 

field with height 2 km or less below the cloud top height HT. Defining 

g ( z )  as the grey level corresponding to height z and hir(i) as the 

number of pixels with grey level i in the IR histogram, ML is defined 

as : 

Thus a single layer cloud field, by definition, is one with all of 

its cloudy elements within a 2 km thickness slab in the atmosphere with 

an upper limit approximately at the cloud top (in fact the upper limit 

is the coldest pixel, we recall that 3% of the pixels correspond to an 
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apparent height above HT). Cloud fields with ML < 0.7 correspond to 

infrared images with significant structure. ML is a good descriptor of 

the variability of grey tones that one can perceive in the infrared 

picture. A similar index, defined from z(Tb) and upwards as opposed to 

HT and downwards could also have been defined. We preferred however to 

give emphasis to the presence of upper level decks than to lower level 

decks in our definition of multilayering. For example, a cloud field 

with CF = 50%, HI= 5% and LO = 45% will have a very low value of ML, 

ML = HI/(HI+LO) = 

lower layer. 

3.2.4 Connectivity 

These features 

0.1, even though 90% of the field belongs to the 

features c PIC, 8 9  

are derived from binary images, the black and white 

pictures corresponding to CF. Pixels with the same color connected 

only diagonally belong to a different cloud (background) entity 

wheareas pixels with the same color connected to the east, west, north 

or south neighbors belong to the same cloud (background) entity. The 

number of clouds, NC, and the number of background areas, NB, are 

defined in this manner. We then obtain the cloud si2.e distribution as 

well as the background size distribution. Let us define by hc(i) and 

hb(j) the number of pixels associated with cloud or background entity i 

and j, respectively: i = 1, 2...NC and j -- 1, 2, . . .  NB. Further let 

all clouds and background areas be ordered from smallest to largest. 

Then the cloud connectivity, CC, is defined as: 

CF L 0 (3.9) 

CF * 0 



27 

where k is the cloud entity such that the inequality: 

h c ( i )  2 mCF/2 
111 ,k 

is satisfied from the summation of the cloud entities ordered in size. 

Similarly, the background connectivity, BC, is defined as : 

hb (k ' / (m( I-CF) ) CP 3 1 

1 CP - 1 
BC =[ ( 3 . 1 0 )  

where k' designates the background entity for which the inequality: 

is satisfied from the summation of the background entities ordered in 

size. Thus in the above equations, hc(k) and hb(k') are the median 

sizes of the NC clouds and NB backgroud areas, respectively. Fig. 3 . 2  

illustrates the extraction of the connectivity features. 

Theoretically, NC (or NB) may reach a maximum value of m/2 

(checkerboard pattern). In the present case with m = 4096 and 2 km 

resolution, the maximum number of clouds encountered was 340. The 

reader interested in vertical retrievals will find it useful to know 

the location and size (hb(NB)) of the largest hole in the cloud field 

obtained here. CC is most useful for differentiating cumulus and 

stratocumulus with CC smaller for cumulus (highly disconnected ele- 

ments) and higher for stratocumulus (clouds more highly connected into 

a few entities). For stratus decks, CC is normally near unity. BC 

turns out to be a good detector of holes and is notably low for open 

cells. 



a 

b 

Fig. 3.% 
pixels grid. 
NC = 13, 
open cells with NC = 3, 
4/26 = . 1 5 4 .  

Examples of connectivity indices on an 8 X 8 
Clouds are black. a) Simulated cumulus with 

b) Simulated 
BC = NB = 1, CC = 1/16 = .063, BC = 1. 

NB = 8, CC = 33/38 = -868, 
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3.2.5 Power spectrum features [ 5TJ5€) 
' Two-dimensional power spectra are very useful to obtain information 

on the extended structure of a cloud field, that is on the dominant 

wavelengths and orientations characterizing it. Garand and Weinman 

(1986) have provided examples of two-dimensional power spectra taken 

over cloud areas. Utilizing the same notation as in their paper, the 
FFourier transform of the image f(k,l) is: 

R-1 L-1 

with K,L as spatial dimensions. The power spectrum intensity PS(u,v) = 

:Q(u,v)l , is defined as the sum of the squared values of the real and z 

imaginary parts of the Fourier transform (Rosenfeld and Kak (1982)). 

The orientation, 9 and wavelength x assocjated with any (u,v) 

component are readily obtained from: - - j  

4 - tan -1 (u/v) ( 4 2  s 4 s n/2, off x axis) (3.12) 
and 

(3.13) x = SP(U2*2)'1 

with t the linear 

dimension in pixels of the scene, assumed square. The power spectrum 

is symmetric with respect to the origin. It is clear that streaky 

patterns have streaky power spectra and circular patterns, such as 

those of open cells, tend to have their dominant components all around 

the origin. Overcast or clear fields will tend to have all the energy 

at or near the or ig in  (infinite wavelength). From this experience, a 

unit resolution of the pixels and S = K = L is the 
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streakiness factor is defined in the following manner: 

i) 

ii) Threshold all values of PS(u,v) below 20% of PSm to zero. This 

eliminates the influence of high frequency components which are 

irrelevant to the appearance of the mesoscale morphologies and 

contribute only to local grey tone variability. To eliminate a possible 

false peak due to having one of the eight sensors off (producing hori- 

zontal stripes), the component corresponding to such 8 km periodicity 

(the (0, 16) in our case as derived from (3.13)) is set to zero. 

Find the maximum value, PSm of PS(u,v), (u,v) # ( 0 , O ) .  

iii) From this thresholded power spectrum, estimate the absolute value 

of the correlation coefficient, weighted by PS(u,v), as a measure of 

streakiness: 

(3.14) 
with: Sy = C C V~PS(U,V) Sxy = C uvPS(u,v) Sx = I: Z U~PS(~,~), 

u v  u v  u v  

u=O*1*...S-1 ; v=O,l,...s-1 ; (u,v) * ( 0 0 )  . 
Recognizing that if the pattern is oriented in the north-south or east- 

west direction, the measure is misleading as ST = 0, ST is also 

evaluated from a set of axis rotated 45 degrees from the nominal set 

and the maximum of the two estimates of ST is retained. ST is an 

essential feature for the detection of directional patterns: classes 7 

and 8. 

Observation of open cellular patterns have shown that the typical 

size of open cells is 30 km (Agee and Dowel (1976). Beniston (1985)). 

Considering this, we designed our second power spectrum feature, SE for 
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spectrum energy or intensity, to be the fraction of intensity in the 

power spectrum characterized by wavelengths between 20 and 40km. Let 

the radius rd i n  the power spectrum be defined as: 

rd - (u2 + v2)' (3.15) 

then, defining TE as the total intensity in the power spectrum, 

excluding the ( 0 , O )  component (which represents the mean grey level) 

SE is defined as: 

(3.16) 

with (u',v') such that: Idt rd(u',v') < rd 
2 

The thresholds that we used in rd are 3.1 and 6.1 corresponding to 

wavelengths of 41.3 km and 21.0 km, respectively, from Eq. (3.13). The 

value of SE turned out to be clearly higher for open cellular patterns, 

classes 9 and 10, as opposed to all other classes. 

Bunting and Fournier (1980) were among the first to test spectral 

classifiers. Their results were somewhat disappointing: an accuracy of 

46% for a 6-class scheme. Later, their work was pursued by Logan et 

al. (1983). Our experience reveals that power spectra do reveal unique 

information on the mesoscale organization; however, it is not a good 

idea to rely uniquely on such features. In near overcast situations, 

power spectra reveal little information. 

3.2.6 Feature extraction example 



a 

C 

F i g .  3 . 3  Example of a c loud f i e l d  be longing t o  class  7 
(c loud streets) w i t h  parameters: CF = .363 ,  LO = -320 ,  MI 
= -043 ,  HI = 0, HT = 2 . 3 3  km, LR = 0, AL = .581 ,  NC = 179, 
ML = 1, 036, ST = .915, SE = .228 ,  Tb = 
280.5  K T s  = 288.2  K .  a )  v i s ib le ,  
b)  binary, C)  power spectrum of the v i s i b l e  image (only 
the 32 X 32 center portion of the 64 X 64 spectrum is 
shown) and d) infrared.  

BC = -208 ,  CC =. 
The four images are : 
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. 

. .  

. .  

Fig. (3.3) shows an example of the visible, infrared, binary and 

power spectrum images for a cloud field along with the 13 features 

(see Table 3.1) extracted from those images. The sample is a typical 

class 7 field (cloud streets). The field is single layered, has a high 

streakiness factor and correspondingly a streaky power spectrum and 

numerous small clouds which result in a low cloud connectivity. 

The quality of the thresholding procedure to obtain the cloud 

.fraction can be appreciated by comparing the visible and binary images. 

The major component at (1, 8) in the power spectrum corresponds to an 

orientation of -7 degrees off the x axis and a wavelength of 16 kn from 

Eqs. (3.12) and (3.13), in agreement with the hard copy image. 

Except for CF = 0 indicating class 1, no one feature, alone is 

decisive in inferring a class. Together however, this set of features 

is very powerful, as we are about to demonstrate. 

3.3 Classification methodology and results 

3.3.1 Multivariate Gaussian discriminant function 

A sample is defined by its features. Let x represent the vector 

of features and c the number of classes. A common way to design a 

classifier (Duda and Hart, 1973) is to opt for some discriminant 

function g;(x), i-1, . . .  c and to assign the sample to class i i f  

D p  to its analytical tractability, the multivariate normal (or 

Gaussian) density is the most widely used discriminant function. The 
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general multivariate normal density is written as: 

(3.18) 

with E the expected value operator and Xt the ensemble of samples 

belonging to class i. In Eq. (3.18), d is the number of features or 

dimensionality, &is the d-dimensional mean vector of the features and 

f i i s  the d X d covariance matrix. 4 is symmetric and positive definite. 

