MCR-86-675 VERSION 1

PROGRAM MAINTENANCE MANUAL
FOR
NICKEL CADMIUM BATTERY EXPERT SYSTEM

NASB8-35822

DEVELOPED. FOR
NASA/MARSHALL SPACE FLIGHT CENTER

HUNTSVILLE, ALABAMA

PREPARED BY
MARTIN MARIETTA CORPORATION
AEROSPACE DIVISION

DENVER, COLORADO

OCTOBER 1986

_ . < MAIXTENANCE
FCE NICKEL CALNIUN EATTERY EXEEKT SYSTEM, - N87-20472

VERSICN 1 (Martin Marietta dercspace) 132 p
: CSCL 10C Unclas
G3/33 45235

SECTION 1.

SECTION 2.

SECTION 3.

SECTION 4.

[]
TABLE OF CONTENTS

GENERAL. ¢ it it ittt it ittt et e nsanenenseeesensanaenss 1
1.l PUPPOSE. s it it it it it ettt ettt e e 1
1.2 Project Reference.cuuuuieemeenneeennenas 1
1.3 Terms and Abbreviations.............cciveiune.e.. 1
SYSTEM DESCRIPTION. ...ttt tioeeeeesaenosenanesonenas 2
2.1 System Application............ S, 2
2.2 SecUrity.. ... it ittt aseconeseeeenoneanneeas 2
2.3 NICBES General Description. .. .veeeveeresneeeas. 2
2.4 NICBES Program Description......c.euveeeueennnn.. 2
2.4.1 Data_Handler Description...........ec.... 2
2.4.1.1 datacl.bat..........., 2
2.84.1.2 hst.h. ittt enoeoonennns 4

2.4.1.3 data_hdl.c....uvviviirnnnannn 5
2.4.1.4 read_dat.c........c.iiiiiinnnn.]

2.4.1.5 PpProcess.C.....cceeveicnnacianns 15

2.4.1.6 writ_fil.c.....ivviiiinnuinnnn. 2

2.4.1.7 Interrupt Handler............. 25
2.4.2 Expert System Descrition............... 2B
2.4.2.1 start.prg.....ceciiiiiineninas 27
2.4.2.2 faultd.prg.....ceieverveennn.. 29
2.4.2.3 advice.pPrg......cueiiieeccacena. 30

2.4.2.4 showpak.pPrg.....uoeiveveeoeanens 30

2.4.2.5 grafpaKk.prg...ceeeeeieeneneeenn 31

2.4.2.6 utility.prg....eeeieeiinneenns 31
2.4.2.7 prolog.ini...... i, 32

ENVIRONMENT . . . ittt it ittt e naesosseneensoeenennnsoens 33
3.1 Equipment Enviromment..........cetitiiueinneneenn 33
3.2 SuppOort SoftWaIre. ... it eeetoeteeeostennoenennes 33
3.3 Data Base......ies ettt ecisterneenoeoneoneeees 33
3.3.1 General Characteristics................ 33
3.3.2 Organization and Detailed Description..33
PROGRAM MAINTENANCE PROCEDURES. ... v vttt vt tnetnnnns 36
4.1 ConventionsS....ieesveteeeetoneeenseronsoenneens 36
4.2 Verification Procedures.........cooveeeeeeneses 36
4.3 Error Conditions......ui it ineeeesenosnnennnas 36
4.4 Special Maintenance Procedures...........v.0.. 36
4.5 Special Maintenance Programs..........co0c000.. 37
4.6 Listingsccivvernnnnn cees e s enaasea 3T

TABLE OF CONTENTS CONTINUED

APPENDIX A - Data_Handler Code Listings
APPENDIX B - Expert System Code and Documentation Listings

APPENDIX C - Test Procedures

ILLUSTRATIONS
FIGURE 1 - DATA-HANDLER FLOW DIAGRAM..........iuennn 3
- FIGURE -2 - EXPERT SYSTEM FLOW DIAGRAM............. 000 28

ii

SECTION 1. GENERAL

1.1 Purpose of the Program Maintenance Manual.

The objective for writing this Program Maintenance Manual for project
Nickel-Cadmium Battery Expert System {NICBES), Contract Number
NASB8-35822, 1is to provide the maintenance programmer personnel with the
information necessary to effectively maintain or enhance the system.

1.2 Project References.

NICBES 1is an Expert System for fault diagnosis and advice of the
Nickel-Cadmium Batteries found in the Hubble Space Telescope (HST:
Electrical Power System (EPS) Testbed 1located at Marshall Space Flight

Center (MSFC). NICBES resides on a dedicated IBM-PC AT and operates 1in
two modes. The first mode is the Data-Handler which is written in
MICROSOFT C. The second mode is the Expert System which is written 1in

ARITY PROLOG, a logical programming language. The following documents and
manuals serve as reference materials for NICBES: :
NICBES User’s Manual - September 1986
IBM-PC AT Manuals
ARITY PROLOG Manuals - Version 4.1
MICROSOFT C Manuals

1.3 Terms and Abbreviations.

AHI - ampere hours in

AHO - ampere hours out

bpre - battery protection and reconditioning circuits
cCcC - charge current controllers

DOD - depth of discharge

EOC - end of charge

EOD - end of discharge

EOF - end of file

EPS -~ electrical power system

HST ~ Hubble Space Telescope

MMDA - Martin Marietta Denver Aerospace
MSFC - Marshall Space Flight Center

NICBES - Nickel-Cadmium Battery Expert System
SOW - Statement of Work

SPA - solar panel array

SECTION 2. SYSTEM DESCRIPTION

2.1 Svstem Application.

NICBES was developed as an assistant for engineers working on the HST EPS
Testbed to aid in decision making with regard to the Nickel-Cadmium
Batteries. NICBES analysis depends on the particular testbed

configuration at MSFC, see Figure 1, and the particular Battery
manufacturer.

2.2 Security.
There are no security requirements.

2.3 General Description.

NICBES, as programmed for the IBM-PC AT, a single tasking computer,
requires two independent processes. The first is the Data-Handler which
processes 1incoming telemetry every one minute. Input to the Data-Hundler
comes from the DEC LSI-11 over a RS232 to the IBM-PC AT. Each telemetry
burst contains 370 1integer and floating point values preceeded by the
character ’A’. There are 96 minutes in one orbit. An orbit is composed
of a discharge and charge phase. An orbit starts at the beginning of the
discharge phase and ends at the completion of the charge phase. Once
this process 1is completed (for 12 orbits total), the Expert System of

NICBES <can be run. Input to the Expert System consists of processed data
files output by the Data-Handler. Output from the Expert System includes
fault diagnosis, battery status and advice, plus decision support. Anv

Expert System screen displays can be routed to the STAR-SD-15 Printer for
hardcopy.

2.4 Program Description.
Program Descriptions for NICBES will be given in two sets. First the
Data—~-Handler will be described and then the Expert System.

2.4.1 Data-Handler.

The Data-Handler, writtem in MICROSOFT C, is installed on the IBM-PC AT
according to the procedures listed in the MICROSOFT C Manual. All the
following programs can be found under C:\USR . This is also where they
should be executed. The data output files are also written to this
directory. See Figure 1 for Data-Handler Flow Diagram.

2.4.1.1 datacl.bat

datacl.bat creates the executable for the Data-Handler. It compiles
data___hdl.c, the main control routine, and then links all the other object
files needed. The result is data__hdl.exe which 1invokes the
Data-Handler. The user simply types ’'data_hdl’ from the DOS prompt to
execute the Data-Handler. If changes are made to any of the ’C’
programs, they must be recompiled (’msc filename.c;’) and then relinked
{’datacl’) to <create a new executable. 'printf’ statements used in
development have been left in the programs but commented out. These
statements are can be reinstated for debugging purposes. ’

2

DATA-HANDLER FLOW DIAGRAM

L.f’ BEGIN
. main(}
*-._T_..,/

: /~signalll ™y
INITIALIZE Se"'.’”.“(.g

(_read—initO | y(*read_data())

p et1(} -
READ DATA \ { proc_sync()) 9 COMMUNICATION
t*read_data()‘) proc_head{} ERROR CHECK

proc_bat() | elread_buffern)
proc_solar(} }
g
COMMUNICATION
ERROR CHECK ' 7
. " inempTt) | COUNT ORBITS | !
- -PROCESS DATA
- ~ FOR EOC AND |
FAULT CHECK EVERY M!N |
\ check_fault(}J . y,
' -
T < —
-PROCESS DATA
@i@jggw ALJ > FOR EOD AND
EVERY MIN
| _PROCESS DATA |
FOR EVERY MIN H!N
" IF ERROR, FAULT P -
OR USER SIGNAL FINISH h,' sarrsti) Y
FINISH, ELSE L finish() /] P write_filel) |
_CONTINUE) S— ~ -
‘ " FIGURE 1

3%

ﬁ b_char()
/ time()
— get2() }

“PROCESS DATA
. 1 WRITE FILES
! RE-INITIALIZE

'\ pracess(}

:)

/"~ Yo = \ ¢ write_ f103 ‘\
process_datal) - 3 cases [write_ 710 3
i

!

