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1. Introduction 

Li-Air batteries are proposed for use in applications where a high specific energy primary power 
source is needed and rate capability is not a limiting factor.  The overall discharge reaction of a 
lithium-air battery is shown in equation 1. 

 2Li + H2O + ½O2 → 2 LiOH (1) 

In a Li-Air battery, electrons flow between a lithium anode in contact with a non-aqueous 
electrolyte, and an air cathode in contact with an aqueous electrolyte.  The non-aqueous and 
aqueous electrolytes are kept separate by a non-electronically conducting ceramic membrane 
impervious to water, but with a high ionic conductivity for lithium ions.  LiTixAly(PO4)3 is one 
such example of a ceramic composition that has been used in this manner.  The lithium ion can 
be thought of as being solvated by the ceramic membrane as it passes from non-aqueous to 
aqueous electrolyte.  The half-cell reaction at the lithium anode is: 

 Li (metal)   Li+ non-aq + e-       E°= 3.05 V (2) 

On gold, mercury, graphite, and most carbons, the 2 electron reaction resulting in the formation 
of peroxide ion is the predominant pathway (1).  It has been demonstrated that in both basic and 
acidic electrolytes, carbon black based air cathodes can be used as peroxide generators (2).  In 
basic electrolyte, the 2 electron reaction occurs as: 

 O2 (g) + 2e- + 2H2O  H2O2 + 2OH- (aq.) E°= -0.146 V 

 (-0.346 V vs. Ag/AgCl) (3) 

In acidic electrolyte, the 2 electron reaction proceeds as: 

 O2 (aq.) + 2e- + 2H+ (aq.)   H2O2 (aq.) E°= 0.695 V (4) 

 (+0.495 V vs. Ag/AgCl) 

Peroxide decomposes to form water and oxygen, which can then be reduced again on the air 
cathode 

 H2O2 (aq.)  H2O + ½O2. (5) 

The flow of electrons from the lithium anode (equation 2) to the air cathode (equations 3 and 4) 
provides the current.  To balance the overall charge in the reaction, positive lithium ions flow 
through an ionically conducting ceramic membrane from the non-aqueous anode compartment to 
the aqueous cathode compartment.   

One critical component of the Li-Air battery is an air cathode that can reduce oxygen at a 
sufficient rate; function for a number of days without flooding; operate in both strongly acidic 
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and strongly basic electrolytes; and not be cost prohibitive to throw away.  Previous studies have 
shown that carbon/polytetrafluoroethylene (PTFE) cathodes, with an active layer composed of 
Acetylene Black 50 (AB-50) and Black Pearls 2000 (BP-2000), have performed well in acid 
electrolytes.  The objective of this study was to determine if a similarly constructed cathode 
could perform over the entire pH range where a Li-Air battery might operate.  Air cathodes are 
constructed such that the outer layer of the cathode is hydrophobic and permeable to oxygen, 
which prevents bulk electrolyte from leaking out of the cell.  The inner layer is hydrophilic and 
“active” towards oxygen reduction (3, 4).  A functioning cathode is defined as being able to 
support a current density of 1–2 mA/cm2 at a potential of -0.3 V vs. a Ag/AgCl reference 
electrode. 

The purpose of this project was to construct an inexpensive air cathode free of catalyst that is 
capable of functioning in both acidic and basic electrolytes.  In the lithium/air-water cell, a major 
failure mode occurs when LiOH saturates the electrolyte and precipitates into the air cathode.  
This tends to impede the function of the air electrode and limits discharge capacity.  The use of 
an acidic electrolyte is meant to mediate this problem.  In acidic solution, lithium salts will not 
reach the saturation point and precipitate into the electrode until later in discharge.  The choice to 
use an uncatalyzed air cathode results from the fact that the only catalyst stable in acid 
environments for long periods are ones based on Platinum. 

The use of acidic electrolytes in room temperature metal/air cells has not been a major area of 
research due to the reactivity or corrosion of anode metals in acid electrolytes.  The use of an 
ionically conducting membrane between the anode and cathode compartments prevents contact 
between the metallic lithium anode and the aqueous acid electrolyte, and therefore, allows the 
use of these electrolytes in lithium/air-water cells. 