Thus, such a classifier is completely defined by 4' and &;for each class 

i with g(x) = p;(x) used in Eq. (3.17). The notation Y = N ( N , C i )  

indicates that the vector Y belongs to a multivariate normal population 

characterized by4iand;fi. This type of classifier is the basis of our 

classification algorithm to be described in section 3.3.3. 

3.3.2 Theoretical separability estimates from Monte Car lo 

simulations 

A very useful tool to t e s t  the theoretical separability of the 

data is to generate artificial samples, that is, sample populations for 

each class having the same mean and covariance matrix as the real data. 

These artificial samples are then classified by using Eq. (3.18) in Eq. 

(3.17). The result is an upper limit to the separability of  the 

classifier. If this limit increases as we change the features, it 

means that the new choice of features is more appropriate. I f  on the 
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other hand the theoretical limit decreases while the apparent separabi- 

lity of the real data increases, this is an indication of 

'overfitting' and results on independent data',are prone to be poorer 

than those claimed from the training set. If we decompose the 

covariance matrix g; into the lower triangular matrix A such that AA f 

= f{ (Martin et al., 1965), a vector Y belonging to the desired 

distribution N( 4, t; ) is generated from: 

Y =  A T +  

-v 
(Scheur and Stoller, 1962) with each of the d components of r obtained 

from an ordinary univariate Gaussian random generator belonging to 

N(0.1). We used the Box-Muller method (see Forsythe et al, 1973, 

chapter 10). 

3.3.3 Classification algorithm and results on a dependent 

data set 

The classification process was supervised in this study. In 

supervised classification, the analyst labels each sample with a class 

number and trains the classifier to assign the proper class. The 

algorithm is built in two stages, as shown in Fig. 3.4. In Stage 1, the 

sample is assigned a temporary class using a multivariate normal 

discriminant function. Thus, Stage 1 is a one-step method as opposed to 

a hierarchical method. For that reason, it is very efficient as well as 

simple. Stage 2 has an error-correcting function only, that is, the 

result of Stage 1 is checked according to some simple criteria based on 
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Fig. 3.4 Supervised classification scheme designed for 
this study. 
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the most discrim-natory feature(s) between the class found in Stage 1 

and the class that was selected second best. Stage 2 was designed 

after it was realized that the vast majority of errors were samples 

that belonged to the second best choice from Eq. (3.17). This was 

fortunate for it saved much effort in trying to find the ultimate tree 

structure. With 13 features and 20 classes, the number of possible 

combinations is enormous. A revealing example of this situation is the 

work of Mui and Fu (1980) on automated classification of nucleated 

blood cells in 17 classes. 

a) Stage 1 

A summary of the classes assigned to the 5845 samples extracted 

from February 1984 pictures revealed that most classes had at least 100 

samples. From images taken in January 1984 over the same region, a 

small set (96) of extra samples were taken so that each class now had 

over 100 samples. Then, exactly 100 samples per class were randomly 

selected to define a training set of 2000 samples. 

In order for all the features to have similar weight, they were 

normalized to zero mean and unit variance. The means of the features 

and their standard deviations over all the 2000 samples are given in 

Table 3.2. The feature vector x is transformed to x .  its normalized 

version, through: 

4 r;. 
with * and e* being the means and standard deviations listed in 

Table 3.2. For the remaining part of this study, the feature vector x. .c 



Table 3.2 Means and standard deviations of the 13 
features for the ensemble of 2 0 0 0  samples forming the 
dependent data set. 

Feature Mean Stand. dev. 

ST 
SE 
AL 
HT 
BC 
Lo 
MI 
ML 
CF 
NC 
LR 
cc 
HI 

. 5595 
1821 . 5165 

4 . 7470 
-5781 

-3843 
-8127 

30.58 
0479 
07944 
1317 

1600 

6760 

2684 
1571 
.1977 

2 . 9740 
.3665 . 2258 
3394 
.2776 
.3222 
41.08 
1361 
03147 
2842 
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refers to the normalized feature vector and the circumflex accent is 

dropped. Table 3.2 was obtained following the final labeling of the 

samples (not the initial one with 100 samples per class). The features 

are not normally distributed over the ensemble of the data. This is 

not a problem since the only concern is that the assumption of normal 

distributions holds for the features within each class. 

Extensive tests were made to find out the optimum set of features to 

be used collectively in Eq. (3.18). A useful criterion is the 

divergence DijKbetween two classes i and j for feature k: 

(3.21) 

It is easy to see (from the overlap of circular areas centered at 

dikand &Hand of radius ViKand r i ~  , respectively) that a feature with 

D<jk> 1 has discriminatory skill whereas one with Di)y< 0 . 5  has poor 

separating power. Another useful tool in selecting the features is 

their correlation coefficient between themselves over the ensemble of 

data,- as shown in Table 3 . 3 .  Cnly one out Of two or more-highly corre- 

lated features ( r > 0 . 7 )  is retained. Using the divergence criterion, 

the information from Table 3.3 (and similar information from other 

features being investigated) along with Monte Carlo testing of the 

separability, we ultimately found an optimal set of features to be 

used in Stage 1. The number of features in the set is 11; they are ST, 

SE, AL, HT, BC, LO, MI, ML, CF, NC and LR. The other two features 

defined in chapter 2 ,  CC and HI, will be used in Stage 2 only. One can 

see from Table 3.3 that the maximum correlation between any two 

features among the eleven selected for Stage 1 is 0.63 only. Most 
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correlation coefficients are very low indicating minimal redundancy. 

For' the boundary layer classes, numerical instability may occur 

when inverting the feature covariance matrix as CF = LO + MI exactly 

for all the samples of the class (HI = 0). This problem is easily 

solved by adding Gaussian noise in the proportion of one tenth of a 

percent to CF. In this manner, all covariance matrices are invertible. 

In addition, for some classes, a particular feature nay be a constant 

resulting in a zero element on the diagonal of the covariance matrix. 

For example, ML = 1 for all samples of classes 1 to 7. Again, this is 

easily solved by not allowing the diagonal elements of the covariance 

matrix to be below a preset minimum value; the value selected is 0.005. 

This is equivalent to adding noise to that feature in the proportion of 

0.7% of one standard deviation (recall that all features have unit 

standard deviation over the ensemble of data) and therefore this proce- 

dure does not affect the separability. 

The first result was a separability of 54%. This was disap- 
~ ~~ 

pointing as we knew from unsupervised classification testing (where the 

computer defines classes with means as separated as possible, see 

Garand (1986, Appendix A )  or Duda and Hart (1973, section 6.9)) that 

97% separability could be achieved from the selected set of 11 fea- 

tures. We found that the cause of the low separability was simply 

- imperfect labeling of the samples. Indeed, with twenty classes, many 

border-line cases are to be expected and subjective decisions based on 

height and albedo characteristics are subject to error. Thus a good 

"truth" set is d'ifficult to build from the subjective judgement of 
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nephanalysts alone. Therefore, we adopted the following man-computer 

interactive relabeling procedure, a methodology where the human still 

supervises the labeling process, but is helped in his task by objective 

measures extracted by the computer: 

i) Print the identification number of all incorrectly classified 

samples, their actual class number and in which class they are 

apparently aisclassified. From the hard copy images, decide i f  

relabeling is desirable. Examine the printout of the features to 

understand the logic of the classifier. 

ii) Resubmit. If the separability still increases, both from the 

actual data and from Monte Carlo simulations based on the updated means 

and covariance matrices, go back to i. 

The first iterations represent long hours of work as each of the 

few hundreds aisclassified samples was considered individually. 

Examination of the features often proves useful since each feature 

provides a different way of considering the sample. The first 
~ 

iterations rapidly increases the separability. As the iterations 

progressed, the analyst was training himself in defining precisely what 

was previously all subjective, clarifying all the decision thresholds. 

Theoretical separability topped at about 95% while actual separability 

topped near 83%. It was realized that trying to go beyond that result 

led to overfitting. 

As was previously mentioned, it turned out that 85% of the 

misclassified samples were the second choice of the classifier. This 

led to the error-correcting Stage 2 
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2) Stage 2 

The second and final stage was appended to Stage 1 resulting in a 

new series of iterations. Let C1 be the first choice of the normal 

density classifier, in other words the result of Stage 1 and let C2 be 

the second best choice. Based on at most two features, a decision is 

made to change or not or not to change the result to C2. In Stage 1, 

using all 11 features together led to some errors because for most 

pairs of classes, only 1 to a few features are required. The others are 

irrelevant. We opted for a simple decision rule that did not require 

new storage of constants: assign the sample belonging to class i = C1 

to class j = C2 i f :  

k=l,kmax u2 
jk 

where k is a feature identifier and kmax is either 1 or 2. Table 3.4 

shows the features used in Stage 2 for all pairs (Cl. C2) to decide 

between %I and C2.  W e r e  there is m entry, Eq. (3.22) is skipped. 