FFwrite_f1180) - 3 cases |—»{ wf() - 17 cases write_f2(]
df-init1() - 3 cases write_f3{)
N

w -~ ~, S
hidtohid())

!

(move_buffers() j—{ movel) }

2%

2.4.1.2 hst.h

hst.h contains all the header items for the Data—Handler. It starts with
define statements for errors, phases and data files. It also lists the
needed system include files. Last are the structure and matrix
definitions for global arrays.

Define Statements:

SUCCESS 1

FAIL 0]

EOC 2

EOD 3

EVMIN 1

DEFLT -9999.0

SHOWF(N)DAT N where N =1 to 13
CURF(N)DAT N where N = 14 to 16
FAULTDAT 17

Include files:
stdio.h, stdlib.h, process.h and errmo.h

. Global Structure for storing telemetfy run, hid{0] = last run,

hid{1l] = current run.
hid{i].yvear Int i =0 tol
hid{i].day Int col 0 = last telemetry run
hid{i].hour Int col 1 = current telemetry run
hid{i]).min Int :
hidl[i].sec Int
hid[i].orbit Int
hid{i].phase Int 0 if discharge, 1 if charge
hid{i].day_min Int minute in charge phase
hid{i].night_min Int minute in discharge phase
hid[i].batd{j].battno Int j =0 to 5, for 6 batteries
hid[i].batd[j].cellv[k] Real k = 0 to 22, for 23 cells
hid[i].batd[j].cellp(k] Real per battery
hid[i].batd[j].batv Real p => pressure, v => volts,
hid[i].batd{j].batc Real ¢ => current
hid{i].batd(j].bprcc Real batt reconditioning current
hid[i].batd[j}.batemp[k] Real 6 temp sensors per battery
hid[{i].batd[j].batrecond Int int flag for reconditioning
hid[i].spacl[k] Real k = 0 to 12, for 13 SPAs
hid[i].bd{k].busv Real k = 0 to 2, for 3 busses

hid[i].bd[k].busc

The global matrices and arrays which support the data files are
. documented in Appendix A of the code listing for hst.h

4

2.4.1.3 data hdl.c

data__hdl.c is the main driver for the Data-Handler. Following is a
description of all the ’C’ routines in this program (main{}, init::!,
read_init(}!, finish(), sig_catch(), process{() and incomplete() ;.

Identification: main

Function: main is the Data-Handler driver. It controls the program
flow and determines the times for events to happen.

Input: No Input, although argc and argv make it possible to easily
add inputs.

Processing: Keeps track of Orbit and Phase. Controls program flow by
its routine calling sequence.

Output: Error Message written to screen if more than CILIMIT consecutive
incomplete telemetry runs.
Error Message if fault is detected.
Message written to screen at the completion of each orbit.

Local Variables:
orbitno - Counter for number of orbits
err - recieves return from read_data()
phase_signal - EOC, EOD or EVMIN
phasel - phase of previous telemetry run
phase2 - phase of current telemetry run

Global Variables:
EOC, EOD, EVMIN
FAULTDAT
fault|]
FAIL
hid{]

Interfaces: Calls init(), process(), finish{(), sig_catch(), incomplete()
read_dat.c - read_data()
writ_fil.c - wf().

process.c - check_fault()
Error Handling: 1If read_data encounterd an EOF while reading the
telemetry stream, FAIL is returned. If there are

CILIMIT consecutive incomplete rumns, Data-Handler
is shutdown after the fault flag is set to 1.

If a fault was detected the fault flag is set to 1
and the Data-Handler is exited.

Identification:. init

Function: Sets the communication port, initializes interrupt handler,
and calls buffer initialization and read telemetry
initialization routines.

Input: No input.

Processing: No processing.

OQutputs: Error message stating that an EOF was found while reading
the telemetry stream and that the system is shutting down.

Local Variables:

err - receives return value from read_init().
port - communication port
Global Variables: None
Interfaces: Called by main.
Calls system signal() and set_port(), read_init(),
interrupt handler - serini() and process.c - df_init{).
Error Handling: If read_init() returns FAIL, system will shutdown.
Identification: read_init
Function: Initializes telemetry reading to first full orbit.

An orbit starts at the beginning of* the discharge phase.
Input: Novinput.

Processing: Reads the telemetry stream until night_min = 1, start of
discharge phase. This signifies the start of an orbit.
process() is then called to process this first set of data.

Output: Prints message to the screen "Starting first full orbit”.
Local Variables: err - receives return value from read_data().

Global Variables:

FAIL, DEFLT, EVMIN
hid[]

Interfaces: Called by init().
Calls process(), incomplete(),
read_dat.c - read_data().

Error Handling: 1If read_data() returns FAIL, control is passed back to
init() also with a FAIL message.
6

Identification: finish
Function: Exits Data Handler.
Input: No input.

Processing: Ends interrupt handler, writes data output files and calls
exit().

Qutput: No output.
Local Variables: None.

Global Variables: EOC, EOD

Interfaces: Called by main(), init(), sig_catch(), incomplete() or
read_dat.c - get2().
Calls writ fil.c - write_file(), system exit()
and interrupt handler - serrst().

Error Handling: None.

Identification: sig_catch

Function: Catches ’"C’ signal input by operator to halt Data-Handler.
Input: User signal inpuf [oA

Processing: No processing.

Output: Writes message to screen, "Interrupt caught; exiting!"

Local Variables: None.
Global Variables: None
Interfaces: Calls finish().

Error Handling: None.

Identification: process
Function: Calls the routines necessary to process the telemetry.

Input: phase_signal - EOC, EOD or EVMIN
orbitno - 0 to N, N is the number of orbits.

Processing: No processing.
Output: No output.
Local Variables: None.

Global Variables: None.

Interfaces: Calls process.c - process_data(), df_initl(),
writ_fil.c - write_file().
Error Handling: None.
Identification: incoﬁplete()
Function: Checks for CILIMIT number of consecutive incomplete telemetry
bursts.

Input: None.

Processing: If there are CILIMIT consecutive incomplete telemetry runs
fault flags are set, fault.dat is written and finish(} is
called.

Output: Error message.

Local Variables: None.

Global Variables:

CILIMIT - Limit for consecutive incomplete telemetry runs
conseq_incmplt - counter for incomplete telemetry bursts
FAULTDAT
fault[]

Interfaces: Called by main() and read_init().
Calls finish() and writ_fil.c - wif().

2.4.1.4 read dat.c i
read__dat.c is the routine which reads the telemetry from the interrupt
handler buffer. Following is a description of all the ’C’ routines in
this file (read__data{), proc__sync(), proc__head(), proc_bat{}, proc
solar(), read_buffer(), getl() and get2()).

Identification: read_data
Function: Read telemetry from DEC LSI-11 over RS232 every 1 minute.

Input: No input, however telemetry from HST EPS Testbed, 370 values
preceded by ’A’, is utilized.

Processing: Calls routines to read telemetry.

Output: Returns FAIL or SUCCESS.
Telemetry is placed in structured arrary hid[1l)] for later
processing. A description of the structure of hid follows:

Local Variables err - return value from proc_head(), proc_bat({(),
proc_solar().

Global Variables:
TILIMIT, TZ2LIMIT
buf[] - intermediate character storage array.
count - keeps count of data values per telemetry burst.
FAIL, SUCCESS

Interfaces: Called by main().
Calls proc_sync(), proc_head(), proc_bat(), proc_solar().

Error Handling: If proc_head(), proc_bat() or proc_solar() return a
FAIL, reading is stopped and control is returned to the
read_data() call in main().

Identification: proc_sync
Function: Synchronize reading data to start of telemetry burst.
Input: No input, but uses telemetry burst, first character is ’A°’.

Processing: Checks input characters until character A" is found.
Also checks for a shutdown signal from the DEC LSI-11.

Qutput: Can write message to screen "Sync Received!'!”
Can write message to screen "Received shutdown signal from
DEC LSI-11'"

Local Variables:
cc -~ character found in the interrupt handler’s buffer.

Global Variables:
fault[]
FAULTDAT

Interfaces: Called by read_data().
Calls data_hdl.c ~ finish{), writ_fil.c - wf(),
getl() and get2().

Error Handling: Error Message if shutdown signal from DEC LSI-11.

Identification: proc_head
Function: Read header data from input buffer.
Input: No input, but uses telemetry stream.

Processing: Read header data from input buffer into buf{]. Use sscanf
to put characters into integer format.

Output: Integer header data put into global structured array hid{1l].
Returns FAIL or SUCCESS.

Local Variables err - return value of read_buffer().

Global Variables:
FAIL, SUCCESS
hid[]
buf{]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_head() stops and
returns FAIL to read_data().
10

Identification: proc_bat
Function: Read battery data from input buffer.

Input: No input, but uses telemetry, 57 values for each of the 6
batteries.

Processing: Read battery data from input buffer into buf{l. Use sscanf
to put characters into integer and floating point format.

OQutput: Integer and real battery data put into global structured array
hid{1l]. Returns FAIL or SUCCESS.

Local Variables err - return value from read_buffer().

