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Executive Summary 

The U.S. Army Research Laboratory (ARL) has successfully used acoustics to detect, localize, 
and track potential threats.  This information has provided a wealth of information to the 
individual Soldier by supplying actionable situational awareness.  Two particular scenarios 
where these algorithms would provide useful intelligence relate to collision avoidance and 
monitoring drug trafficking.  This research analyzes the acoustic signals of several aerial 
platforms in an attempt to track each target of interest.  Results of different signal-processing 
techniques—conventional beamformer via minimum variance distortionless response (MVDR) 
and a Least-Squares (L-S) Estimator using time difference of arrivals (TDOA)—are compared 
and contrasted.  A Kalman filter was applied to the direction of arrival (DOA) estimates to more 
accurately track the signal of interest.   

The Kalman filter algorithm proved efficient in smoothing the overall results while minimizing 
the effects of outliers due to wind noise and microphone vibrations.  Although neither algorithm 
performed flawlessly, the TDOA L-S method proved superior based on computation time and the 
MVDR algorithm produced more accurate tracking of the specified target.   

The following future work is required: 

• Fine tuning the filters to include position as well as velocity for the Kalman state space 
model, which would further increase the signal-to-noise ratio. 

• Fusing DOAs to include an elevated array to determine a precise location of threat for a 
given instance in time. 

• Incorporating a three-dimensional tracker that includes target height information.    
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1. Introduction 

Acoustic arrays with known locations can detect mortar, improvised explosive device (IED), and 
rocket points of origin and impact.  Research has proven that this same technology can also 
detect and track vehicles, unattended aerial vehicles (UAVs), and helicopters (1).  This 
information is especially useful for collision avoidance.  Collision avoidance is a concern for all 
aircraft that need to detect hazardous terrain or obstacles in sufficient time to accomplish 
clearance maneuvers.  This technology is even more demanding for helicopters, as their unique 
capabilities result in extensive operations at low altitude, near terrain and hazardous obstacles. 

Military helicopter pilots often fly below tree level, facing unique guidance and control tasks 
such as aircraft concealment, obstacle avoidance, and real-time mission planning.  These tasks 
require a high degree of pilot concentration, which intensifies during bad weather and stressful 
tactical situations.  Automation of some of these tasks can reduce pilot workload, while 
enhancing safety (2). 

As mentioned, acoustics can also be used to track vehicles used to transport contraband and 
illegal aliens.  Documents suggest organized crime leaders have airplanes, boats, and vehicles at 
their disposal (3).  It is believed that tracking these targets will aid in increasing homeland 
security.    

2. Signal Processing 

The initial algorithm applied to the aerial targets of interest is the conventional beamformer via 
minimum variance distortionless response (MVDR).  This optimum distortionless filter assumes 
that the noise is a sample function of a random process and the signal of interest is an unknown 
nonrandom signal propagating along some known direction.  This guarantees that any signal 
propagating along the specified direction will pass through the filter undistorted and the output 
noise is thus minimized (4).  The optimal estimate of the wave number spectrum is given by  

 Po(k,f)={vH(k,f)S-1(f)v(k,f)}-1, (1) 

where v(k,f) is the array manifold vector for a plane wave with a wave number k and S is the 
correlation matrix.  The min and max frequencies, f, used were 10 and 200, respectively.  These 
frequencies were chosen to eliminate some of the dominant wind noise while focusing on the 
fundamental and corresponding harmonics of the main and tail rotor of the helicopter.  This 
algorithm was capable of localizing on the targets of interest pretty well; however, computation 
time was slow.   
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The next algorithm considered was a Least-Squares (L-S) Estimator using time difference of 
arrivals (TDOA).  The L-S approach chooses the value of θ that best minimizes the squared 
difference between the given data and the assumed signal.  This algorithm preformed slightly 
less accurately than the prior method; however, calculations were performed in a significantly 
shorter time frame.  The process is described in equation 2: 

 θL-S = P+̂  , (2) 

where P represents the difference in microphone locations and ̂  are the estimated time delays 
between corresponding microphone locations (5). 