This is based on experience that either the ambiguity C1 versus C2 

never occurs or that no improvement in their separability can be 

achieved from Eq. (3.22). Where the entry in Table 3.4 is symmetric, 

only one feature is used (kmax = 1) and where it is not symmetric, two 

features are used (kmax = 2). For example, an ambiguity between 

classes 2 and 12 is resolved from features HT and LO. The reader may 

appreciate that the feature(s) selected in Table 3.4 are the most 

relevant to the pair (Cl,C2) considered. Note that Eq. (3.22) is . 

executed regardless of how large the ratio pc%(x)/pc;~(x) may be from a A 
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.Table 3.5 Sequence of conditional statements defining 
Stage 2. The decision on the right is executed if the  
statement is satisfied. C: class, C1: class chosen from 
Stage 1; C2: 2nd best class from Stage 1; E: exit Stage 2.  

nb Conditional statement Decision 

1 C 1  = 1, CF > 0.01 C = C2,  E 
2 CF < 0.01  C = l , E  
3 C 1  = 4 ,  C2 = 7 ,  ST > 0.5 C = 7 , E  
4 c1 = 9,  C2 = 1 4  o r  15, SE c 0 .1  C = C2,  E 

6 C = 9, S T  > 0.9 C = 8 , E  

8 C = 5, 6 or  11, BC > 0.9, CC > -85 

9 C = 5 or  6,  AL > 0 . 6  C = 11, E 
10 C = 5 o r  6, HT > 3.5km C = 13 ,  E 
11 C = 1 4  or 15, HT > 6km, AL > .55 C = 18, go to 23 
1 2  C = 1 4  o r  15, HT > 6km, AL c -55 C = 1 7 ,  go to 2 2  

5 Eq .  ( 3 . 2 6 )  satisfied c = c2 

7 C = 7,  S T  < 0.5 c = 3, go t o  1 9  

and HT < 2km C = 2 ,  E 

13  C = 6 o r  13 ,  HT < 3km, BC c 0.1 c = 4 ,  go t o  20 
1 4  C = 1 0 ,  AL < 0.3 c = 9  

17 C = 6,  NC > 80 c = 4 ,  go t o  2 0  

15 C = 9,  CF 0 . 2  C = 5 , E  
1 6  C = 5, CF > 0.5 C = 6  

18 C = 6 ,  CF C 0.5 C = 5 , E  
19  C = 3, CF > 0.5 C = 4 ,  E 
20 C = 4 ,  CF < 0.5 C = 3,  E 
2 1  C = 4 ,  ST > 0.5 C = 7 , E  

C = 18,  AL < 0.55 C = 17 ,  E 2 3  
2 4  C = 11 o r  1 2 ,  HT < 1.5km C = 2 ,  E 
2 5  C = 1 2 ,  CF < 0.85 C = 11, E 
2 6  
27 
28 C = 18,  H I  > 0.9,  ML > 0 .9  C = 20 ,  E 
29 C = 17,  AL < 0.25 C = 16, E 

2 2  C_-= 17 ,  AJi -2 l2-55 e = 323, E 

C = 11, CF > 0.95 c = 1 2  
C = 1 2 ,  HT > 6km C = 18 



39 

Stage 1; attempts to improve the results using that ratio failed. 

For the sake of elegance and simplicity, it was planned to use 

only Eq. (3.22) in Stage 2. We found however that by adding simple 

conditional statements, the result could still be improved. Eq. (3.22) 

sets decision thresholds. Most of these thresholds are satisfactory. 

We may however insist on a specified threshold. Usual practice sepa- 

rates scattered from broken fields with a threshold on CF of 50%. Thus 

we have set that threshold exactly using a conditional statement for 

pairs of classes (3.4) and ( 5 , 6 ) .  Similarly we specifically force the 

clear class to have less than 1% cloud cover. Other statements arise 

from experience that Eq. (3.22) is not successful with only two 

features. Note that the sample may be relabeled in a class different 

than C2. In all, 29 such conditional statements were implemented in 

Stage 2. There is no room here to comment on each of them but the 

reader will find the reasoning behind most of these statements fairly 

obvious. The entire Stage 2 is provided in Table 3.5. The fifth 

statement corresponds to Eq. (3.22); it is the most important statement 

since it applies for all C 1  values whereas other statements apply for a 

particular value of C1. 

Table 3.6 shows the results after Stage 1 and Table 3.7 provides 

the final result following Stage 2. An improvement of 11% is gained 

from the 83% obtained from Stage 1. Stage 2 is particularly beneficial 

in correcting errors between class pair (3,5) using the new feature CC 

and errors associated with class 17 using the new feature HI with AI, 

and ML. Errors between pairs (6.7) and (3,7) are corrected by using ST 
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and the discrimination of open cells from rolls is solved through the 

combination of their most characteristic feature, namely BC and ST 

respectively. Comparing the entries on the diagonals of Tables 3.6 and 
. .  

3.7 reveals that all classes benefit from Stage 2 except a loss of 1 

sample for classes 4 and 14 and a loss of 2 samples for class 6. Note 

that systematic errors have disappeared. In the course of the 

iterations that led to the development of Stage 2, the theoretical 

separability increased only marginally, from 95% to 97%. whereas the 

practical separability inceased to 95%. At that point, we considered 

that our pattern recognition algorithm was final. As depicted in Fig. 

(3.4). a dominant asset of the classifier is its simplicity. The model 

is entirely defined by the feature means and covariance matrices for 

each class presented in Appendix, the definition of Stage 2 from Tables 

3.4 and 3.5 and the normalization constants of Table 3.2. 

From Table 3.7, the new number of samples in each class 

varies from 28 in class 4 to 184 in class 17. This represents a 
~ 

substantial change from the initial partition of 100 samples per class. 

These changes are due not only to labeling errors but also to redefini- 

tion of some classes during the analysis process. 

Tables 3.8 and 3.9 provide the non-normalized means and 

standard deviations of the features for each class. Fig. 2.2, the 

plot of HT versus AL, was based on these tables. Table 3.8 reveals the 

quality of the features chosen. One to a few features are maximized or 

minimized in each class. The reader will notice, for example, that the 

, 
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streakiness factor is clearly higher for the directional classes 7 and 

8 while SE is also distinctly higher for open cellular patterns, i.e. 

classes 9 and 10. The background connectivity, BC, is minimized in 

classes 8, 9 and 10 revealing the presence of holes in those cloud 

fields. The multilayer index is low in multilayered classes 14 to 18. 

The cloud connectivity permits ready separation of cumulus and 

stratocumulus. The detection of thin cirrus is greatly facilitated from 

feature LR in conjunction with HT. Tables 3.8 and 3.9 are a compact 

objective description of the classes presented subjectively in Chapter 

2. 

3.3.4 Results on independent data 

In order to test the validity of the pattern recognition 

algorithm, an independent data set made of 5 images with 204 samples 

per scene was assembled. Thus, the independent set has a total of 1020 

samples, all taken at 18 GMT in 1984. The actual dates are January 8 

and 22 and February 7 ,  8 and 12. 

An example of machine classification for January 8, 1984 at 18GMT 

is provided in Figs. 3.5a,b. We had the data for all days of January 

at 18 GMT and February at 16 GMT and 18 GMT on tape. Since the depen- 

dent set was derived from February, 16 GMT data, it was desirable to 

consider January data for the independent data set. Three of the days 

were, however, taken in February 1984 but those scenes differ in time 

by two hours from those of the training set. The reason for not taking 

all images of the test set in January was to provide a good representa- 

tion of all cloud classes from only 5 images. For example, there were 
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no extensive areas of stratus in January (class 2 for which February 12 

is a 

for 

that 

set. 

good case) and no extensive areas of open cells (classes 9 and 10 

which February 7 and 8 are good cases). In addition, we recall 
. .  

only about one third of each image was selected for the training 

Considering those factors, the test set is considered to be at 

least 80% independent of the training set and all 1020 samples differ 

from those used in the training set. 

In addition to the author, two senior meteorologists worked 

on the verification to be presented here. Among other credentials, 

both researchers have had many years of experience analyzing digital 

visible and infrared GOES imagery. We refer to these consulting 

analysts as Analyst 1 and Analyst 2. Each analyst worked separately, 

following the procedure outlined here: 

1) The visible and infrared images are displayed on the video screen of 

MCIDAS. The grid of analysis with 204 grid boxes is superimposed on 

the images. 

2) The analysts have a hard copy of each of the 5 grids with the 

machine class number assigned by the algorithm in the middle of the 

box. They also have the worded description of the 20 classes and the 

examples presented in Section 2. The task is to examine both visible 

and infrared images for each sample and to correct the computer answer 

if need be. If they do find an error, the analysts are asked to 

provide two numbers: the corrected class number and the class number 

that they feel is second best. The purpose of the second number is to 

find out how many times the computer has selected the second best 
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choice. 

3) The information provided by each analyst is keyed in the computer 

to derive statistics. 

The results are presented in Tables 3.10 to 3.13. Table 3.10 

shows the overall accuracy inferred from each analyst. These results 

indicate that while the two consulting analysts agreed with an overall 

accuracy of about 73%. the author was estimating that same statistic 

considerably higher at 87%. Having designed the classifier, the 

author certainly had more experience with the particular choice of 

classes selected while the consulting analysts may have had a different 

view of what each class is or should be. It may be argued that the 

author is biassed towards agreeing with the machine result. This 

argument is partially dismissed upon noting that the author flagged the 

samples as incorrectly classified while the consulting analysts flagged 

them as correctly classified for 3.0% of the data set with respect to 

Analyst 1 and for 5.3% of the data set with respect to Analyst 2 .  More 

importanly, Table 3.11 indicates that the consulting analysts agreed on 

75.2% of the samples to be either right or wrong. Thus for 24.8% of 

the samples, one of them flagged the result as right while the other 

flagged it faulty. Obviously, this means that the machine result for 

those samples is either right or fairly close: if it is ultimately 

considered right, the accuracy inferred from the consulting analysts 

would rise to 83.8%. 