Global Variables:
FAIL, SUCCESS
hid(]
buf{]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_bat(’ stops and
returns FAIL to read_data().

Identification: proc_solar

Function: Read SPA and bus data from input buffer.

Input: No input, but uses telemetry, 13 SPA and 6 bus values.

Processing: Read SPA and bus data from input buffer into buf[]. Use
sscanf to put characters into floating point format.

Output: SPA and bus data put into global structured array hid[1l].
Returns FAIL or SUCCESS.

Local Variables err -~ return value from read_buffer().

Global Variables:
FAIL, SUCCESS
hid[]
buf]

Interfaces: Called by read_data().
Calls read_buffer().

Error Handling: If read_buffer() returns a FAIL, proc_solar() stops and
returns FAIL to read_data().
11

Identification: read_buffer
Function: Puts characters from interrupt handler buffer into bufi!.
Input: k is the actual number of telemetry values to be read.

Processing: Get next character in interrupt handler buffer, this
includes newlines and <CR>s. Characters are put in buf{!.

OQutput: Returns found characters in buf[] to calling routine.
Returns FAIL or SUCCESS.

Local Variables nl_count - counts telemetry values read by counting
newlines.

Global Variables:
count
buf]
EOF
FAIL, SUCCESS

Interfaces: Called by proc_head(), proc_bat(), proc_solar().
Calls getl().

Error Handling: If EOF is encountered while reading the telemetry

stream, read_buffer() is stopped and FAIL is returned
to the calling routine.

12

Identification getl{)

Function: Reads characters from interrupt handler buffer during
telemetry burst.

Input: None.

Processing: Gets characters from interrupt handler buffer. Checks

time and count to insure complete telemetry runs are read.

Output: Returns EOF or character.

Local Variables:

cc - character read from interrrupt handler buffer.
t0 - start time for timer.

tn - current time

timer ~ difference between tn and tO.

Global Variables:
count
EOF
TILIMIT - maximum time to wait for next character

Interfaces: Called by read_buffer() and proc_sync().
Calls interrupt handler b_char().

Error Handling: If a character is not read within a given time 1limit

it is assumed to be an incomplete telemetry burst.
Passes EOF back to read_buffer().

13

[$%]

)

Identification get

Function: HReads characters from interrupt handler buffer at the start
of a telemetry run.

Input: . None.

Processing: Gets characters from interrupt handler buffer. Checks
time to insure the beginning of telemetry is read within
T2LIMIT time limit.

Output: Returns character. Writes Error Message if time limit exceeded.

Local Variables:

cc — character read from interrrupt handler buffer.
t0 - start time for timer.

tn - current time

timer ~ difference between tn and tO.

Global Variables:

EOF

T2LIMIT - maximum time to wait for next character
fault[]

‘FAULTDAT

Interfaces: Called by proc_sync().
Calls interrupt handler b_char().

Error Handling: If a character is not read within a given time limit
it is assumed that a telemetry run is missed.
Sets fault flag to 1, writes fault.dat, writes Error

Message "No communication in 3 minutes; exiting!", and
exits.

14

2.4.1.5 process.c
process.c processes the current telemetry which has been stored in hid_]

by read__ dat.c. Following 1is a description of all the ’C’ routines in
this file (df__init(}, df__initl(), hidtohid(), move_buffers(}, movel;,
process_data(), check_fault()).

Identification: df_init

Function: Start up initialization counters and globally defined

structures, matrices and arrays.
Input: No input, but uses globally defined structures and arrays.
Processing: Sets counters, matrices and arrays to 0 or DEFLT.
Output: No output.
Local Variables: None.

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
. no_druns - number of discharge runs in an orbit.
no_cruns - number of charge runs in an orbit.
fault{]
FAULTDAT
DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage(6,12)
high_buffer {6}
showf3.dat rc_ratio(6,12)
ahi(6)
ahoo(6)
showfd4.dat cv_eod_hv(6,12)

cv_eod_1lv(6,12)
cv_eod_av(6,12)
showf5.dat cv_hc_hv(6,12)
cv_hc_1lv(6,12)
cv_hec_av(6,12)

- showf6.dat cellv_eod(6,12;
showf7.dat cellv_hc({6,23)
showfB.dat avgt(6,48)
showf9.dat avg_temp(6,12)

avg_temp_buffer(s)
showfl0.dat cp_eod(6,23)
_ cp_eoc(6,23)
showfll. dat time_tc(6,12)
. trickle(6)
showfl2.dat rc_orbit(6)
bc_drc(6,48)
showf1l3.dat aho(6,12)

curf2.dat batt_avg(6)
. 15

i
Interfaces: Called by data_hdl.c - init{().

Error Handling: None.

Identification: df_initl

Function: After each telemetry burst is read, certain counters,
structures and arrays used for processing need to be
re—initialized. There are 3 cases - EOC, EOD or EVMIN,

Input: phase_signal - EOC, EOD or EVMIN. Also uses globally defined
structures, arrays and matrices.

Processing: Sets counters, variables and arrays to 0 or DEFLT (-9999.).

Output: No output.
Local Variables: None.

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
no_druns - number of discharge rumns in an orbit.
no_cruns - number of charge runs in an orbit.

EOC, EOD, EVMIN

DATA FILE CORRESPONDING BUFFER
showf2.dat high_buffer(6)
‘ showf3.dat ahoo(6)
ahi(6)
showf6.dat) cellv_eod(6,12)
showf7.dat cellv_hc(6,23)
showf8.dat avgt(6,48)
showf9.dat : avg_tenmp_buffer(6)
showfl0.dat cp_eod(6,23)
cp_eoc(6,23)
curf2.dat batt_avg{6)

Interfaces: Called by data_hdl.c - process.

Error Handling: None.

16

Identification: hidtohid
Function: After each telemetry burst is read and processed, the data
in hid{1l] is put in hid{0] to prepare for next data burst
which will be stored in hid[1].
Input: No input.
Processing: Puts hid[1l] column into hid{0] column.
Output: No ocutput.
Local Variables: None.
Global Variables:
hid[]
DEFLT
Interfaces: Called by df_initl().

Error Handling: None.

17

Identification: move_buffers

Function: Prepares the globally defined matrices for move(}.
The affected matrices are those associated with data files
containing data for 12 orbits. When more than 12 orbits
have been processed, the arrays need to be shifted so that
they contain the only the last 12 orbit’s data.

There are two cases - EOC and EOD.
Input: phase_signal - tells whether charge or discharge phase.
Processing: Prepares matrices and then calls move().

Output: No output.
Local Variables None.

Global Variables:

EOC, EOD

DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage(6,12)
showf3.dat rc_ratio(6,12)
showfd.dat cv_eod_hv(6,12)

cv_eod_1v(6,12)
cv_eod_av(b6,12)
showf5.dat cv_hc_hv{6,12;
cv_hc_1v(6,12)
cv_hc_av(6,12)

showf9.dat avg_temp(6,12)
showfll. dat time_tc(6,12)
showf13.dat aho(6,12)

Interfaces: Called by process_data().
Calls move().

Error Handling: None.

18

Identification: move

Function: When the Data-Handler continues after 12 completed orbits,
the 6x12 matrices must loose their first column, the remaining
data must be shifted one column to the left and the next
orbit’s data will be put in the 12th column. You hence alwavs
have the latest 12 orbits.

Input: buffer[] to be moved.

Processing: Shift columns in buffer one column to the left, dropping the
first column. Set the 12th column to DEFLT (-9999.).

Output: No output.

Local Variables: None.

Global Variables: DEFLT - default value = -8899.0.

Interfaces: Called by move_buffers().

Error Handling: None.

Identification: process_data

Function: 96 minutes of telemetry making up each orbit, are summarized
mathematically in preparation for writing the data to output
files. There are 3 cases - EOC, EOD and EVMIN. ‘

Input: phase_signal - EOC, EOC or EVMIN.

orbitno - 0 to N, where N is the number of orbits.
Processing: Data is prepared for showf(n).dat, n = 1 to 13
and curf(n), n = 1 to 3. Following, in Section 3.3.2 on

data bases, a description is given of each data file’s
functional requirements.

Output: No output.

Local Variables:

col - 0 to 11, matches orbit to column number of matrices.
sum - variable used to sum 6 temperature sensors per battery.
avg - sum / 6 to give average temperature of battery per min.
current_min - sum of night_min and day_min.

Jj - flag to do processing on even minutes.

x1 -~ used to find maximums.

%2 - used to find minumums.

x3 - used to find averages.

x - miscellaneous variable.

