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Temperature Dependence of Weibull Stress Parameters: 
Studies Using the Euro-Material 

Similar to ASME A508 Class-3 Steel 
by 

Bogdan Wasiluk, Jason P. Petti, and Robert H. Dodds, Jr. 
 

Abstract 
The so-called Beremin model describes the stochastic effects of the cleavage fracture process in ferritic 
steels at the metallurgical scale.  The Beremin model, coupled with large-scale finite element analyses, 
can be used to understand the effects of constraint loss on the macroscale toughness measured in labora-
tory test specimens and in full-scale pressure vessels.  This process provides the basis for the quantitative 
transferability of fracture toughness measured with a variety of test specimens to structures.  The Beremin 
model leads to a quantity termed the Weibull stress which depends on a number of model parameters.  
This work demonstrates the temperature invariance of the Weibull stress modulus, m, for a 22NiMoCr37 
pressure vessel steel through calibrations at two extreme temperatures of the ductile-to-brittle transition.  
This temperature invariance reflects the characterization of microcrack size distribution in the material 
described by the Weibull modulus.  The calibrations performed here also demonstrate the clear depend-
ence of the Weibull stress scale parameter, σu, on temperature.  The increase of σu with temperature re-
flects the increase in microscale toughness of ferritic steels.  The calibration procedure employs a three 
parameter Weibull stress model, which includes the effects of a minimum (threshold) toughness, Kmin.  
The calibrations suggest that Kmin increases gradually with temperature.  Finally, an engineering proce-
dure is presented to enable practical applications of the Weibull stress model for defect assessments.  This 
procedure combines the demonstrated temperature invariance of m, a recently developed method for pre-
dicting the variation of σu with temperature using the ASTM E-1921 Master Curve, and the calibration of 
the Weibull stress parameters at one temperature.  The (calibrated) temperature invariant m and the esti-
mated σu as a function of temperature are used to predict the cumulative probability of fracture for several 
large datasets without direct calibration. 
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Foreword 
 

Appendix G, “Fracture Toughness Requirements,” to Part 50 of Title 10 of the Code of Federal Regula-
tions (10 CFR Part 50), “Domestic Licensing of Production and Utilization Facilities,” specifies fracture 
toughness requirements for ferritic materials of pressure-retaining components of the reactor coolant pres-
sure boundary of light-water nuclear power reactors.  These requirements provide reasonable assurance 
that adequate margins of safety are maintained during any condition of normal operation, including an-
ticipated operational occurrences, to which the pressure boundary may be subjected over its service life-
time.  Similarly, the Pressurized Thermal Shock Rule (10 CFR 50.61) describes fracture toughness re-
quirements for protection against brittle fracture that could occur as a result of pressurized thermal shock 
events.  Over the past 5 years, several licensees have requested changes to their licensing bases through 
application of master curve (MC) technology for fracture toughness characterization, as codified by the 
American Society for Testing and Materials (ASTM) in ASTM E-1921, “Standard Test Method for De-
termination of Reference Temperature, T0, for Ferritic Steels in the Transition Range.”  Such uses of MC 
technology by the industry can be expected to continue until the Nuclear Regulatory Commission (NRC) 
revises both the Pressurized Thermal Shock Rule and the heatup and cooldown limits associated with Ap-
pendix G to 10 CFR Part 50.  The MC relies on an elastic-plastic characterization of fracture toughness, 
while the current regulatory framework is based wholly on linear-elastic fracture mechanics (LEFM) cal-
culations.  The NRC has reviewed these license amendment requests employing conservative adjustments 
to accommodate elastic-plastic fracture mechanics (EPFM) analytical results in the LEFM regulatory 
framework.  If an EPFM-based probabilistic fracture mechanics tool were available, these safety evalua-
tions of RPVs could be performed in an equally technically rigorous, but more efficient and less conser-
vative manner. 
This report addresses the appropriate application (for certain types of loading scenarios) of EPFM mate-
rial toughness parameters measured using laboratory specimens to the evaluation of defects in large struc-
tures.  The present work describes a novel approach that couples a Weibull stress model to characterize 
cleavage fracture processes, with the well-understood and validated MC statistical model.  The approach 
employs the massive data set of fracture toughness generated recently in Europe for a common RPV steel, 
combined with high-fidelity, nonlinear, three-dimensional computational analyses of test specimens.  The 
resulting observations reflect the temperature-independence of a key Weibull stress parameter over the 
ductile-to-brittle transition region, in addition to the temperature-dependence of the Weibull scale pa-
rameter, at least for this important steel.  This work represents a significant step in the development and 
application of an EPFM-based probabilistic fracture mechanics tool. 
 