The indication that the machine result is virtually always close 

is provided by Table 3.12. For only 2.9% of the time, all 3 analysts 



Table 3.10 Overall accuracy ( % )  estimated by different, 
analysts for the 1020 samples of the independent data set, 
with and without considering cases where the machine 
selects the second best choice. 

Analyst Strictly correct At least 2nd best 

AUTHOR 
ANALYST 1 
ANALYST 2 

87.1 
73.1 
72.3 

95.6 
82.5 
81.3 

Table 3.11 Percentage of agreement between analysts on 
samples being correctly or incorrectly classified. 

agree agree overall 
correct incorrect agreement 

AUTHOR/ANALYST 1 68.1 9.9 78.0 
AUTHOR/ANALYST 2 65.0 7.6 72.6 
ANALYSTS 1 and 2 5 9 . 0  16.2 75.2 

Table 301% Percentage of the samples f o r  which none, one, 
two or all three analysts agree that the machine result is 
right. Results given f o r  strictly correct and for  machine 
result at least second best among twenty classes. 

Number of analysts 0 1 2 3 
agreeing 

Stricly correct 6.1 14.8 24.2 54.9 
at least 2nd best 2.9 8.2 20.6 68.3 

Consensus: at least two analysts agree: 

Stricly correct: 79.1 
at least 2nd best: 88.9 



-Table 5/3: Consensus of correct classification for each 
class. Machine number of samples for each class given 

’ next to the number of those samples for which at least two 
out of three analysts agree with the machine result. 
Resulting percentage of agreement is shown in right 
column . 
Class Machine number Number f o r  which Percentage of 

of samples consensus agrees of agreement 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

22 
20 
90 
14 
41 
17 
78 
79 
78 
56 

102 
40 
9 

30 
24 
61 
72 
123 
22 
42 

22 
20 
89 
12 
39 
17 
72 
74 
60 
36 
77 
30 
4 
19 
19 
61 
71 
122 
22 
43. 

100 . 0 
100 . 0 
98.9 
85.7 
95.1 
100.0 
92.3 
93.7 
76.9 
64.3 
75.5 
75.0 
44.4 
63.3 
79.2 
100.0 
98.6 
99.2 
100.0 
97.6 
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agree that a sample is incorrectly classified and does not qualify as 

second best. This results matches the 97% theoretical separability 

obtained from Monte Carlo simulations. Table 3.12 describes a 

consensus that we present as our final estimate of the classifier 

accuracy: two out of three analysts agree that the overall accuracy is 

79.1%. If second best choices are considered as correct, the overall 

accuracy rises to 88.9%. It was previously admitted that the test set 

could have partial dependence with the training set. The results for 

the two January days (408 samples which are totally independent from 

the training set) were very similar to the numbers quoted above: 77.4% 

stricly correct and 86.7% at least second best. Thus. the results 

presented in Tables 3.10 to 3.13 are in all likelihood representative. 

/ 

Table 3.13 presents, class by class, the results of the 

classification based on this consensus adopted as a method of 

verification. It is seen that 12 of the 20 classes scored above 90%. 

Boundary layer classes, including stratus, streets and rolls are 

particularly well classified as well as high-level cloud classes; in 

particular, all thin cirrus (class 16) samples detected by the machine 

were confirmed by the analysts. The result for class 13 (44%) is not 

representative, being derived from only 9 samples (the result was 85% 

correct on the dependent set): most of the errors in class 13 are 

actual cirrus seen as single layered clouds at mid-level. There is a 

problem in overselecting class 10, convective open cells, when some 

small holes are present in a mid level overcast. For multilayered 

classes 14 and 15, an acknowledged problem is their selection when thin 
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cirrus overrides cumulus or stratocumulus. The machine interprets the 

higher deck as altocumulus because the apparent height is below 6 km 

and because the cloud albedo is higher due to the presence of the lower 

deck. The solution to this problem would probably require an additio- 

nal spectral channel sensitive to the presence of ice crystals. 

The need for an objective method of classification is confirmed by 

examination of the agreement between the three analysts which is below 

79%. We stressed that this agreement is on a single number to be 

selected as right or wrong. In an experiment prior to the verification 

experiment described above, Analyst 1 and Analyst 2 were asked, for the 

same 1020 samples, to label the samples with a class number from 1 to 

20, without having the machine result as information (only the descrip- 

tion of the classes and the catalog of four examples far each class 

shown in Garand (1986)). The agreement was surprisingly low: 37% on a 

strict basis (as opposed to 75% when they were given the machine 

answer), raising to 55% if their second choice was considered. This 

result shows once again, this time without leaving any doubt. that 

objective classification provides results that are more reproducible, 

less ambiguous than the subjective techniques used in the past. 

3.3.5 Computer time 

We now examine the computer time required to use the proposed 

feature extraction and classification scheme. It requires 2.5 s per 

box on a medium size computer (IBM 4381). Virtually all the time is 

devoted to feature extraction, the classification taking less than 0.1 

s. The most time consuming part, about 1.2 s (it varies with 
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' morphology), goes into the estimation of the connectivity indices as 

each cloud or background element is catalogued individually. The 

algorithm is not optimized for efficiency; the author gave only 

reasonable attention to this aspect. Yet, the 204 boxes of our 20 X 20 

degree domain can be classified in about 8.5 minutes. At the scale of 

(128 km) , the entire planet, land and ocean areas included (31130 

boxes), could be analyzed in 21 hours with the same computer, if the 

scheme was generalized for usage over land masses and for all seasons. 

Optimizing the code and using a larger computer, we hypothesize that a 

factor of 2 could be gained. Daytime only application leads to another 

reduction factor of two. Further, a gain by a factor of 3 to 4 would 

be obtained if it was shown that the results of the classification are 

not significantly deteriorated from using a resolution of 4 km in the 

visible as opposed to 2 km. Still, the task is costly for a single 

computer as maps are desirable every three hours. However, this task 

is perfectly suited for parallel processors since each box is 

considered independently from the others. We conclude that, with 

vectorized machines or cooperation between various satellite data 

centers, the method could satisfy the time requirements of ISCCP. 

3r 
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4 .  CLIMATOLOGICAL APPLICATIONS 

4 . 1  Cloud type climatology for January and February 1984 in twenty 
classes. 

Table 4 . 1  provides the number of occurrences of each cloud type 

for January and February 1984. Table 4 . 2  gives the means of conven- 

tional cloud parameters for  the same period. Although the cloud frac- 

tion for the two months was virtually the same, 63%, January was 

characterized by a value of HI 6.9% higher, compensated by a LO value 

5.4% lower than in February. As a consequence, the mean value of HT is 

higher in January by 700 meters. The mean albedo is similar for the 

two months. Cumulonimbus cloud classes, 18 and 20, account for 25.1% 

of the samples in January whereas they account for only 16.5% in 

February. February was characterized by several cold air outbreaks, 

including a spectacular event that lasted four days between the 7th and 

the 10th. As a result, mesoscale cellular patterns (classes 8 ,  9 ,  10) 

are more numerous in February. Stratiis, class  2 ,  tend to occur 

extensively or not at all; extensive stratus occurred February 12 and 

13 but no such cases happened in January resulting in a marked 

discrepancy for that class. Another remarkable result, which applies to 

both months, is that broken cumulus occurs less than 1% of the time as 

opposed to 11% for scattered cumulus. 

As will be shown in Part 2 ,  each cloud class is associated with 

a different probability of precipitation. Having a scheme as detailed 

as this one permits more accuracy than using only global statistics 
<such as those provided in Table 4 . 2 .  



Table q t /  Number of occurrences of each cloud type  for 
January and February 1984, and r e s u l t i n g  percentage of 
occurrence. 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 

Total  

325 
20 
638 
29 

296 
48 
190 
123 
126 
53 

304 
182 
113 
195 
192 
662 
681 
906 
2 57 
576 

5916 

5.49 
0.34 
10.78 
0.49 
5.00 
0.81 
3.21 
2.08 
2.13 
0.90 
5.14 
3.08 
1.91 
3.30 
3.25 
11.19 
11.51 
15.31 
4.34 
9.74 

289 
141 
641 
50 

473 
184 
166 
141 
193 
112 
315 
295 
149 
210 
210 
412 
729 
601 
170 
364 

5845 

4.94 
2.41 
10 . 97 
0.86 
8.09 
3.15 
2.84 
2.41 
3.30 
1:92 
5.39 
5.05 
2.55 
3.59 
3.59 
7.05 
12.47 
10.28 
2.91 
6.23 

Table 4% 
1984 over t h e  entire domain. 

Cloud parameter means for January and February 

Feature January February 

0.638 0.630 CF 
Lo 0.073 0.127 
MI 0.327 0.337 

0.239 0.170 HI 
HT (km) 5.8 5.1 
A L  0.526 0.503 



Table g3a; Given a cloud type observed from ship, proba- 
bility of presence of other cloud types in winter (Dec., 
Jan., Feb), for the oceanic region bounded by 30-45N 
latitude and 60-9OW longitude (after Hahn et al., 1982). 
Ac: altocumulus, As: altostratus, Ci: cirrus, Sc: strato- 
cumulus, Cb: cumulonimbus, St: stratus, Cu: cumulus, Ns: 
nimbostratus. A X indicates a pair of types that are never 
reported together by observers. 