19

Global Variables:

DEFLT - default value = -9999.0. Signifies missing data.
no_druns - number of discharge runs in an orbit.
no_cruns ~ number of charge runs in an orbit.
DCHGLIMIT - necessary number of discharge runs per orbit.
CHGLIMIT - necessary number of charge runs per orbit.
DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat hc_voltage{6,12)
high_buffer(6)
showf3.dat rc_ratio(6,12)
ahi(6)
ahoo(6)
showf4.dat cv_eod_hv(6,12}

cv_eod_1v(6,12)
cv_eod_av(6,12)
showf5.dat cv_he_hv(6,12)
cv_hc_1v(6,12)
cv_hc_av(6,12)

showfB.dat cellv_eod(6,12)
. showf7.dat cellv_hc(6,23)
showf8.dat avgt(6,48;
showf9.dat avg_temp(6,12)
avg_temp_buffer(6;
showfl0.dat cp_eod(6,23)
) . cp_eoc(6,23)
showfll.dat time_tc(6,12)
trickle(8)
showfl2.dat rc_orbit(6)
bec_drc(6,48)
showf13.dat aho(6,12)
curf2.dat batt_avg(6)

The indented buffers are working arrays which support the
main arrays. The data files followed by blanks require no
processing but directly use telemetry from hid{1l].

In addition process_data determines if it is necessary to
call move_buffers and keeps count of number of charge and
discharge runs per orbit.

Interfaces: Called by main().
Error Handling: Checks that no division by zero occurs.
Checks that enough charge and discharge runs have been

recorded to validate the processed data. Else DEFLT is
. left in the global matrices and process{() stops.

20

Identification: check_fault ()
Function: Detects faults in telemetry.

Input: No Input.

Processing: There are four fault categories that are checked:
1. Power Supplies
a. SPA current 5 amps during first 5 minutes of charge phase.

{

b. SPA current »>=
SPA current >=

c. SPA current >

8 amps for 1-SPAs (1,3,5,7,9,11).
16 amps for 2-SPAs (2,4,6,8,10,12,13).
5 amps during discharge phase.

2. Batteries
a. Cell voltage <= 0 volts for any cell in any battery.
b. Cell voltage > 1.55 volts for any cell in any battery.

3. Load Banks
a. Sum of 3 bus currents > S99 amps.

b. Load < 5 amps on any single bus during discharge phase.
4. Temperature
a. Average of the 6 temperature semnsors > 25 C or < ~10 C.

Output: Returns FAIL or SUCCESS
Local Variables:
x - miscellaneous floating point number.
sum - sum of various arrays.
GlobaI.Variables:
FAIL, SUCCESS
hid[]
Interfaces: Called by data_hdl.c - main().

Error Handling: Returns FAIL if fault found, SUCCESS if not.

21

2.4.1.6 writ fil.c

writ__fil.c <contains the ’C’ routines needed to write the processed data
buffers to output files. Following 1is a description of all the ’'C’
routines in this file <{(wf(), write__ fl{), write_f2{),write_f3(), write
file() ;.

Identification: write_file

Function: Determines which data files should be written. There are 3

cases - EOC, EOD or EVMIN.
Input: phase_signal - EOC, EOD or EVMIN.

Processing: According to the time, wf is called to write the data
output files. Following is a time chart:

TIME DATA FILES
EOC showf2.dat
showf3.dat
showf5.dat
showf6.dat
showf7.dat
showfB.dat
showf9.dat
showfll.dat
showfl2.dat
EOD showfl.dat
showf4.dat
showfb6.dat
showfl0.dat
statfl.dat
EVMIN curfl.dat
curf2.dat
curf3.dat

fault.dat is written initially with fault flag = 0, and then
only after fault flag is set to 1.

Output: Error message is written to the screen
"Couldn’t open ’filename’!'".

Local Variables: err - return value from wf({).

Global Variables:
EOC, EOD, EVMIN
SHOWF (N)DAT for N
CURF (N.)DAT for N

1 to 13
1 to 3

22

Interfaces: Called by data_hdl.c - process() and finish{).

Calls wf().
Error Handling: If a data file can not be opened, a message is written
to the screen. No other action is taken.
Identification: wf

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry. There
is a case statement for each data file.

Input: Name of the data file to be written.

Processing: Open output files, write processed data from matrices in
list format, then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables:
err - return value from write_fl(), write_f2{(), write_f3(:
sfp - output file pointer. :

Global Variables:
SHOWF(N)DAT for N
CURF(N)DAT for N
FAIL, SUCCESS

1 to 13
1 to 3, and FAULTDAT

0w

hid[]

DATA FILE CORRESPONDING BUFFER
showfl.dat eod_voltage(6,12)
showf2.dat he_voltage(6,12)
showf3.dat rc_ratio(6,12)
showf4.dat cv_eod_hv(6,12)

cv_eod_1lv{6,12)
cv_eod_av(6,12)
showf5.dat cv_hc_hv(6,12)
cv_hec_1lv(6,12)
cv_he_av(B,12)

showfb6.dat . cellv_eod(6,12)
showf7.dat » cellv_hc(6,23)
showf8.dat : avgt(6,48)
showf9.dat avg_temp(6,12)
showfl0.dat cp_eod(6,23)
cp_eoc(6,23)
showfll.dat time_tc(6,12)
showfl2. dat rc_orbit(6)
bc_drec(6,48)
showfl3.dat aho(6,12)
curf2.dat batt_avg(6)

23

Interfaces: Called by write_file(},
data_hdl.c - main(), incomplete(),
read_dat.c - get2()..
Calls write_fl(), write_f2(), write_f3¢(),
system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.

Note: List format means that data is contained in brackets and separated
by commas. A main list holds all the sublists and ends with a
peroid. Following is an example for showfl.dat:

show(l,{[al,bl,cl,dl,el,fl,gl,hl,11,j1,kl,11],

{a2,b2,c2,d2,e2,T2,82, .0t viicnnns 1,
=0 7 1,
= T I 1,
(88, i ittt ettt eieeeecasaosceesnanasas 1,
(BB, ittt ittt et tssatnoeronnnsas 1)
In this example there are 12 columns, one per orbit. Orbital data is

. listed in chronological order.

Identification: write_f1

~

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry.

Input: filename, buffer and file number to be written to output file.

Processing: Open output files, write processed data in list férmat,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables file -~ output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf() for showfl, showf2, showf3, showf9, statl.
Calls system fopen(), fclose{() and fprintf().

Error Bandling: Returns FAIL if data file can not be opened.

24

Identification: write_f2

Function: Write output files for Expert System from globally defined
matrices and arrays containing summarized telemetry.

Input: filename, buffer and file number to be written to output file.

Processing: Open output files, write processed data in list format,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables: file - output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf() for showf4 and. showf5.
Calls system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.
Identification: write_f3
Function: Write output files for Expert System from globally defined

matrices and arrays containing summarized telemetry.
Input: filename, buffer and file number to be writtem to output file.

Processing: Open output files, write processed data in list format,
then close output file.

Output: Data files to be used by the Expert System.
Returns FAIL or SUCCESS.

Local Variables: file - output file pointer.
Global Variables: FAIL, SUCCESS

Interfaces: Called by wf{) for showf6 and showf7.
Calls system fopen(), fclose() and fprintf().

Error Handling: Returns FAIL if data file can not be opened.

25

2.4.1.7 Interrupt Handler
The Interrupt Handler takes over control of the IBM poling technique for

receiving data over a communication net. Instead each incoming character
is retrieved in a buffer which <can be accessed by the Data-Handler
programs. This is to insure that the telemetry is read accurately and not

written over.

These are the programs needed:
serial.c and serial.obyj
com_cfns.c and com_cfns.objj
com_fns.asm and com_fns.obj
serset.asm and serset.obj
fixup.asm and fixup.obj

Functions directly called from the Data-Handler are:
data_hdl.c - init() calls serini()
- finish() calls serrst()
read_dat.c ~ getl() calls b_char()
get2() calls b_char()

Include files required are:
serial.h
entry.h
asment.h
asmexit.h
sasment.h
sasmexit.h

26

2.4.2 Expert Svstem.

The Expert System 1is writtenm in ARITY PROLOG which is installed on the
IBM-PC AT according to the procedures listed in the ARITY PROLOG Manual.
All the following programs can be found under C: PROLOG. This is also
where they should be executed. The set of data files to be used for the
Expert System analysis need to be copied to C:\PROLOG. Unlike the ’C’
programs, the PROLOG programs of made up of many predicates and control is
implemented by predicate <calls to other predicates. In a way this 1is
similar to subroutines at a smaller level. The programs have been grouped
to be modular. See Figure 2 for Expert System Flow Diagram.

2.4.2.1 start.prg

Identification: start

Function: Main control routine for the Expert System. It calls other
segments of the Expert System via the utilization of user
menus.

Input: fault.dat, curfl.dat and user responses to menus.

‘ Processing: First fault.dat is checked to see if the fault flag has been
set to 1. If so, faultd.prg is called to perform fault
diagnosis. The user can then opt for more information.

In this case or if no fault, the Main Menu is written to

the screen from which the user can select from Plots and
Graphs, Battery Status or Advice. Next the user is asked

to select Battery.

Control is passed to one of the above 3 choices with the
selected Battery. Further menus are shown for Plots and
Graphs and for Advice. The user can always opt for another
Battery selection or to Quit to the Main Menu where they can
opt to Quit NICBES.

OQutput: Menus and contrel parameters which are passed to other
portions of the Expert System telling what the user’s choices
are in response to menus, and which Battery to view.

Interfaces: Invoked by prolog.ini, the PROLOG initiation program.