Due to the noisy measurements obtained via MVDR and L-S direction of arrival (DOA) 
estimates, a Kalman filter was applied to the results in an attempt to smooth the signal and 
increase the overall localization accuracy.  The Kalman filter address the general problem of 
trying to estimate the state x Є Rn of a discrete-time controlled process that is governed by the 
linear stochastic difference equation 

 xk = Axk-1 + Buk-1 +wk-1, (3) 

with a measurement z Є Rm, i.e., 

 zk = Hxk +vk . (4) 

The random variables wk and vk represent the process and measurement noise, respectively.  
They are assumed to be independent of each other, white noise, and normal probability 
distributions: 

 p(w) ~ N(0,Q), (5) 

 p(v)~ N(0,R) [6]. (6) 

The process noise covariance, Q, is assumed to be constant and the measurement noise 
covariance, R, is updated with each time step as function of the standard deviation of each 
measurement.  The measurement noise covariance determines how much information from the 
sample is used.  If R is high, the Kalman filter assumes the measurement is not very accurate.  
When R is smaller, the filter output follows the measurement more closely.  The input noise 
covariance contributes to the overall uncertainty of the estimate.  The Kalman filter output when 
Q is large tracks large changes in the actual output more closely than when Q is small.  
Consequently, there is a performance trade-off between tracking and noise in the output in the 
choice of Q for the Kalman filter (7). 

The n×n matrix A in the difference equation relates the state at the previous time step k-1 to the 
state at the current step k, in the absence of either a driving function or process noise.  In this 
research, it is assumed that only the direction of arrival is observed, and its rate of change is 
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unknown.  Therefore, A is a constant, scalar 1.  The n×1 matrix B relates the optional input 
control input u Є Rl to the state x; for this research B is assumed to be 0.  The m×n matrix h 
relates the state to the measurement zk and assumed to be a constant, scalar 1. 

Finally, a modified Kalman filter was applied to the MVDR and L-S data.  This method updates 
the current estimate, k, if the standard deviation between two consecutive angles of arrivals is 
less than a predetermined threshold, otherwise the current estimate, k, remains the same as the 
previous, k-1.  It is assumed that the DOA is either erroneous or relates to another target.    

3. Experimental Procedures and Results 

Four tetrahedral arrays were used to collect an hour of acoustic data relating to the flight path of 
a helicopter.  These arrays were spaced approximately 1.5 km apart in a square configuration.  
To get a better feel for the spectrum of the helicopter with respect to the surrounding background 
noise, the spectrogram was applied to the acoustic data acquired from one of the sensor arrays as 
illustrated in figure 1.  The array was capable of detecting the helicopter for the duration of the 
test with a maximum range of approximately 5 km.  The spectrogram indicates that there is a 
relatively high signal-to-noise ratio relating to the helicopter’s fundamental frequency and its 
first few harmonics.  Previous research has shown that as sound propagates over the ground, 
there will be some attenuation because of acoustic energy losses due to ground impedance 
absorption, terrain and vegetation effects, and multipath.  Higher frequencies are almost always 
attenuated more than lower frequencies (8).   
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Figure 1.  Spectrogram of acoustic data acquired from one sensor array. 
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Figure 2 illustrates calculated DOA estimates of acoustic data simultaneously collected from four 
known sensor locations.  These results were obtained using MVDR, where the black, green, red, 
and blue lines represent the true, observed, Kalman filtered, and modified Kalman filter data, 
respectively. 
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Figure 2.  Direction of arrivals computed simultaneously for four sensor arrays via MVDR. 

Given the information above and the known sensor locations, triangulation can be used to 
successfully track the helicopter’s two-dimensional (2-D) coordinates.  This information is of 
value for collision avoidance in areas where hazardous terrain, inconspicuous foreign objects, 
and sand storms exist.    

Figure 3 illustrates the TDOA L-S results for the same set of data, where the black, green, red, 
and blue lines represent the true, observed, Kalman filtered, and modified Kalman filtered data, 
respectively. 
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This set of data proved to be slightly less accurate and is believed to be a result of a pair wise 
time delay estimation of a narrow band signal resulting in two ambiguous bearings.  
Computation time is significantly faster; L-S data can be calculated 10–12 times faster than  
MVDR data.  Application of the modified Kalman filter significantly improves DOA estimates 
for both the MVDR and L-S approaches.    
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Figure 3.  DOAs computed simultaneously for four sensor arrays via L-S approach. 