Given Probability of cooccurrence 

As/Ac Ns cu sc Cb None 
cs 60 12 22 44 6 18 
As/Ac 0.4 21 58 8 12 
Ns 1 63 2 23 
cu X X 57 
Sc/St X 40 
Cb 48 

Table q& Probability of occurrence of each loud type 
for same time period and region as in Table &l , and 
percentage of occurrence alone or not (after Hahn at al., 
1982) . 
Type % of occurrence alone multilayers 

. Clear 
Ci 
AS/AC 
Ns 
cu 
St/Sc 
Cb 

8 
29 
39 
9 

26 
50 

5 

5.2 23.8 
4.7 34.3 
2.1 6.9 
14.8 11.2 
20.0 30.0 
2.4 2.6 
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An attempt was made to compare our results to statistics of 

cloud type obtained from ships. Hahn et al. (1982) provided a compre- 

hensive study of cooccurrence of cloud types over the ocean, based on 

twelve years of observations. Fortunately, one of their grid boxes 

represents the same region as the one studied here. Their results are 

condensed in Table 4.3. Among other questions, we are interested in 

knowing the percentage of multilayered systems. According to Table 

4.3b. that percentage is 42.8% since single layered cloud fields, 

including clear sky, occur 57.2% of the time. We assume that cloud 

classes 1 to 11 and 13 are single layered. From Table 4.3a, if we 

further assume that cirrus associated classes 16, 17 and 19 are multi- 

layered 82% of the time, nimbostratus (class 12), 77% of the time and 

cumulonimbus classes (18 and 20) 52% of the time, then, by pooling the 

data for January and February together, we obtain that 41.1% of the 

cloud systems are multilayered. This result compares well with the 

climatological estimate of 42.8% based on ship observations. 

Other comparisons are directly possible. The clear class 

occurred 5% of the time versus 8% from ship climatology. Perhaps, the 

difference is the result of the scale of analysis, which is much larger 

from satellite (128 X 128 km) than from the ground (about 40 X 40 km). 

As another example, Hahn's data suggest that cumulus alone happens 

14.8% of the time whereas our limited data yield 14.5%, if classes 3, 4 

and 7 are pooled as cumulus-alone classes. A more relevant exercise 

would .be to compare directly coincident satellite versus ship-observed 

cloud classes, especially multilayered systems. For example, the data 
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for classes 14 and 15 suggest that altocumulus (Ac) occurs the same 

proportion of the time with either cumulus (Cu) or stratocumulus (Sc) 

whereas Table 4.3a reveals that the pair Ac/Sc occurs almost three 

times more often than the pair Ac/Cu. From such studies, one could 

fill in, statistically, what the satellite cannot see, namely what is 

underneath the higher cloud deck. 

4.2 Monthly , seasonal maps of cloud fraction 

4.2.1 Monthly maps 

Figs. 4.la and 4.1b show the mean cloud fraction for January and 

February 1984. The interpolation procedure is that of Hibbard and 

Wylie (1985) and the computer system used is MCIDAS (see Suomi et al., 

1983). The maps are produced from 29 satellite measurements for each of 

the contiguous 204 grid boxes. As seen in the previous section, the 

overall cloud fraction for the two months was the same. The detail 

shows noticeable differences, however. January is characterized by a 

marked north-south gradient, south of latitude 35 N, whereas no such 

feature occurs in February except in the south-east part of the domain. 

Both months have a strong maximum (above 80% ) in the latitudinal belt 

37-40 N south of Nova Scotia. January shows a second maximum of 83% off 

Cape Hatteras. The extended region of high cloud fraction in January 

indicates the mean track of the frontal systems that frequently 

occurred in that month. The lack of gradient of cloud fraction towards 

the tropics in February may be explained by the few cold air outbreak 

episodes that penetrated far south. 

4.2.2 Seasonal maps and comparison with ship data 



b 

F i g .  ll.1 S a t e l l i t e  r e t r i e v e d  mean c loud  f r a c t i o n  for: a )  
January 1984 ( N  = 5916) and b) February 1984 ( N  = 5 8 4 5 ) .  
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We hove compared our estimates of cloud fraction with ship 

observations. Figs. 4.2a and 4.2b are seasonal maps, with January and 

February pooled together, of cloud fraction obtained from ships and 

satellite respectively. These maps are produced from 1275 coincident 

ship reports and satellite retrievals at 18 GMT. The matching procedure 

is explained in Part 2. We recall that ground observers report the 

cloud cover in octas, that is with increments of 0.125. The results 

show good agreement in the general pattern and its details. However, 

the cloud fraction observed from ships is often 10 to 20% higher than 

the satellite estimate. It is a known fact that ground observers 

overestimate (often by one to two octas) cloud fraction due to angular 

perspective, espe.cially for low cloud fields with true cloud fraction 

in the range 30-70%. Minnis and Harrison (1984a) reported similar 

findings (see also references herein). 

Fig. 4 . 2 ~  presents the satellite retrieved cloud fraction for the 

two months using all the data (11,761 retrievals). While Figs 4.2b and 

4 . 2 ~  used the same method for the estimation of cloud fraction, Fig. 

4 . 2 ~  was produced with complete sampling: 9.2 times more data samples. 

The result is a smoother pattern where, in particular, the closed low 

near Bermuda vanishes. This result emphasizes the need for good 

sampling and resolution for a geophysical field as variable as cloud 

fraction. We have presented maps of cloud fraction (CF). Maps of 

other parameters of interest, such as LO, MI. HI, HT, Ts, Tb and AL are 

also available from the present method. 

c-3-  
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F i g .  (j1% Mean c l o u d  f r a c t i o n  f o r  January + February 1 9 8 4 .  
a )  Observed from s h i p s  b )  r e t r i e v e d  a t  t h e  l o c a t i o n  of t h e  
s h i p s  ( N  = 1275,  d i s t r i b u t e d  over 3 2  g r i d  p o i n t s ) .  



C 

6 5 W  7 5 w  

Fig. q& Continued. c) Satellite retrieved mean cloud 
fraction for January + February 1984 using complete 
sampling (N = 11761, distributed over 204 grid points)# 
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5. SUMMARY AND CONCLUSION 

An automated algorithm to classify clouds in twenty classes has 

been ,presented. A novel aspect is the attention given to mesoscale 

cellular patterns: directional patterns such as cloud streets and rolls 

are detected (we believe for the first time) as well as open cells from 

features derived from the two-dimensional power spectrum of the visible 

images. Multilayered systems, including thin cirrus, are separated into 

several classes. In addition, cumulus, stratocumulus and stratus are 

specifically recognized. A consensus of three expert nephanalysts 

estimated the accuracy of the scheme at 79% with the machine answer at 

least second best among twenty classes 89% of the time. The classifier 

itself is very simple. A first stage tentatively assigns a class from 

a one-step decision rule that finds the class with highest probability 

of existence, given an eleven-dimensional vector of features. The 

second and last stage merely corrects possible errors of the first 

stage based on a small subset of features nost relevant io the class 

selected in the first stage. All the features bear physical meaning, 

can copies. 

The features provide a detailed description of the cloud field in terms 

of effective cloud fraction and albedo, height, multilayering, size 

distribution, shape, directionality strength, existence of holes, 

connectivity etc ... Thus, the classification is quantitative, that is, 

it does not merely provide a class number but it also provides a set a 

physical descriptors that can be further utilized. 

easily be interpreted with what can be seen from the hard 

A comparison was made of the climatologies of twenty cloud classes 
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for January and February 1984. Significant differences in the 

distribution of the cloud classes were found in the two months even 

though the mean cloud fraction and mean albedo were virtually 

identical. Moreover, the cloud fraction maps for the two months were 

significantly different despite, as mentioned, the same overall mean 

cloud fraction. 

The cloud classification algorithm should be applicable over all 

oceans uncovered by ice. Perhaps the classification is too detailed 

for use over the tropics where, for example, rolls and open cells are 

rare, but having too many classes is not a problem since related 

classes can be merged. 

The computer time, 2 .5  s per 128 X 128 km box (on a medium size 

computer: IBM 4381) or 8 .5  minutes for the 200 boxes of a 20 X 20 

degree region, may satisfy the requirements of ISCCP, especially if 

vectorized machines are used. 

The scheme will be used in the First ISCCP Regional Experinent 

(project FIRE, in 1987) to quantify marine stratocumulus fields off the 

coast of California. It is also intented to generalize the scheme for 

use over land. This will require regularly updated maps of surface 

albedo and knowledge of the surface temperature. 

The quantification of cloud fields in terms of fractional 

coverage, height and albedo is fundamental to the understanding of 

climate mechanisms. But cloud fields are also spatially organized in 

recognizable mesoscale morphologies which may be revealing of the 

physical state of the atmosphere. This aspect is the object of Part 2 .  
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The material presented here was  developed as a par t  of the 

APPENDIX. Covariance matrices of the  features. 

Table A . l  provides the normalized variances of features H I  and CC, 

which may be used in Stage 2 of the classifier. 

normalized covariance matrices of the  11 features used in Stage 1. 

normalized means can be derived from Table 3.8 using Eq.  (3.20) and the 

normalization constants of Table 3.2. 

Table A.2 provides t h e  

The  



Table h.1 Normalized variances for CC and HI. Some of 
these are used in Stage 2, with minimum value set to 
0.005.  