Start calls functions in faultd.prg, status.prg, advice.prg,
showpak.prg and utility.prg

27

@® FEXPERT SYSTEM FLOW DIAGRAM

FROLOG.INI

SYSTEM INITIALIZATION

A J
CONTROLLER AND

FAULT DIAGNOSIS

DECISION SUPPORT

SHOWPAK.PRG

G

RAPHICS SUPPORT]
GRAFPAK.PRG

MENU INTERFACE FAULTFLAG = 1 ALLTD PRG
START.PRG :
| I |
v v v |
BATTERY STATUS BATTERY ADVICE |
STATUS.PRG ADVICEPRG |
h 4
PROGRAM SUPPORT
UTILITY.PRG
FIGURE 2

28

18

.4.2.2 faultd.prg

Identification: faultd
Function: Perform fault diagnosis for the HST EPS Testbed.
Input: curf2.dat and curf3.dat

Processing: Five conditions are checked to determine the source of the
fault. See faultd.doc in Appendix B.

. Output: Output is in the form of screen report detailing the fault
cause(s) and advising on correctional procedures.

Interfaces: Called by start.prg - fault_diag/O0.

2.4.2.3 status.prg

Identification: status
Function: Status analysis is performed for Batteries 1 to 6.

"Input: Battery number (Bat), showf3.dat, showf4.dat, showfB.dat,
showfl1l3.dat

Processing: Status checks reconditioning flag first. If battery is
being reconditioned status stops because data would be
misleading. If not, temperature, workload, charging
scheme and divergence are checked using averages which are
compared to thréshold values. See status.doc in Appendix B.

Output: Output is in the form of a screen report detailing the
condition of the battery with respect to the above checks.

Interfaces: Called by start.prg - battery_status(Bat).
Calls functions in utility.prg.

29

2.4.2.4 advice.prg

Identification: advice

Function: Advice uses trend analysis for voltage, recharge ratio,
temperature and divergence to give further detail on three
subjects: whether a battery needs reconditionin, changes in

charging scheme or changes in workload.

Input: Battery number (Bat), Advice Menu Choice (1 to 3), showfl.dat,
showf2.dat, showf3.dat, showf5.dat, showf9.dat and showfl3.dat.

Processing: Depending on the Choice, data files are read, trends are

derived using the difference of two weighting functions and

deviation factors. These trends are then compared to

conditions to tell whether a battery needs to be changed.
Explanations are given to back up the resulting diagnosis.
See advice.doc in Appendix B..

Output: Output is in the form of a screen report detailing Battery
Advice and explanations.

Interfaces: Called by start.prg - advice(Bat,Choice).
Calls functions in utility.prg.

2.4.2.5 showpak.prg

Identification: showpak

Function: Decision Support portion of the Expert System providing
12 Plots to the user for each battery.

Input: Plot (N), Battery Number (Bat), Orbit number (Orbit),
showf#.dat (# from 1 to 12).

Processing: Data from the appropriate data file, for the appropriate
Battery is read. The data structure show/1ll, containing
the parameters needed for plotting, is called.

See showpak.doc in Appendix B.
Output: Plotting parameters are passed to grafpak.prg

Interfaces: Called by start.prg - show_view(N,Bat,Orbit).
Calls functions in grafpak.prg and utility.prg.

30

2.4.2.6 grafpak.prg

Identification: grafpak

Function: Draws to the screen the any of the 12 available plots,
per battery.

Inputs: List of points to be plotted and all plotting parameters
including captions.

Processing: Uses graphics primitives to draw plots\on the screen.
Plots have X and Y axes, title, header and points displayed
in color and symbol. Missing data and data out of range are
also displayed. See grafpak.doc in Appendix B for more
details and start.doc for a listing of the graphs.

Outputs: Plots drawn to the screen.

Interfaces: Called by showpak.prg - graphplus/6 and plot/S8.
Calls functions in utility.prg

2.4.2.7 utilityv.prg

Identification: utility

Function: Collection of miscellaneous Prolog functions used by one or
more of the Prolog routines.

Inputs: Parameters are passed for the particular function call.

Processing: Depends on the function call. See utility.doc in Appendix B
for detailed description of the functions as well as built-in
Arity functions. Details on the handling of data files 1is
also described there.

Outputs: Sends requested values back to the calling function.

Interfaces: Called by start.prg, faultd.prg, status.prg, advice.prg,
showpak.prg, grafpak.prg.

31

2.4.2.8 prolog.ini

Identification: prolog.ini

Function: Consults the programs needed to run the Expert System
Inputs: No inputs.

Processing: start.prg, faultd.prg, status.prg, advice.prg, showpak.prg

grafpak.prg and utility.prg are loaded at the initiation of
Prolog, when the user enters ’api’ at the DOS prompt.

All data files are copied to the NICBES directory.

The currenet data files and fault.dat are also loaded.

The Expert System is then called into operation.

Outputs: No output.

Interfaces: No interfaces.

32

SECTION 3. ENVIRONMENT

3.1 Equipment Environment.
The following computer equipment is needed for the execution of NICBES:
DEC LSI-11

RS232 cable connector

IBM-PC AT

STAR-SD-15 Printer

3.2 Software Support

The following computer software is needed for the execution of NICBES:
DOS (IBM’s operating system)

MICROSOFT C

ARITY PROLOG - Version 4.1

3.3 Data Base
The following paragraphs will detail the data base utilized by NICBES.

3.3.1 General Characteristics.

As NICBES is actually two systems, a data base description will be given
for each.

First for the Data-Handler whose data base consists of telemetry, received
and processed every one minute. This dynamic data base is not stored, but
condensed and summarized by performing mathematical operations. The final
historical data will be written +to files for use by the Expert System.
The only 1limitations for the telemetry are time constraints and reading
and writing validity.

The data base for the Expert System consists of the data output files
written by the Data-Handler. These files are static and should not be
modified. However, they can be stored in uniquely referrenced locations
for later review.

3.3.2 Organization and Detailed Description.
Telemetry for the Data-Handler:

Start of Telemetry Burst

A

Header Information (Integer)

1. year

2. day of year - 198X

3. hour - 0 to 24

4., minute - 0 to 60

5. second - 0 to 60

6. orbit - Positive Integer

7. phase - 0 for discharge, 1 for charge

8. day minute (minute in charge) - 0 to 70

9. night minute (minute in discharge) - 0 to 37

33

Battery Information (for each of 6 batteries)
10 - 351, 37 values for each battery

battery number Integer 1 - 6

cell voltage 23 Reals -2 to +2 volts
cell pressure 23 Integers 0 to 150 psi
battery voltage Real 0 to 40 volts
battery current Real -30 to +25 amps

negative for discharge phase
positive for charge phase

bprc current Real 0 to 5 amps
temperature sensors 6 Reals ~15 to 30 {(degrees C}
battery reconditioning Integer 0 for no, 1 for yes

Miscellaneous Information

352 - 364 Solar Array current 13 Reals 0 to 20 amps
365 - 367 Bus Voltage 3 Reals 0 to 40 volts
368 -~ 370 Bus current 3 Reals O to 90 amps

Reals are five place floating point numbers. Each telemetry value is
sent one per line with an associated new line and carriage return. 270
values are sent every one minute, 96 minutes per orbit.

Data Files for the Expert Svstem:

All data files are written in list format. All the show files have ©
lists, one for each battery. All the data files are loaded into the
PROLOG Expert System as facts. See documentation in Appendix B for
details.

fault.dat - Contains a fault flag l1 if there was a fault

0 if no fault was detected.

curfl.dat Contains the current orbit number and
a reconditioning flag for each battery = 1 for reconditioning

0 no reconditioning.

curf2.dat

Contains Phase (charge or discharge)
Day_min
Current from 13 SPAs (Solar Panel Array)
Current from 3 Busses
Average Temperature for 6 Batteries

curf3.dat

Contains 6 battery cell voltages (23 per battery)

showfl.dat - File contains battery voltage at EOD for last 12 orbits, in
chronological order.

showf2.dat - File <contains the battery voltage during high in-charge
period, last 12 orbits.

34

showf3.dat - File <contains the recharge ratio = AHO/AHI per orbit for 12
orbits.
showfd.dat - File contains cell voltages at EOD, with the high value, low

value and average of all values, in this order for each of the last 12
orbits

showf5.dat - File contains «cell voltages at high-charge; high, low and
average of all values, order H,L,A, for each of last 12 orbits, per
battery.

showf6.dat - File contains 23 cell voltages at EODP for each battery, from

the latest orbit.

showf7.dat - File contains 23 cell voltages at high-charge for each
battery, from latest orbit.

showf8.dat - File <contains the averages of the six temperature sensors
(degrees C), at two minute intervals over the latest orbit. The first
value in this file is the minute into orbit, followed by the temperature
readings for the batteries.

showf9.dat - File contains the average battery temperatures per orbit for
the last 12 orbits.

showfl0.dat - File <contains the 23 cell pressures taken at EOC and then
EOD for each battery in the last full orbit.

showfll.dat - File —contains the time on trickle charge for each battery
from last 12 orbits.

showfl2.dat - File contains battery current during reconditioning, at
2-minute 1intervals, for last reconditioning of each battery. It is
recorded every 2 minutes, only when battery reconditioning is 1 and only
for one orbit. The file contains zeroes until a battery is reconditioned.

showfl3.dat - File contains AHO summed at EQOD over last 12 orbits.