2. Experiment 

2.1 Construction of an Air Electrode 

The carbon/PTFE double-layered electrode was constructed using a procedure similar to that 
used by Read and Margulies (3, 4).  A hydrophobic air cathode paste was made using Super P 
carbon black, PTFE-30, distilled water, and isopropanol, which were combined and mixed for 
5 min in a Kitchenaid mixer at setting two.  The paste was then dried before being ground into a 
fine powder using a 2-liter laboratory blender.  The hydrophobic layer composition was 70% 
Super P and 30% PTFE by weight.  The active layer paste was made using BP-2000, AB-50, 
PTFE-30, distilled water, and isopropanol, which were combined and mixed for 5 min in a 
Kitchenaid mixer at setting two.  The paste was then dried under vacuum and ground to a fine 
powder using the laboratory blender.  The active layer composition was 42% BP-2000, 
42% AB-50, and 16% PTFE by weight;  3.0 g of the hydrophobic powder was spread evenly 
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onto 7 by 10 cm titanium expanded metal grids.  It was cold pressed for 5 min at 2000 psig and 
then hot pressed for 15 min at 400°F and 9000 pound-force per square inch gauge (psig).  On top 
of the hydrophobic layer, 1.5 g of the active layer powder was cold pressed for 10 min at 2000 
psig and then hot pressed for 15 min at 560°F and 8000 psig. 

2.2 Setup for Three Electrode Cell 

The experiments were carried out in a glass T-cell, which functioned as a three electrode cell.  
carbon/PTFE cathodes, cut from the double-layered electrodes, were used with titanium mesh 
acting as the counter electrode and a Ag/AgCl reference electrode.  The Ag/AgCl electrode was 
placed into a beaker containing the same electrolyte as in the T-cell.  The T-cell and the beaker 
were connected by a 1/16 inch plastic tube acting as a salt bridge.  The Ag/AgCl with 4M KCl 
reference electrode used has a standard potential of +0.20 V vs. standard hydrogen electrode 
(SHE).  The cathode was attached to the cell by a threaded PTFE holder with an O-ring and a 
PTFE disk with a hole in the center.  The active, or hydrophilic, layer was positioned toward the 
electrolyte allowing for oxygen reduction to occur.  The cathode area with air access was 
0.712 cm2.  The set-up for the three electrode cell can be seen in figure 1.   

Figure 1.  Set-up for three electrode cell. 

2.3 Measurements 

Solutions of H2SO4, Na2SO4, and NaOH were used to prepare sulfate electrolytes from pH 0-14.  
Sulfate electrolytes were also prepared from H2SO4, Li2SO4, and LiOH while chloride 
electrolytes were prepared from HCl, LiCl, and LiOH.  Measurements were carried out using a 
Solartron SI 1287 electrochemical interface and Corrware software.  A potentiodynamic sweep 
from open circuit to -0.6 V vs. Ag/AgCl was run to “wet-up” the cathode.  Measurements were 
obtained for voltages ranging from 0.0 to -0.6 V vs. Ag/AgCl until a steady state current was 
reached.  This was typically reached within 15 min. 
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3. Results and Discussion 

The air cathode current response as a function of pH in Na2SO4, Li2SO4, and LiCl electrolytes is 
given in tables 1, 2, and 3.  The same data is shown graphically in figures 2, 3, and 4.  

Table 1.  Voltage vs. current density (mA/cm2) for pH values 0-14 in Na2SO4 based electrolytes. 

pH Voltage vs. 
Ag/AgCl 0 0.7 1.5 2.5 3.8 4.1 8.3 11.9 12.7 13.4 13.7 

0 3.8 1.7 0.8 0.2 0.0 0.0 0.0 0.0 0.0 0.0 0.1 
-0.1 7.2 3.3 1.9 0.7 0.5 0.5 0.5 0.5 0.4 0.2 0.1 
-0.2 11.5 5.5 3.4 1.7 1.4 1.4 1.4 1.4 1.3 1.1 1.1 
-0.3 16.4 7.8 5.0 3.1 2.7 2.8 2.9 2.6 2.5 2.7 3.3 
-0.4 21.6 10.4 6.2 5.0 4.1 4.3 4.7 3.9 3.8 4.6 5.8 
-0.5 27.1 12.9 7.8 7.0 6.1 6.1 6.8 5.4 5.2 6.6 8.4 
-0.6 32.6 15.6 9.8 9.0 7.7 7.8 8.8 6.9 6.7 8.7 11.2 

 

Figure 2.  Current density (mA/cm2) vs. pH in Na2SO4 based electrolytes. 
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Table 2.  Voltage vs. current density (mA/cm2) for pH values 0-14 in Li2SO4 based electrolytes. 