Class cc 
1 
2 
3 
4 
5 
6 
7 
8 
9 

1 0  
11 
12 
1 3  
1 4  
1 5  
1 6  
1 7  
1 8  
1 9  
20  

1.257 
0.007 
0.137 
0 . 8 6 1  
0.465 
0 .340 
1.239 
0.053 
0.638 
0.000 
0.219 
0.005 
1 .325 
1 . 1 1 3  
0.567 
0.793' 
0 .262 
0.004 
0.000 
0 .000 

HI 

0.0000 
0.0000 
0.0000 
0 0 0000 
0.0000 
0 . 0000 
0.0000 
0 . 0000 
0.0000 
0.0000 
0.0000 
0.0000 
0.0001 
0.0002 
0.0002 
0.0812 
0.8612 
0.8244 
0.0467 
0 . 0253 
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CWSIfICATIOW OF SATELLITE IMAGES OF EXTRA-TROPICAL CYCLONES OVER THE 
OCEAN DY M A N S  OF COIPUTERIZED PATTERN AYUYSIS 

Ff,?.< :: Craig R. Durfrlnd and Jrrrr A. ~ l n 8 &  

Deportment of Irtrorology QUALITY 
.-  -- __ Unirermlty of Ulrconrtn-Irdlron 53706 

I" introduction 
t 
f Currently, thoro rrr mrnv reglono 
ovrr tho oceonr. vhrrr no aurfrcr or 
upprr-oir dmto arm memrured by 
convrntionol arthod.. Although uppmr-oir 
trrprroture rnd hurldlty roundlngr cmn bm 
obtolnrd from lnfrrred rnd ricrovrvr 
mrorurrrentr from rmtrllltr-bornr 
radiomrtrrr. tho rurfacr prrmrurr 18 not 
rt prrornt king mrorurod operationally 
.UOlng thrar m.thod8. Accurote 
rurfrcr-prrrrurr rrorurr~eato are nredrd 
to obtoin 9ood wrthrr forrcortr. 

rmrign quontitmtlve prrmretrrr to 
lorge-mcolr vortlcro obrrrrrd in 
rmtelllte vrmther hrgl.. Troup and 
Strrten (1972) devlrrd r cyclonr 
clrooificotlon rcherr recording to 
devrlopmentrl at090 by meonr of an 
objectlrr ret of ruler oppliod to r 
rotrllite plcturr to clorrlfy the 
cyclonr. The rurfrce-prerrure fleld war 
rtatlrtically drrirmd umlng tho cyclonr 
c l r o o  rad tho climatology for thrt clmrr. 
Guymrr (197a) u d  both the lrr9e-rcolr 
rhopo and rroll-rcrlr fraturrr to drrivr 
uverrl D ~ t W r O h g ~ C O l  parmrrtrrr. Thim 
rnolyoir worn conducted bv r human 
rnolyrt. Such rnrlyrtr mry &me loam 
rttrntlrr after looking at many ruch 
rrtellitr picturrr. 

Attempt. hrvr been mado to ronumlly 

Yo proviour attaptr hove bean modo 
to OUtOBOtiC8ll~ ClOrOify CyClOnO 18090r 
or to drrlve rrtaorologicrl pmrrmrtrrm 
from ratrllitr irogro by mernr of 
corputrr anrlyrlo. Thio rtudy i o  r firrt 
rtterpt to ruto~otlcolly cleorlfy 
cycloneo over the ocron. Once on 
objretlvr tuhniqur for obtaining 
parmretrrr from the rhrpm. rizr. end 
oriontation lr devlred, 0 reqrrrmlon 
rchemo uring climatology can bo rppllmd 
to the dot. vlthout concorn for rrrorm 
induced by rub~rctlvr biarrr. 
prroento on outorotlc rmtrllitr-imrpr 
clmmrlflcotlon techalque thot plocem 
cycloneo into flvr c l o u e r  which rrr 
comporobfr to the five c l r r r r r  deflnrd by 
,Troup ond Strrten i1972) Cree Figure I ) .  
' The o~gorlthr prerentrd here 
clomrlfirr oeronic rxtrrtroplcal cyclonrr 
into on. of throe five C1orrer .  hcotor 
tho cyclonr crntrr and tho mpproprlatm 
front.. and drrirrr a rot of objrctive 
pareroterr thet dercribr tho r i z m .  ahope 
and oriontation of tho rtorr ryrter. All 
thrr ir don. without manual lntrrvrntion. 

four rtrpr: 

1) Tho imago of tho eyclonr 10 rxtrectrd 
from the GOES hrrlrpherlc picture by 
r r e n r  of the I c I D A S  lragc dlrploy r y m t r m  
(Suorl ttl sL., 1983). Thir 1. 
done mo thmt onrlyrro con be done on only 

Thlr peprr 

The trchnlqur con ba dlvidmd into 
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Fw1:schemabc . diagram of the six doud pattern 
dassifcahnt defined by Tmq~ and Slreten 
(1972). 

lthr rxtrmtropicol cyclonr in qurotlon. 
hhlr prmdurr urrr the porltlon of tho 
124 hour LPX forumrt cyclone-center or on 
:epproximmte fndicotor to lnltlrtr the 
roarch for tho cyclono. 

2) The cyclonr ir plrcrd into one of five 
.Clm88.8. In order to do +hi=, Objrctlvr 
parrrrterr thot dercrlbr tho rppmerrncr 
of the ryrtrm ore colculotrd and urod to 
drtOrBlne the cyclonr type. 

3) Tho cantor of rototlon lr locatrd 
uring tho cyclonr clorr  and the vlriblm 
lmmge. 

4)  Tho front. aro located uolng the 
clorr. the cyclone center, and the 
,vlrlblm lrogr o r  input informotion. 

Fiftrrn carer ore rnolyzed in thir rtudy. 
Their tlrr of obrervotlon. locotion, ond 
orlglnol rpetiol rerolutlon are 
rurrmrlzed in Table 1. 

XI. Preprocerring of GOES Vlrlble ond 
Infrared Immgrr of Extretropicol Cycloner 

A t  ony given there arc numerous 
cyclone ryrtemr in vmrlour rteger of 

' - .  - - -  
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davaloprmnt ovar tha m a n r .  
rlrpllfy thr analyrlr, the utratropical 
cyclone. arm exarlnad one et 0 tire. 
Thlr 18 dona by oxtractlag 0 8lnglm 
cyclona fror thr U r n  GOES berlrphmric 
picture. Bueura image enaiyrir ir 
corDutatlonrllv lntmrlve. on. drrlrar to 
mnalytr en lrrgr which ham tbe fwrrt 
nurkr of plxrlr powlblr. 

Tha porltlon of the lou-prerrurr 
ernter prrdlcted by the 24 A tF?l forrcaat 
1. ured ar thr flrrt guerr to locate the 
cyclonr center. An area with dlrenrlonr 
of 5120 kr in the lrtltudlnal direction 
and 3840 kr in tha meridional direction 
vlth e pixel rerolution of 16 kr by 16 kr 
lr axtractrd fror Wa full-dirk vlrlbla 
and lnfrrrrd picture. to produca large. 
conrlrtlng of 320 pixrla in the errt-weat 
dlrrctlon. end 240 plxelr in thr 
north-mouth dlrrctlon. Thraa lragar. 
both vlrlbla and lnfrrrad. arm extrocted 
fro8 GOES plcturrr BO that the centrr of 
tha cyclonr la onr-third of thr dlrtanca 
fror the northrrn mdga to the routhern 
edgr and one-half of thr dlrtanca brtwean 
tha errtrrn and wrtern rdger of thr 
320 I 240 Image. There 320 X 240 pixel 
irager arm then remapped into a Hercator 
proyection with the a r m  number o f  
plxalr. 
both tho virible and thr lnfrrrrd lragea 
to rerova lrrge rhrpa dlrtortlonr crured 
by thr location of the rtorr relatlvo to 
the GOES ratelllte locrtlon. Thlr a l r o  
ell or^ all plcturrr to ba anolyrrd ln tha 
r a m  projrctlon. w h i c h  lr lrportant in 

In order to 

Thlr procedure lr eppllrd to 

the drrlvotlon of a rlnglm trchnlque for 
clrrrlfylng .torrs ot different 
letltuder. flnolly, the 320 X 240 plxrl 
image. are degraded by evrraglng over 
B X 6 plrrl boxme to produca i ~ m g e e  
conelrtlng of 40 X 40 plxalr each hrvlng 

?ha elrr of rrttotroplcel cyclonea 
con vary o v u  en order of ragnitudr: it 
ir. therefore. drrltoble to rcrlr all 
cyclone lrrgoa 80 that an lragr can be 
crratrd in which e11 porrlble cyclone. 
covrr rpproriratmly tha eara .ram in tha 
40 X 40 pixel imagr. to producr thlr 
image. rrOllmr cyclonmr arm onlergrd by e 
greater factor then Iergrr crclonrr. Tha 

0 reaO1UtiOn Of 128 kB bl 96 k8. 

;rrrorurron WAII m aszzerant for each 
!cyclonr plcturr. Thlr ere. norralizrtion 
! i o  importent oo tbat onlv onr 
clrrrlflcatioa and loertion rehero nmedr 
!to br davrloprd, lnotrrd of hrvlng on 
,enelyri8 which dopeadm upon tha rlrr of 

tho norr.ll+atlon proerrr urar rrny 
the cyclona. 

dlgltal imago proea8rlng trchnlquar, 
.Including brlghtnau norrrlltrtion, 
thrarhholdlng to produca a blnory lraga. 
~prtlal flltorlng to rmducr noira. end 
extrocttoa fro8 thr original full 
rrrolutlon vlrlble Ira90 to produce thr 
norrallrmd image. Fro8 the norralitrd 
lmagr. tha onglr of orlentation, d o n g  
with varlour .Ire pmraraterr are 
drterriamd for the eyclona'r iroge. 
Brightnorm norrrlltotion la parforred to 
correct for airb drrkeniag produced at 
large ualu rrnitb mglrr. 