 
 

      _______________________________ 
           Brian W. Sheron, Director 
           Office of Nuclear Regulatory Research 
           U.S. Nuclear Regulatory Commission 
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Executive Summary 
 

This work advances the understanding and applicability of numerical models to predict the cleavage frac-
ture process in structural components fabricated from ferritic steels and operated over the ductile-to-brittle 
transition (DBT) region of temperatures.  The pressure vessels of commercial nuclear power plants are 
fabricated from the ferritic steels of specific interest in this study.  Significant research programs have 
recently been completed to characterize the ductile-to-brittle transition behavior of ferritic steels.  This 
behavior proves challenging to quantify given the shift in (metallurgical scale) fracture mechanism from 
void growth and coalescence to transgranular cleavage as the temperature decreases.  The potential for 
cleavage fracture causes concern since sudden failure can occur by cleavage without extensive prior de-
formation.  The necessity for probabilistic failure assessment evolves naturally from the large statistical 
scatter observed in measured toughness values in the DBT regime.  The scatter reflects a “weakest link” 
phenomenon where one or more initiation sites at metallurgical-scale inclusions trigger sudden fracture of 
a test specimen or structure.  The observed scatter shows a strong sensitivity to the volume of material at 
the crack front subjected to high stresses and leads to the also observed strong variations of toughness 
across specimen geometry, e.g., shallow-notch SE(B)s compared to conventional C(T)s, for examples see 
[8] . 
The DBT behavior of ferritic steels has been studied widely, leading to engineering approaches that char-
acterize the scatter and temperature dependence of macroscopic fracture toughness values.  The ASTM 
E1921 [1] testing standard quantifies the DBT behavior of ferritic steels.  The standard employs a three 
parameter Weibull distribution for the cumulative probability of cleavage fracture at each temperature 
over the DBT.  E1921 also utilizes the empirically based “Master Curve” to estimate the temperature-
toughness relationship over the DBT for a wide range of ferritic steels.  The Master Curve concept defines 
the relationship between the median fracture toughness KJc (Pf = 0.5) for high constraint conditions and 
the normalized temperature, T-T0, for a 1T size specimen.  Once T0 becomes known for a specific mate-
rial, un-normalization of the Master Curve produces an estimate of the median toughness throughout the 
DBT.  
The assumption that small-scale yielding (SSY) conditions exist at fracture limits the usefulness and ap-
plication of the testing standard in practice.  Alternative methods, including the Beremin model [6], have 
found widespread use and development to address the cleavage modeling at the metallurgical scale.  The 
Beremin model introduces a statistical treatment for the distribution of fracture initiators (e.g., micro-
cracks formed at inclusions) to develop a probabilistic approach for cleavage fracture.  The Beremin 
model defines the scalar, microstructural fracture parameter, the so-called Weibull-stress (σw), which re-
flects the random distribution of microcracks at the crack front.  The model includes two parameters, the 
Weibull modulus (m) and the Weibull scale parameter (σu).  The Weibull modulus, m, characterizes the 
size distribution of microcracks, while the Weibull scale parameter, σu, represents the aggregate micro-
crack toughness [6].  In the Weibull stress framework, these two parameters describe material features 
invariant of crack-front constraint, crack-front length, etc.  
Over the past twenty years, several different methods have evolved to calibrate the Weibull stress parame-
ters.  Gao et al. [8] and Ruggieri et al. [12,13] show that non-unique calibrations are produced with early 
calibration methods based entirely on deep-notch toughness values.  Petti and Dodds [14] went on to sug-
gest coupling the Master Curve description of the macroscale toughness-temperature relationship with the 
calibration procedure to set the Weibull scale parameter, σu.  This method produces an estimate of σu as a 
function of temperature for the material throughout the DBT with a direct calibration at only one tempera-
ture, most likely the testing temperature adopted to establish T0.  
Starting from the recent work by Petti and Dodds [14], the present study utilizes the extensive datasets 
generated during a recent Euro-testing program on a reactor pressure vessel steel to explore the tempera-
ture dependence of the Weibull stress modulus, m.  Calibrations described here at two widely different 
temperatures demonstrate the temperature independence of m over the DBT region, in addition to the 
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temperature dependence of the Weibull scale parameter, σu.  Applications of this engineering procedure to 
several datasets for the Euro-material, not included in calibrations, show excellent predictions and dem-
onstrate significant promise for this method. 
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1 Introduction 
 