35

SECTION 4. PROGRAM MAINTENANCE PROCEDURES

4.1 Conventions.

Each routine in the programs comprising the Data-Handler have headers as

well as code documentation. The Expert System files are documented in

separte files having the same name as the Prolog program but with ’doc’ as

their extension.

a. Conventional extensions to file names are designed as nmemonic
identifiers (file and variable names) based upon descriptive
abbreviations of function title.

c ’C’ programs

obj object files

exe executable files
asm assembler programs
prg Prolog programs
dat data files

doc document files

b. Refer to SAMSO EX 2.3.3 and MIL-STD-847 (Documentation).

4.2 Verification Procedures.

Any enhancements added to the Data-Handler should be verified by checking
the data output files. It is always wise to test the changes on a small
test case before running the whole procedure. One enhancement that could
be made is to increase the error checking on incoming telemetry so that
faults could be detected directly from the Data-Handler. Another
enhancement would be to check the ranges on each telemetry value as it 1is
read in.

Changes to the Expert System logic would have to be verified by a Nickel

Cadmium Battery 'expert’ for validity. These could include changes to the
deviation factors, threshold variations and adding conditions to be
checked. Enhancements to the screen displays can obviously be checked by

running the Expert System and viewing the screen.

The Test Procedures 1listed in Appendix C will give you a baseline upon
which to verify any changes.

4.3 Error Conditions.

There are no special provisons for operating system errors. Procedures to
take at such instances would include rebooting the IBM-PC AT, checking to
see that all files are intact and starting the NICBES system again.

4.4 Special Maintenance Procedures.

Data files written by the Data-Handler need to be archived for later use.

One way of doing this would be to create a data directory at the root.

Then for each set of data files created, a sub-directory could be created

into which the data file set could be copied. This sub-directory can then
be referrenced by location and time. A command file - data.bat, has been
written for just this purpose. It is located in C:\USR. To run data.bat
simply enter data directory-name <CR>’., The directory-name can be a

date as 01-16-87 for later referencing.

36

It 1is also wise to make periodic backups of the NICBES system as well as
the accumulated data. There is no need to backup the MICROSOFT C
directories iexcept C:\USR) or the ARITY PROLOG files as these can alwayvs
be re-installed from their original disks.

4.5 Special Maintenance Programs.
There are no special maintenance programs.

4.6 Listings.

All NICBES program 1listings will accompany this Maintenance Manual. The
'C’ programs are documented internally while the Prolog programs are
documented in files with the same name as the Prolog routine but with
*doc’ as their extension. APPENDIX A contains the Data—~Handler listings.
APPENDIX B contains the Expert System listings.

37

APPENDIX A

DOCUMENTED CODE LISTINGS FOR THE DATA-HANDLER

ORIGINAL PAGE IS
OF POOR QUALITY

HST. H

fa-Harcd Ler

S Define Da O

L i

Ea o Iz
EOD =
EVMIN 1
DEFLT ek Aok

Migming

SHOWF1DAT 1 /¥

MNumbers

Hode f ine
Hodes f e
#defines
#odef ines
#define
: fine
ine

#ode
#ode f ins
#odat ine
#odefins

SHOWF2DaT =2

SHOWF3DAT
SHOWF4DAT
SHOWFSDAT
SHOMWFEDAT
SHOWFZDAT
SHOWFZDAT
SHOWFSDAT
SHOWF 1LODAT
SHOWF 11DAT

SHOWF 12DAT 12
SHOWF L3EDAT 13
CLURF1DAT 14
CURFZDAT 15
CURFIEDAT 1
FALLLTDAT e

(stdio.h> /o
Hine lude Carrno.hy

#inc Lude (stdlikb. b

¥include {(process.h}

#ime lude {time ki

#Hinclude {zignal . h>

Incliude il

S dkk Structures for HST

incomming data file

bati {
battno;
cellv(23];
cellp(23];
Aty
hato;

boroo

L. 2

struct

g
int

Battery Numiber #/
Cell Vol
Cell Pra:)
Fattery Yoltags w7
baattery Ourrant &
BPRC Curvrent d 7

[S S T e S
T GREY Y T

-~

o
batemp [6]

;
batrecond;

T oy ruisey &
P e

. S T S S, S

Reconditioning®/

i-1

ORIGINAL PAGE IS
OF POOR QUALITY

ot s S OBus data w7

float b1l Ik voltage # 7
Float IRt JE Bus Current # 4
sty b et i A OHET Incomming Data 4 4

int VEAY ; JE Year

int day A Day

int Froar s S Hour .

int MiLr g S Minutes

int SECs S Seconds

int orbit; S Orbit#

int phase; /# Phase=0 if night

V& =1 if davy

inmt day _min; A¥ Min into charge perolds/

irt nlth mln /% Min into discharge " #/

ot /% Battery Data *

Float J* SPA Current &
atruct J# Bus info for three bus

dhidiaz] s

’,f’ﬁ'rf Show File#1 {12 orbits for a battery and for
Float pod_voltage[&][12]: /4 Yoltage talken
f*ifnl“1T=w & batterls
"
:

tpcatad when pha chanages

from O to 1

Show File#2(12 orbits for a battery and for & batteries) +/
e _voltagel{e][12]1; A% Max Batt voltags taken for
high_buffer[e]; ¥ orbits, & batteries during :

phase 1. To be updated when #/

/% phase changes from 1 to O * /

¢z
o

*: Show File#3(12 orbits for a battery and for ¢ batteries) #/
loat FC_thlO[&][lZJ; /* Recharge Ratio for 12 orbits,*/
loat ahool&]; /4 & batteries. Sum of battery #/
float ahile]; ' J* current during phase 1 !
A% divided by sum of battery
S curvent during phase 0. It
A ods always > 1. Updated when
/% phase changes from 0 to 1

F
i

Show File#d

..,r’ K3
float

Ahvow Fil
ocv_ho
cv _hao
ov b

File#e
ellv_eod[&][23

Show

“s

Show Fille#7
cellv_ho

cfell23];

Show File#%
avg_temp[s][12];

avg_temp_buffer[&];

Show File#l0
cp_eod[&]1023
<3 [e1{23

wr A

/#E
/#
/o

ORIGINAL PAGE I8
OF POOR QUALITY

Cell Voltage for & batteyries
1loulate h)ﬁh Low and ave
ot of 23 whiesry o

changes

Calcula
out of 23
1, at high—-charc
update whsn
from 1 to O.

te hiahlh, low and avyg
P eells during phase

a. To be

changes

e
Cell Voltage taken at EOD. *
To ke updated when phass &/
changes from Q to 1. *®7

Cell voltage taken during
phase 1 at high-charge.

To pe updated when phase
change from 1 to 0O &/

avg temperature talkern From
& sensors per battery, o
patteries, at 2 min interval

Every Minute take an average
of & sensors’ temp for 9¢

mirtes in the orbit, for 12 %/
arbits,& for each of & batts +/
Avg over P4 minutes or entire#/
orbit. To be updated when */
when phase change from 1 to 0%/

Cell pressure at eod
Cell pressure at eoc

int

Sh

St

Ca

Ta
f

oW File#l1l .
time tolali12]
trickield]:

¥

at fFile

41
aholell12]

r File #2
batt_avgtle&]:

wlt.data
ult[2]:

ORIGINAL PAGE IS
OF POOR QUALITY

FH When battery current is
JE than Z amps, add 1 to t
A otime counter . Only during
J¥ charoe phas

Orbit at which reconditicnin
takes placs . Batitery current
during reconditioning at

JH¥ 2 minute intervals

Jd Keep running sum of amp hours
A out during phase 0.

/% Average temp of six
FH* for each of & batterd

/¥ Fault flag, fault[0l=1 fault
/F =0 no Fauli
¥ Faultll] = ~1 when prozlem
S with communication

OR{GINAL PAGE IS
OF POOR QUALITY

DATA-HDL.C

_inomplt o= O
:###tfkkkb+iifkfbw+frkklklkfif&*#f#fﬁ+tkbrrkifl|ls&@f
¥ omaln is the Data—Harndler driver. It viam T
S oprogram Flow and determines the times

Hm

int orbitno = O,ere:
int phasel,phases

/% phasel = last phase +
22 = current phased/

2 From O to 104
from]
zation

int phase_siagnal:

initl):
while(l)
i
conseg_incmplt = 0 :
while ((ery = read_data()) ==z FAIL) /# Read telemetry burst &/
incomplete() : J* Check for consecutive

/l '_* ' :,’
if ({err = check_fault{)! == FaIL) /% e For kS
{ /S fFanlt v

Fault[0] = 1, A Flag = 1 B

W {FAULTDAT) ;
finish{)};

¥ determine phe
if{(phasel = hid[0].phase) == (phase? = hid[1].phas
phase_signal = EVMIN:
if (iphasel && phase?2) phase_signal = EOD:
if {phasel && iphase2) phase_signal = EOC:

S EOD and EOC s
if ((phase_signal == EOD) !! (phase_signal == EOC))

PrOCesS phase_signal, Orbitnm);/$ process Jdata EOCSEOD S
1f{phase_signal == EHC: ji
printf{"%d. ORBRIT = Xd\n",++orbitno,hid[0] . orbity.