111. Claulfication of thr Dmgrer of 
Developmaat of ttretropicrl Cyclonrr 
Uring thr Vlalble Irrgr 

I 

Chr8ifiC8t1Olt of the cyclonr'e 
degree of drvrloprent lr aehleved by 
drtarrlnlng nvrrol featurrr of tho 
cyclona lmagar. whieb era thmn umed ea 
indlcatorr to cleuify the cyclone typa. 
In order to identify the propartier of 
thr eyclona lrrge. thr ualmd cyclone 
image murt b further rirpllfled. 

A duirion tree rtructurr tmee Figure 
2) la ured to clrulfy the rxtratropical 
eyclonrr. At arch nodr of the trre, one 
ferturr l r  urrd to deterrlne whether the 
cyclonr fltr e crrtaln c h a r .  If ao. it 
ir clorrlflad and thr procedurr lr 
corpleta. Otherwire. the next featura lr 
rxtractrd and onothrr declrlon taker 
place . 
clarrlfy cyclonr ryrtarr l r  the 
orlentation anglr of the rrjor axlr of 
thr elliptical approxiretion of the 
orlglnrl vlriblr lragr. The original 
lrrgr la fit to an elllpre r o  thlr 
anrlyrrr can bo completed. 
orientation 1. takm to ba taro if the 
rayor rxlr of the rlliprr 10 oriented 
along an oart-vrrt llnc m d  90 degrcer if 
thr cyclone'. rayor rxir l r  along r 
north-mouth lhr. Thlr angle 1. urcd to 
datrrrlnr If 9 cyclonr lr  In the wave 
rtrge opporrd to rn more developed 
cyclone. Cyclonrr vlth rrrller angler 

Thr flrrt frrturr which la n-dad to 

The angle of 

OHiGIi4RL PAGE IS 
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. Figure a : Oecitisocl tree stmtum (or w i n g  w r i e s .  ---~- -- 
are thur clrulfiod a m  wave-rtege 
cycloner (denoted Y). It l a  found 
erpirlcelly thrt 0 cutoff of 30 dogreer 
bort repereter urve-atage eyeloner from 
the othrr typo. of cycloner. 

The rrrrining feeturer are derlved 
fro8 en image which 11 a rubret of the 
rcrlod vlriblr i r rge.  A high-reeolutlon 
lrege which coneirlrta of the center core 
of the cyclone a y r t u  la extracted from 
the original Ilercetor virlble h8ga. The 
center point and the alte of thir 
high-rerolution center 8eCtlOn le 
deterrlned from the centroid of the 
degraded rcrled image. Sirller 
degredatlon ir again rpplled to the 
rcaled lmege to produce r noire-free. 
binary image of the center rpirrlr of the 
ryrte8. Thia fine1 18.9e U H d  for 
Cyclone C1ee8iflC8tiOn. 

The pattern-enalyrie elgorlthm 
rearcher for dry tongue. by looking for 
the firet continuour. horltontal rtrlng 
o f  plxelr with e velum of 200 on the meat 
edge of the plcturr. Fro8 thle 
continuour rtring. it rearcher twerde 
the wcet until it find. r clear ere.. It 
then continuer to reerch towardr the vert 
for e cloudy area end repertr the reme 
procedure egaln. each tire counting the 
nurber of pixel8 in the clear erer. Yhen 
e clear area la locetrd. the program 
rearcher towrrde the routh to deterrine 
vhethcr the cyclone her begun to vrep up. 
A cyclone 18 conridered to have vtrpped 
up if there ere et leert two pixelr 
extending toward the mart fro8 the 

routhuertern arm of the ryater. Thia 
procedure ylelda two feeturrr--the number 
of clear alota and en indication ar to 
uhethrr the cyclone her wrapped up. 

The binary imege ir ured to clerrlfy 
the cyclonrr whlch did not fall into the 
Y clr r r .  bi looking lor the dry tongur. 
If no dry tongue lr prermnt. then the 
cyclone 1. clerrlfied typo A. If 
dry tongue ir preunt. the r~gorithr 
rerrcher to the oouth to deterrine 
uhrther the cyclone ha8 bmgun to urrp up 
or checkr for t w  alotr of dry rlr 
betwrn the d g e e  of the entire cyclone, 
thur lndlcetlng thet the cyclone her 
wrapped around itaelf 0 u c o n d  time. If 
elther of t h a m  featurer are prrrent, the 
cyclone ir clearifled ra  r type Cs 
othrfwlre.  it Clerrlfled rr  e type B. 

At thir point a11 cycloner which ern 
br claarlflrd 0. U, A,  B. or C have born 
clerrified. Alro,  the aIgOrith8 hrr 
reved crrtrin referencr pointr on the 
i809e for later ure in determining the 
cyclone center. In order to clrrrlfy the 
typre DX end Dy, the program 
checkr typmr B and C to roe if they are 
not rctuelly of type D. mince all type 
D'r vould have been included In the 
clarrification Of typo b o r  C up to thir 
point. 

Flrrt r cbeck ir rede to deterrine 
whether the wrrpped-around cloud band of 
e type B or C lr connected to the rain 
cloud brnd. The regrentd image ir u r d  
to deterrlne if the cloud band ir 
continuour by comparing the label on thr 
center rplrel reglon vlth the lobe1 on 
the frontal band. If the lrbelr are the 
rrre.  the cloud band i r  eontinuour mnd 

unchanged. If the reglonr have different 
lrbolr. the cyclone ryrtem ir clarrlfled 
rr  0 typo k. If the center rpiral 
ir dirconnuted from the rain cloud band. 
it lr clarrified e8 a dlraipating 
cyclone. 

to deterrlne if the cloud bend to the 
welt. which her not wrepprd around 11 
elongeted. Thlr ir done by corperlng the 
1engthr.of the uertern err rnd the 
eartern err errocirted vlth the cold 
front . 

thr Cyclone Cf.r8lflC8tiOn ir left 

Secondly. type b ecloner are checked 

IV. Locetlon of the Cyclone Center 

A dlfferrnt technlqum for locotlng 
the cyclone center 1. u r d  for each of 
the five clerrer. Urlng pointr reved 
ipreviouely or etertlng locationr. the 
: progrem rovee predeterrined dlrtancer 
from there 10~etlOn8 to determine the 

i cyclone center. 
1 Thlr rectlon of the prograr taker ea 
.input the three locationr on the rpirelr: 
Ithe location of the routhwertern edge of 
! the dry tongue. the center of the 
:northern edge of the cloud band which ir 
.wrapped eround to the routh. and the 
vcrtern edge Of the cloud bend which her 
wrapped around e recond tire to the mart 
of the recond dry tongue. 

For type Y cycloner. the cyclone 
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center 1. located vhere the thickert 
bulge le found in the bond of cloudlnaor. 
Or vherm the curvature Of the cloud bndr 
change. rlgn. In elthmr eoeo, thir $8 
where the cloud bond 1. thlckeot in the 
a.et-uort direction. The -me procedure 
that le u r d  for trpm Y eyeloner 11 elro . 
ured for tipa A cyclonrr. The only 
difformncm ir thot the clorrlficotlon of 
typm A cyclone urea the entire lmoge ond 
not only the high-rewlution center 
aoctlon. Tor typo 8 cyclonma, UIe point 
hcetod et the routhurrtern edge of the 
dry tongue ir urrd e m  rtrrting point 
for locating the cyclone center. Tbl. 
point 10 e100 u r n  for typo DY. It 
v0r empirlcolly deterrlned that tho 
center of the cyclone rhould k p l o e d  et 
the point one pixel to the mouth of the 
polnt roved ln the above procedure. If 
the cyclone i 8  determined to be 0 typo 
Dy, then the cloud band ir reorehod 
to find the eouthern-rort tip of the 
veetern cloud leg of the type Dy. It 
1. thlo point thot 10 given eo the 
cyclone center l n  type Dy cyclonao. 
For type C cycloner, t w  poroibilltieo 
exiot. The flrrt i 8  thot the cyclone her 
only k g u n  to wrep rround to the .outhe 
but hor not rterted to form the r-nd 
dry tongue. The rocond 18 that it boo 
begun to wrap up. thuo forming e .rand 
.lot of dry air 00 the cyclone io 
troverred form root to wot. For the 
flrrt core. the rlgorithr begin. 
reorchlng from the point on the northern 
edge of  the band vhlch hro vrapped to thm 
wuth touardo the northeort until it bar 
located the northeeotern-rort mdge of the 
cloud bend. The cyclone cmnter lr placed 
t w  plrelr to the uort of thio point. 
vhich corrropondr to the wortu of the 
rplrelllng bend. In thm rmcond come, the 
cyclone center ir p l o d  one pixel to thr 
north of the point which ir defined o r  
the wertern edge of the cloud h n d  vhleh 
ham begun to vrop oround r retond tlme to 
the emrt. Thlr once egeln plocea the 
center ot the vertex of the rpirolling 
cloud bend. If the cyclone i o  cloooified 
a0 e typo Dx. then the cloudy area 
clooert to the center of rotation lr 
locoted. Thio cloudy area ir 
dirconnectrd from the mein cloud 
otructurm oo indicetod above. The 
centroid of thir region ir determined and 
la taken to bo the cyclone center. 

V. Location of the Front 

The final enalyolo done by thio 
olgorithm io to roughly locate the cold 
front, or the occluded front. In the 
case of the typo U oyotem. the warm front 
io oleo loeatad. It rhould bo pointed 
out thot for dirrlpatlng cyclonao (type 
Der) no front lr located. 