pH Voltage vs. 
Ag/AgCl 0.0 0.2 0.9 1.6 2.3 5.3 8.4 10.2 10.7 11.6 12.6 

0 3.8 2.2 1.1 0.5 0.2 0.0 0.0 0.0 0.1 0.0 0.0 
-0.1 7.2 4.0 2.3 0.9 0.6 0.5 0.4 0.5 0.5 0.4 0.1 
-0.2 11.5 6.3 3.9 1.8 1.4 1.4 1.1 1.2 1.1 1.0 0.9 
-0.3 16.4 9.0 5.7 2.7 2.5 2.7 1.9 2.0 1.9 1.8 2.6 
-0.4 21.6 11.9 7.6 4.1 3.8 4.1 2.8 3.0 2.8 2.7 4.6 
-0.5 27.1 14.9 9.6 5.6 5.2 5.7 3.8 4.1 3.8 3.6 6.7 
-0.6 32.6 18.0 11.6 7.2 6.6 7.2 4.8 5.2 4.8 4.6 8.8 

Figure 3.  Current density (mA/cm2) vs. pH in Li2SO4 based electrolytes. 
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Table 3.  Voltage vs. current density (mA/cm2) for pH values 0-14 in LiCl based electrolytes. 

pH Voltage vs. 
Ag/AgCl 0.9 1.5 2.4 4.7 7.2 11.4 11.8 12.7 

0 0.6 0.1 0.1 0.3 0.0 0.0 0.0 0.1 
-0.1 1.3 0.6 0.6 0.7 0.3 0.3 0.4 0.1 
-0.2 2.2 1.4 1.4 1.6 0.9 0.9 1.0 1.0 
-0.3 3.2 2.4 2.5 2.5 1.6 1.6 1.7 3.0 
-0.4 4.2 3.7 3.7 3.6 2.3 2.4 2.5 5.3 
-0.5 5.1 5.0 5.0 4.8 3.2 3.2 3.4 7.7 
-0.6 6.3 6.3 6.3 6.0 4.0 4.0 4.3 10.2 

 

Figure 4.  Current density (mA/cm2) vs. pH in LiCl based electrolytes. 
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The performance of this air electrode follows the typical behavior for this type of electrode with 
the current density increasing as the voltage is decreased from 0.0 V to -0.6 V vs. the Ag/AgCl 
reference electrode.  The performance of the cathode is sufficient to meet our criteria of 1-2 
mA/cm2 at -0.3 V vs. Ag/AgCl even in the LiCl based electrolyte.  The increase in current 
density with electrode polarization results from an increase in the over potential for the 
electrochemical reaction (equation 3 or 4 depending on pH).  As the difference between the 
electrode potential and the thermodynamic potential increases, the driving force, and therefore 
the current density, increases. 

We will not attempt a complete explanation of the change in air electrode performance as the pH 
increases from 0 to 14, but simply identify several factors that are of importance. The first effect 
is the change in thermodynamic potential for the electrochemical reaction with increasing pH.  
The thermodynamic potential decreases from 0.49 V vs. Ag/AgCl for pH = 0 to -0.21 V vs. 
Ag/AgCl for pH = 12.  The over potential at pH = 0 when the cathode is polarized to -0.30 V vs. 
the Ag/AgCl electrode is therefore -0.79 V (-0.30 V-0.49 V) while the over potential at pH = 12 
is much less at -0.09 V (-0.30 V +0.21 V).  This change in over potential should contribute to a 
decrease in current density with increasing pH.  The second effect relates to the concentration of 
protons in the electrolyte.  At low pH values when the concentration of protons is large, the 
reaction shown in equation 4 proceeds rapidly.  As the pH increases, the reaction shown in 
equation 3 appears to take over and the concentration of protons is not a factor with the current 
density becoming nearly independent of pH above pH = 3. 

The rise in current density for pH values greater than 12 is thought to arise from a change in 
mechanism (5-14), although there is some disagreement on the mechanism.  Most of the 
proposed mechanisms involve the one electron reduction of oxygen to form the superoxide ion 
and the participation of the hydroperoxyl radical.  Each of the three electrolytes studied 
demonstrate this small rise in current density at pH values greater than pH = 12. 

The air cathode performance in LiCl electrolytes demonstrates the strong effect that chloride ion 
absorption has on oxygen reduction even at low pH.  The chloride ion absorbs to the catalytic 
sites where O2 would normally absorb and prevents the electrochemical reaction.  This poisoning 
effect of chloride ion demonstrates that O2 adsorption onto a catalytic site is important to the 
functioning of a normal air electrode. 
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4. Summary and Conclusions 

Carbon/PTFE cathodes with an active layer, composed of AB-50, BP-2000, and PTFE, can be 
used for Li-Air batteries.  The definition of a functioning cathode was satisfied for current 
densities at -0.3 V vs. the Ag/AgCl reference electrode.  Similar results were obtained for both 
the Na2SO4 and Li2SO4 based electrolytes.  For the most part, the LiCl based electrolyte followed 
the trends of the sulfate based electrolytes, except for the suppressed current density at low pH 
values. 
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aq.  aqueous 
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V  volt 
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