Comparison of figures 2 and 3 indicates that there is a substantial amount of spurious detections 
via both algorithms.  Contributing factors are thought to be wind noise, microphone vibration, 
and surrounding targets not associated with testing.  Elevation angles were also calculated using 
both algorithms; however, these proved to be unsatisfactory when comparing to truth data and 
thus were omitted from this report.  These results are thought to be a result of sound waves 
reflecting and refracting off of the ground near the sensor locations.  Previous research has 
shown that elevated arrays, more specifically those on an aerostat platform, increase the signal-
to-noise ratio, thereby increasing range detection and overall system accuracy when estimating 
azimuth and elevation (9).       
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The modified Kalman filtered data was then used to triangulate the 2-D grid coordinates of the 
target of interest.  For tether avoidance application, the user is primarily interested in threats 
approaching the tether within a 1 km radius.  Figure 4 illustrates the estimated grid solution when 
the helicopter is within a 2 km radius of a specific location.  The black lines correspond to the 
truth data and the green and blue lines correspond to the MVDR and L-S estimate, respectively.  
No estimate is calculated when the distance between the target and sensor is less than 20 m.  
Again, the MVDR is most accurate in estimating the targets true location. 
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Figure 4.  Estimated 2-D tracking for MVDR, L-S, and truth vs. time. 

Figure 5 illustrates the true distance of the helicopter’s flight path in figure 4 with respect to a 
known location that is then calculated and compared to the distance computed for the MVDR 
and L-S.  The black lines correspond to the truth data and the green and blue lines correspond to 
the MVDR and L-S estimates, respectively.  In general, the L-S tends to overestimate the 
distance of the helicopter.  This is a direct effect of the DOA estimates; even slight variations in 
DOA estimation can result in significant tracking errors.    



 

7 

2 4 0 0 2 4 5 0 2 5 0 0 2 5 5 0 2 6 0 0 2 6 5 0 2 7 0 0 2 7 5 0 2 8 0 0 2 8 5 0
0

5 0 0

1 0 0 0

1 5 0 0

2 0 0 0

2 5 0 0

3 0 0 0

3 5 0 0

4 0 0 0

4 5 0 0

5 0 0 0

T im e  (s )

D
is

ta
nc

e 
(m

)

 

Figure 5.  Estimated distance of MVDR and L-S algorithm compared to true distance. 

The green and blue lines in figure 6 correspond to the relative tracking error for the MVDR and 
L-S, respectively.  The error was also calculated for distances within 2.5 km (figure 6); this error 
is expected to decrease with increased array alignment accuracy and for targets within the 1 km 
range of interest.   
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Figure 6.  Relative tracking error for distances below 2.5 km. 

These same algorithms have proven successful in tracking two separate small planes, which are 
similar to those that may be used in drug trafficking and smuggling scenarios.  This information 
would be extremely useful for homeland security and protecting our borders.  Figure 7 contains 
the estimated direction of arrivals for the two aircraft for a 1-h duration.   



 

8 

0 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 3 0 0 0 3 5 0 0 4 0 0 0
0

5 0

1 0 0

1 5 0

2 0 0

2 5 0

3 0 0

3 5 0

4 0 0

T i m e  (s )

A
z 

(d
eg

re
es

)

 

Figure 7.  DOA computed via MVDR for two small aircraft. 

No global positioning system (GPS) data relating to the true path of either of the planes were 
available at the time of this report; however, I believe it is valuable to include figure 6 based on 
the prior results presented.  Hand written notes were taken and appear to pretty accurately detail 
the measurements illustrated in figures 6 and 7.  Though figure 6 appears to be somewhat 
“noisy,” it should be noted that ground vehicles, personnel, and other aircraft were in the 
immediate vicinity.  A stationary car has its engine running and the algorithm detects this in both 
sets of data around 125o.  In figure 7, approximately half way into the file, both planes are 
detected flying simultaneously.  Figure 8 shows a spectrogram of the last 10 min of data, 
highlighting the aircraft taxiing, taking off and landing, as well as in flight. 
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Figure 8.  Spectrogram of two small aircraft taxiing on the runway and in flight.   

4. Conclusion 

This research has proven successful in tracking aerial vehicles.  Two conventional signal-
processing techniques were applied to the data in an attempt to estimate DOAs.  A Kalman filter 
was applied to the DOA estimates to more accurately track the signal of interest.  This algorithm 
proved efficient in smoothing the overall results while minimizing the effects of outliers due to 
wind noise and microphone vibrations.  Although neither algorithm performed flawlessly, the 
TDOA L-S method proved superior based on computation time and the MVDR algorithm 
produced more accurate tracking of the specified target.  The research documented in this report 
is applicable to several applications including, but not limited to, collision avoidance and 
deterring drug trafficking through tracking.   

The following future work is required: 

• Fine tuning the filters to include position as well as velocity for the Kalman state space 
model, which would further increase the signal-to-noise ratio. 

• Fusing DOAs to include an elevated array to determine a precise location of threat for a 
given instance in time. 

• Incorporating a three-dimensional tracker that includes target height information.    
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