The origlnol Hercrtor vlrible image 
ir the rtorting point ln the frontal 
rnalyrio. A binary image 10 creetad from 
thlo imaga. A filter lr placed over thir 
binary image to remove the noire and 
rough edger while retaining the ganerrl 
rhape of the frontal cloud bond.. The 
front io detrrmlnrd by movlng euay from 

the crntmr of rotetlon In prmdeterrined 
dlrutlone until the frontel cloud benbe 
rrm loceted. Tbeoe polntr ore rerked and 
roved. Aftmr all point. vhich r o k e  up 
tho front ora l#otd, the front 1. 
rmoothod by plocing r running moon 
through the point.. 

VI. Reoul+. 

Tho relrtive ore. of the cyclone 
cloud tTrble 2) ahour no rtrong 
correlation to the type of cyclone. thir 
indlceter that any cyclone typa con vory 
in rlre. Tho welue of theto chongem er 
tho cyclone eoturea. Small rnglea are 
not- in developing cycloner mince the 
cold air  lr etill to the north rnd hor 
not k g u n  to rvrep routhword to overtake 
thr vera air. I h  tbe cyclonrr develop. 
lergmr angler ere found ea the tilt of 
thm ryrtem k c o m e m  *ore negetive due to 
the routhword rvuplng c o l d  rlr. 
dercrlption of the cyclone ryrtrm. 
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0.99 
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1.00 
1 .OO 
1.00 
1.00 
0.71 
0.93 
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67.1 
1390s 
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100.5 
74.4 

106.9 
33.6 
101.3 
75.6 
93.1 
33.0 
101 07 
74.2 
114.9 
94.7 

Trblo 2 : Cyclone cloorlficotion urd feoturer 
for arch dot. m a t .  

I 
A comprrl-n of the reoulto of thir 

rtudy vlth the rerultr obtolnmd from 
huren rnolyrtr woo performed. S i x  
metlorologirto. ell  of whom hove had 
experience in enolyzlng rotelllte imagery 
or e rtrong rynoptlc meteorology 
bockground. melysed the 15 cooeo to 
locote the lor prmraure center end thm 
frontr. The r a m  lou preooure center 
locotlon end the r e m  front01 pooltion 
along vlth the otandard deviation for 
each of the 15 data retr vere colculetrd 
for the mix mnoly~o. 

thr cyclone anter found by the computer 
olgorlthr ond the mean center location 
found by the rnalyota. Along with there 
valuer. the rtendard deviation for the 
human onrlyotr ond the ratio of the 

I computer'r diotencr from the mean to the 
human enalyoto' rtandrrd deviation 10 i tabulated. Except for one very bod care I (data ret 4).  the reoultr rhov that the 
coaputrr analyri8 ir within one rtrndard 
deviation holf of-the tlme ond elvayr 

Table 3 dioployo the dlrtoncr betvecn 
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8ubpetlro 
btd. Do*. 

Drtr Sot t k m )  

1 177 

3 1Sl 
4 104 
3 276 
6 98 
7 178 
e 254 
9 444 
10 N/A 
12 167 
12 701 
13 70 

1 13 943 
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i 
1 14 202 

37 
1% 
103 
407 
141 
161 
258 
217 
614 
1 / A  
136 

1086 
32 
101 
268 

art10 
Dat from In 
btd dev 

0.21 
1.70 
1.21 

0.51 
1.64 
1.45 
0.65 
1.38 

I / A  
0.73 
1.5s 
0.16 

a.31 

0.50 
0.78 

Trblo 3 : Comprrlron of rtrndard dovlrtlon of lou prrrruro 
contor poritlon for r group of human m~rlyrtr 
vrrrur dirtrncr from tho rean for tbr corputor 
algorithm. 

I . ._ t 

within tuo rtandrrd dovlrtionr. Thoom 
rrrultr r l r o  rhow that tho crrrr in which 
the eomputor rlporithr hrd difficulty in 
locrtlng tho crntor end the frontr, t h o  
human rnrlyrtr r l ro producad r vide rongr 

Tab10 4 g i v e r  tho rrmo prrrmotorr for 
tho frontal porltion. The corputor 
rlgorithm dld poorly on data wta 9 rnd 
15. uhllo the dirtrncor for tho romrining 
C ~ W I  r r o  ~PprOXiD~tOly quo1 to on0 
rtandrrd drvlrtlon or l o n .  

rhwrd tho poorort rmrultr for typo A 
CIClonOr, orpeclrlly data rot 9. Thlr 1. 
duo to tho lack of lrrgo-rrlo rtructurr 
mcountrrd in typm A eyclonor vhon 
eorparod to tho other typer. Since tho 
corputor nmedr rtructuro to u r v o  m a  r 
guido in locating forturor of tho 

I 

Of rO8Ult.. 

Ovorrll. tho computmr algorithm 

uUOtrOplCrl @Yl+rB. It Val  unrble t0 - --- 
I 

- 

perform e m  wl1 for thoro crror. A l r o .  
if more type & cyclone. uould be analyzed 
and urrd rr  trrlnlng rotr for tho 
computor algorithm, porformrnce mlght bo 
lmprovod. 

rnrlyrlr on type C yclonrr. Thlr ir 
mainly duo to tho rtructure rrrocirtrd 
with the rpirrlling contor of rotation. 
The rlgoritbr ir ab10 to locrto mrnv 
rofrreoco poiatr on the rpirrlling cloud 
band. to uro in idontifying tho lw 
prrrruro cmntrr. Typo C eyeloner, 
o r ~ i r l l y  data bot I.  r l r o  rhov -11 
drflnod and nrrrw frontrl cloud brndr 
which mako tho rrrotlrtrd frontal 
porltion orry to locato. 

on an I B N  A T - 9 9  prrronrl computer 
oqulpped vltb an 60287 coprocorror chip 
and 512 kb of random rccorr momory. 

1 

Tho corputor m o o m o d  to tiold t b m  k r t  

Thoro prttorn rnrlyrrr voro conductrd 

The - 
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Obpcti VI 
Dirt. from Morn 

(k.) 

44 
24 
60 

Y/A 
312 
91 
141 
41 

1273 
Y / A  
49 

* /A 
*/A 
Y I A  
136 

--------------- 
Ratio 

Dirt from In 
Std drv ------------ 
0.31 
0.28 
1.07 

M I A  
2.50 
0.77 
0.93 
0.36 
7.49 

Y/A 
0.26 

* /A  
W/A 
W/A 
1 e77 

Tablo 4 : Comprrlron of rtrndrrd drvlrtion of frontal 
porition for group of human rnalymtr vorruo 
thr rvrrrgr dlrtmncr from the human frontrl 
poritlon moon for the corputrr algorithm. - -- - - -. - 



mxtmndmd -Turbo-Paual" roftuarm apt08 
uaa urmd for programming there 
algorlthmm. the ontirm analymlm took 
approximataly 3 minutrr from boginnlng to 
m d  for racb cyclonm. Yhllm thm prrronal 
computmr 10 in no r a y  ormrburdanod by 
t h r n  procedurmr, the analyaim could k 

minicomputmr oqulppod ulth a porallrl 
array procmuor. 

POrfOrBOd m u c h  D O T I  rapidly On 

VII. SUBDOry 

An algorithm w a a  dmvmlopmd that 
objmctivmly analyard rynOptiC-aCal. 
aatmllitm iregea depicting vrriour rtogea 
of dmvmlopment of oxtratropieal cyclonma. 
Thm lrrgrr w r m  analyzod to a88lgn 
category to thm cyclonr bared on itm 
.tag0 of drvrlopmmnt. OnCr Chuifimdr 
thm rotation cmntmr m d  the front. 
rrrociatod uitb thm cyclonm worm located. 

Thlr elaaaificatlon rchmme along with 
thm porrmmterr derivmd from t h m  utellite 
1DOg.r Day UltiDotm1y used to mDplriCol1y 
drrlvm aurface-mrearure fieldr. Thur. 
ithm aurfocr-prmmaure f i e l d  could k 
derivrd f r o m  thm lrtga-acole fmrturar of 
the mxtratropical cyclone imagra. Tblr 

I uould be iirilar to thr uork.done by 
;mlther Y r g l e  and Hryden (1971) or Troup 
i 8nd Streten (1972). Thlr tmchniqum w u l d  
,be mapmcially urmful owmr data-rparam . 
,rmgiona of thm ooana. whmrm littlm 
rurfacm-prmreurm data arm avallablm. 

Thir rtudy domonrtratma tbat pet tun 
mnolyria tochnlqumr ray permit tbm 
devrloprent of rapidly mxecuted,. 
ObJrCtlVO CODpUtU-Orri8tod ana1Tw8 Of 
rrtrlllte ireger. Tbmom anolaywa u e  
able to dirtinguirh qclonrr la of 
their rtagea of devmlopment. 
rmrlized that not all cyclone rhapm8 ull l  

It l a  

be 'onalytmd correctly,. 
cycloner arm analyzed, 
improved to aCCODodatm . -  -- 

but a m  more 
thm program CIII be 
thr more 

- 
I 

I 
I 

I 

eomplicated cloud qhmpoa aaaociatmd uith 
veriour eyclonm ayatmmr. t b l 8  ir only 
thm boginning of tbe gleaming' rtage for 
thm computmr algorithm. ft ir rvident 
that thm program can k c o m m  much morm 
prrclw r a  mora utmllite tragmr arm 
rarlytmd 
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