S EVMIN
process (EVMIN,orbitnn) ; /* proce
o/ oend while loop #/

Finish(); /¥ exiting routine #
P oA end mailn #/

ata EVMIN

A1-H

ORIGINAL PAGE 13
OF POOR QU

arei i /A Thﬁ communication port and signal, initial : ;
{ JEodntervupt handler, global buffers and Lml@m@try =YW

I S oimitialine wuser
; ,fi<1n“1l catochey
JEodrnd Lz interrupt
S han d l

07 s J# met comm port for

s ¢n1t1q data Dot e
J¥ initialize telemetry

/¥ reading to

Yo/ oend init kS

g SR P E B R R B U T R K Bl R R R R R A R R TR S o e S B B S N B TR B N PN S S SRR R S S R SRS
/ . . £y . . . -
d_imit () /¥ Initializes telemetry reading to first full orbit.

Y

-
-
H

int i,err;

1 = DEFLT:
while{i t= 1) ’ /¥ Orbit star
{ /¥ minute 1,

while ((err = read_data()) == FAIL) /* phs . No &
‘ P b Found L Of

at niaght +/
scharge *

.

Lnuomplet&();
o= hid{i] ondght _min;

h ametry D
printf{"Starting First full orbiti\n");
process CEYMIM,O) ; JF

o/ oend v Limit ow/

first min Jdatas/

v

ﬁ*#********ﬁ¢***$$****$¢ E A e S RO 3¢ SR TR 1 S SRC NI S S0 S0 R St TR SO SO R e S St S S TR T S S S N A
fimish() /¥ Exits Data Handler and writes flle:.
1

swervst(): A end intervrupt harndlevs/

write file(EQC) J¥ write outpnt files

write_fi*e(EnD)

E‘XJT(D) M / kS Dxlf D """ Hdr“"l{:;? ;:,-;i,.-"
P /% end finish #/

YRR

A 2-8

ORIGINAL PAGE IS
OF POOR QUALITY

TP IR B e T Ok TR T SR e o ISR % A o o USSR oF S S B S RUE R o :zb::f;;i;:fk:.:t:::ir:::}::#::#::#:.’*:;e);:'

J# Catches 1ot gignal input v operalbor TO &

/4 halt Data- —Handler. * 7
{
orint F\ Trterrapt caughts exi Ctingi\nt s

RO e 1gnal . nrtltnn\ Thw rmutin

it arbitnos the telemalry
datalphase signal ,orbhitno’; S proo cdata

cignal): /4 write files

wrlto file{phase_
/# reintialize paf fers 4 f

df _imitld (phase _ »anql)
¥ o/F ﬁrtd Process 7

VT 2 e o .#1'%‘"i"“f"#"4‘111‘51#2-'*1-'#12*21*11#‘ T P o TR b B B PRV RRACE 30 2K o b B IS T SRR £ R

"nrnmNIMfw) /¥ counts no. of consecutive incomplete data oy s
1
;¥ ﬂruntr"rnnﬁefutive = wi\nt,consed. inemplt) s * /

g _incmplittts /# inc consecutive in— S
(conseq_incmplt == CILIMIT) /# complete telemety pur
’* if ‘LLIMTT runs, halt

. printf(’ 'rec ieved wd consecutive 1ncomp Jetelhn’ ,"TLTM"T3
printfl veelemetry Dbursts. shytting duwn*!xn'};

Faultinl = 1: IE:
I o= ”l:

' L)

COn

e b

"'Ul.x t '

v
dultill
wf (FAULTI
fln*@ff}:
}.
i

v/ end incomplate #/

*‘I' READ-DAT. C

#define TILIMIT 2
#define T2LIMIT 180

#include "hst.h"

char buf{2048];

int count;

float cell[23];
/***/
read_data() /* Read telemetry from DEC LSI-11 over RS232 every 1 min.x%~

{

int err;
/¥ Call proc_sync to read start character ’A’, call proc_head to readx/
/¥ header info, proc_bat() to read battery data, and proc_solar to x/
/¥ to read SPA and bus data x/

proc_sync();

count = 0;

if ((err = proc_head()) == FAIL) return(FAIL);

if ({err = proc_bat()) == FAIL) return(FAIL);

if ((err = proc_solar()) == FAIL) return(FAIL);

return{SUCCESS);

. } /% end read_data x/

/***/

proc_sync{) /¥ Synchronize reading data to start of telemetryv burst.*.
{
char cc;
while (cc = get2()) /% Get character from x/
{ /¥ interrupt hdlr buffer %/~
if (cc == 'A%) /% If A’ ,telemetry startx*/
{
/X printf("Sync Received!\n"); x*x/
break;
if(ecec == 'B?’) /¥ If >B’, shutdown X/

-~

printf("\n\nReceived shutdown signal from DEC LSI~11'\n");
/X fault{0) = 1;

fault{l] = 7;

wf(FAULTDAT); X/

finish();

} /* end while loop x/

cc = getl(); /% Read newline and CR */
cc = getl(); /¥ to position pointer atx/
. } /% end proc_sync x/ /* next character X/

ﬁ-l—R

/*********.***/

proc_head() /¥ Read header data from input buffer. X/
‘ int err;
if {({err = read_buffer(9)) == FAIL) /% Read 9 header items X/
return{FAIL):
sscanf(buf, "%d%d%d%d%d%d%d%d%d", /% Put header data in bufx/
&hid{1l].year,&hid{1l].day, /% into structured array x/
&hid[1l].hour,&hid[1].min, /% hid[l] in int format %/

&hid{1]}.sec,&hid{1l].orbit,&hid(1l].phase,
&hid[1l].day_min,&hid{1].night_min);
/% Print header data . 3
/% printf("time=%d\nday=%d\nhour=%d\nmin=%d\nsec=%d\norbit=%d\nphase=%d\n,
day_min=%d\nnight_min=%d\n\n",
hid{1l].year,hid(1l]}.day,hid{1].hour,hid[1].min,hid{1].sec,
hid{1l]}.orbit,hid{1].phase,hid[1].day_min,hid[1].night_min); x/

return(SUCCESS);
i /* end proc_head x/

/EERKKRKKK KKK KR RKK KK KKK KKK KKK KK KK KK KR KKK KK KKK KK KKK KK KKK KKK KRR KK KKK KKKk k% /

proc_bat () /¥ Read battery data from input buffer. x/
{
int j,k,err;
for/ k=0;k<b:k++) /% For 6 batteries X/
{
if ((err = read_buffer(1l)) == FAIL) /% Read battery no L ¥
return(FAIL);
sscanf (buf,"%d",&hid[1].batd{k].battno); /% Put buf X/
/% contents into hid[1l] x/
/X% printf("batt no = %d, count = %d\n",hid[1].batd[k].battno,count;:

if ((err = read_buffer(23)) == FAIL)/x Get 23 cell voltages ¥/
return(FAIL);

sscanf (buf, "SSP TS TS T s P %S %%t f TS f%fsf”,
&cell{0],&cell{l],&cell{2],&cell[3)],&cell[4],&cell{5],
&cell(6],&cell[7],&cell[8],&cell[9],&cell[10],&cell[11],
&cell{12)],&cell{13],&cell[14],&cell[15],&cell{16],&cell{17;
&cell[18),&cell[19),&cell[20),&cell{21]),&cell[22]);

for (j=0;j<23; j++)
hid{l].batd[k].cellv{j] = celllj];

if ({err = read_buffer(23)) == FAIL) /% Get 23 cell pressures *.
return(FAIL);

sscanf(buf, "Sf% s f STt LT P uf st s fuxfsfufsfst,
&cell{0],&cell{l],&cell{2],&cell(3],&cell{4],&cell 5],
&cell[6],&cell[7],&cell[B],&cell[9],&cell[10],&cell{11],
&cell(12],&cell[13],&cell(14],&cell[15],&cell{16],&cell[1l7
&cell[18],&cell[19],&cell[20],&cell[21],&cell{22]);

[—

for (j=0;j<23; j++)
hid{1l].batd[k].cellp(j] = cell[j];

if ((err = read_buffer(10)) == FAIL)/* Get remaining 10 bat x/
return{FAIL);

sscanf(buf, "% fuf%sf% %% f%f%f%f%d"”, /% Put buf contents X/
&hid[l].batd[k].batv, /% into hid[1] */

&hid[1].batd[k].batc,&hid[1l]).batd[k].bprecc,
&hid{1l].batd[k].batemp{0],&hid[1].batd[k].batemp|l:,
&hid[1].batd[k].batemp[2],&hid[1].batd{k].batemp(3],
&hid{1].batd{k].batemp{4],&hid{1].batd[k].batemp[5],
&hid[1].batd[k].batrecond);

} /¥ end for loop, battery 1 to 6 x/

return(SUCCESS);

} /% end proc_bat %/

p- 3 -

/***/‘
proc_solar() /% Read SPA and bus data from input buffer. X/

int j,err;

if ({err = read_buffer(13)) == FAIL) /% Get 13 SPA values * /
return{FAIL;: /% values from buffer

¥*

/% Put buf contents into X/
sscanf(buf, "% f%f% % f%f% %% fuf%sfsf%fxf”, /% hid[1l] X
&hid{lj.spac[0],&hid[1].spac{1],&hid[{1].spac[2],
&hid[1].spac{3],&hid{1]).spac[4],&hid[1].spac{5],
&hid[1].spac[6],&hid{1].spac[7],&hid[1l].spac[8],
&hid[1].spac{9],&hid{1l].spac{10],&hid[1].spac[11],
&hid[1l].spac{l1l2]);

if ((err = read_buffer(6)) == FAIL) /% 3 busses, volt and X/
return(FAIL); /% current for each L3
sscanf(buf, "% fufyxfEf%fxf", /% Put buf contents L ¥4
&hid{1].bd(0].busv, /¥ into hid[1] * /

&hid{1].bd[0].busc,&hid{1].bd[1].busv,&hid[1].bd[1].busc,
&hid{1].bd[2].busv,&hid{1].bd{2].busc);

. /X printf("solar count = %d\n",count); %/

/% for(j=0;J<3; j++) %/ /¥ Print bus data *
/ * {
printf("bd{%d].busv = %f\n",j,hid[1].bd[j].busv);
printf("bd[%d].busc = %f\n",j,hid[1l].bd[j].busc);
P ox/
return(SUCCESS);

} /% end proc_solar X/

JRKKKKKKKKKKKKKKRKKKKKERERKKKKRK KKK KRR KKK K KK KKK KKK RRKKKKKRKRKEKR KKK KKK KKK KKK /

read_buffer (k) /% Retrieves telemetry values from interruptx/
int k; /% handler buffer and puts them in buf! X/
int i=0, nl_count = 0;
while(nl_count '= k) /% For k data points X/
if ((buf[i] = getl()) == EOF) /% Get each character X
return(FAIL); /% from input buffer and x;
if(buff{i] == ’\r’) /% put in buf, including x/
{ i /% newline and CR L
count++; /% count values read per */
/% telemetry run X/
nl_count++; /%¥ Returns FAIL if EOF X/
if ((buf{i] = getl()) == EOF) /% read before end of 4
return(FAIL); /% telemetry burst x/
}
14+
}
buf[i] = ’\07°; /% sets end of data in L %
return{SUCCESS); /% in buf{i] . 4

} /% end read_buffer x/

ERKKEKKKKEKKKEKKKKKK KK KKK KK KKK KK KKK KKK KKK KKKKKEKKKKKKKKKKEK KKK KK KKK KKK KK /
getl() /¥ get character from interrupt handler buffer ¥

char cc;
long tO0,tn,timer;

time(&t0); . /% initial time . 3
while ((cc = b_char()) == EOF) /% get char from interruptx/
{ /¥ handler buffer, EOFs x/
/% start timer = tn - t0 %/
timer = time(&tn) - tO; /¥ tn is current time X/

printf("get: count = %d, timer = %1d\n",count,timer); x/
if ((count < 370) && (timer > TI1LIMIT)) /% check for incmpltx*/
return(EOF); /% run, TI1LIMIT exceeded x/

}

return(cc);

} /% end get x/

A- 5 -€

JEEKKKEKKKRKKK KKK KKK KK KKK KKK KKK R ERKK KK KKK KKK KKK KKK K KKK KKK KKK KKK KKK KKK KKKk /
get2() /% get character from interrupt handler buffer X/
!

char cc;
long t0,tn, timer;

time(&t0); /% initial time X/
while ((cc = b_char()) == EOF) /% read char from interruptx/
{ /% handler buffer, EOFs */
/¥ start timer = tn - t0 %/
timer = time(&tn) -~ tO0; /¥ tn is current time 3
if (timer > T2LIMIT) /% Exit if T2LIMIT is X/
! /% exceeded => No Commun. X/
printf("No communication for 3 minutes; exiting!'\n");
fault{l] = -1; /% write fault flags t
fault[0] = 1; '
wf(FAULTDAT);
finish();

!
J

1
J

return(cc);
} /% end get x/

A-86-%

PROCESS. C

DCHGLIMIT 30
CHGLIMIT 50

#define
#define
*include "hst.h"

int no_druns,no_cruns;
JRERKKKKKKKRKK KKK KKK KK KKK KKK KKK KKK KKK KK KKK KK RKKEKRKRKKKKKEKKRKRRK KK KKK KKK KKK/

df _init() /% Initialization of buffers*/
I
L
int i,J;
/% printf("in df_init\n"); x/
fault{0] = 0; /% FAULTDAT buffer X/
fault{l] = 0; /% FAULTDAT buffer */
no_cruns = no_druns = 0; /¥ run counters x/
for (i=0;1<6;i++) /% for 6 batteries X
¢ :
batt_avgt[i] = DEFLT; /% CURFZDAT buffer L
avg_temp_buffer{i] = 0.0; /% SHOWFSDAT work buffer x/
high buffer([i] = DEFLT; /x SHOWFZ2DAT work buffer x/
ahoo{i] = 0.0; /* SHOWF3DAT work buffer x/
ahi{i] = 0.0; /% SHOWF3DAT work buffer x/
rc_orbit{i] = 0; /% SHOWF12DAT buffer 3
trickle[i] = 0; /¥ SHOWF11DAT work bufferx/
for (j=0;j<12; j++) /% for 12 orbits X
p
1
eod_voltage{i][j] = DEFLT /% SHOWF1DAT buffer L3
he voltage[l][J] = DEFLT; /% SHOWF2DAT buffer t 3
* rc_ratio{i]{j] = DEFLT; /% SHOWF3DAT buffer X/
cv_eod_hv[i]{j] = DEFLT; /%¥ SHOWF4DAT buffer L ¥
cv_eod_hv{i][j] = DEFLT; /% SHOWF4DAT buffer x/
cv_eod_av[i][j] = DEFLT; /* SHOWF4DAT buffer X/
cv_hce hv[l][J] = DEFLT; /% SHOWF5DAT buffer X/
cv_hc_lv[J[j] = DEFLT; /% SHOWF5DAT buffer X/
cv_hc_av[i]}[j] = DEFLT; /% SHOWFS5DAT buffer X/
avg_ temp[i][j] = DEFLT /% SHOWFIDAT buffer X/
aho[i][j] = DEFLT; /% SHOWF13DAT buffer X/
time_tec[i][j] = DEFLT; /% SHOWF11DAT buffer X/
}
for (j=0;3<23; j++) /% for 23 cells per batt */
!
cellv_eod[i][j] = DEFLT; /% SHOWFEDAT buffer X/
cellv_he(il[j] = DEFLT; /% SHOWF7DAT buffer X/
cp_ eod[i][j] = DEFLT; /% SHOWF10DAT buffer x/
cp_eoc[1][J] = DEFLT; /% SHOWFlODAT buffer X/
}

. for (j=0;j<48; j++)
f
L

avgt[i][j] = DEFLT; /% SHOWF8DAT buffer
be drcli][j] = 0.0: /% SHOWF12DAT buffer
wf{FAULTDAT) : /% write no fault vet

} /%end df_init %/

/***,/
df _initl(phase_signal) /% After each telemetry burst is read, or afterx/

/% EOC or EOD, buffers used for processing needx/
int phase_signal: /% to be re-initialized. %/
{

int laJa

e printf{”"in df_initl \n"}; */

éwitch(phase_signal) /% start switch x/

{

case EOC: /% EOC case X/
no_cruns = no_druns = 0; /% run counters *

for (i=0;i<6;1i++)

avg_temp_buffer[i] = 0.0; "~ /¥ SHOWFO9DAT work buffer x/
high_buffer{i] = DEFLT; /% SHOWF2DAT work buffer x/
ahi[i] = 0.0; /% SHOWF3DAT work buffer x/
ahoo[i] = 0.0; /% SHOWF3DAT work buffer *x/
for (j=0;j<23;j++) /% for 23 cells per batt x/
f .
S
cellv_he[i][j] = DEFLT; /% SHOWF7DAT buffer X/
cp_eoc[i]j{j] = DEFLT; /% SHOWF10DAT buffer */
cp_eod[i][j] = DEFLT; /% SHOWF10DAT buffer X/
cellv_eod[i]{j] = DEFLT; /%¥ SHOWFBDAT buffer X/
}
for (j=0; j<48; j++)
avgt{i]ij] = DEFLT; /% SHOWF8DAT buffer %/
)
break; /% end EOC case */
/¥ No EOD case %X 7
case EVMIN: /% Every Minute case X/
for (i=0;1i4<6;i++) /% for 6 batteries %/
batt_avgt[i] = DEFLT,; /% CURF2DA