Significant research programs have recently been completed to characterize the ductile-to-brittle transi-
tion (DBT) behavior of ferritic steels.  This behavior proves difficult to assess with the shift in fracture 
mechanism from void growth and coalescence to transgranular cleavage as the temperature decreases 
throughout the DBT region.  The potential for cleavage fracture causes concern since sudden failure can 
occur by cleavage without extensive prior deformation.  Complications in failure assessments also stem 
from the large scatter observed in measured toughness values in the DBT regime.  The scatter reflects a 
“weakest link” phenomenon where one or more initiation sites at metallurgical-scale inclusions trigger 
sudden fracture of the specimen-structure.  The observed scatter shows a strong sensitivity to the volume 
of material at the crack front subjected to high stresses and leads to the also observed strong variations of 
toughness across specimen geometry, e.g., shallow-notch SE(B)s compared to conventional C(T)s, for 
examples see [8] . 

The DBT behavior of ferritic steels has been studied widely, leading to engineering approaches that char-
acterize the scatter and temperature dependence of macroscopic fracture toughness values.  The ASTM 
E1921 [1] testing standard quantifies the DBT behavior of ferritic steels.  The standard employs a three 
parameter Weibull distribution for the cumulative probability of cleavage fracture at each temperature 
over the DBT.  The distribution maintains a constant exponent of 4 to reflect the requirement that small-
scale yielding (SSY) conditions exist at fracture in each specimen.  The Weibull distribution also includes 
a minimum (threshold) toughness, Kmin, to enforce the experimental observation that the probability of 
fracture remains zero below a small, but finite toughness value.  E1921 also utilizes the empirically based 
Master Curve to estimate the temperature-toughness relationship over the DBT for a wide range of ferritic 
steels.  The Master Curve concept developed by Wallin [2,3,4,5] defines the relationship between the me-
dian fracture toughness KJc (Pf = 0.5) for high constraint conditions and the normalized temperature, T – 
T0, for a 1T size specimen.  The reference temperature, T0, defines the temperature at which the median 
fracture toughness for a 1T crack-front length equals 100MPa√m.  Once T0 becomes known for a specific 
material, un-normalization of the Master Curve produces an estimate of the median toughness throughout 
the DBT.  Simple weakest link models enable adjustment of non-1T size fracture toughness values for use 
with the Master Curve provided the SSY conditions exist.  

The assumption that small-scale yielding (SSY) conditions exist at fracture limits the usefulness and ap-
plication of the testing standard for situations when high constraint conditions do not exist at fracture, 
e.g., large deformation prior to fracture in higher toughness materials or in naturally low constraint 
specimens and structures (those with T-stress < 0).  Since the simple weakest link model for the macro-
scale toughness fails to remain applicable under these conditions, alternative methods, including the 
Beremin model [6], have found widespread use and development.  The Beremin model introduces a sta-
tistical treatment for the distribution of fracture initiators (e.g., microcracks formed at inclusions) to de-
velop a probabilistic approach for cleavage fracture.  The Beremin model defines the scalar, microstruc-
tural fracture parameter, the so-called Weibull-stress (σw), which reflects the random distribution of mi-
crocracks at the crack front.  The model includes two parameters, the Weibull modulus (m) and the 
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Weibull scale parameter (σu).  The Weibull modulus, m, characterizes the size distribution of microcracks, 
while the Weibull scale parameter, σu, represents the aggregate microcrack toughness [6].  In the Weibull 
stress framework, these two parameters describe material features invariant of crack-front constraint, 
crack-front length, etc.  

Bakker and Koers [7] proposed an important extension of the original Beremin model by introducing a 
threshold stress, σth, to incorporate the existence of experimentally observed threshold toughness values.  
In their proposal, cleavage fracture becomes possible only when the critical stress acting on the volume 
surrounding a microcrack exceeds a specific, material threshold value.  Measurement or estimation of σth 
becomes problematic and affects strongly the calibration of Weibull stress parameters (m, σu).  Gao et al. 
[8] suggest an alternate approach, which introduces a minimum Weibull stress, σw-min.  This simplifies 
considerably the introduction of a threshold toughness since σw-min is taken as the value of σw at a given 
minimum macroscopic fracture toughness, Kmin.  More recently, Kroon and Faleskog [9,10], among oth-
ers, include the effects of plastic strain in a Weibull stress framework to reflect additional microcrack nu-
cleation under loading.  These extensions of the original Beremin model continue to advance its useful-
ness and practical application. 

Over the past twenty years, several different methods have evolved to calibrate the Weibull parameters.  
Minami et al. [11] and Bakker and Koers [7] use one set of fracture toughness values obtained from a 
high constraint geometry.  Minami et al. [11] describe a maximum likelihood method which employs sta-
tistical estimators (α, β) to enforce equal probability distributions between the macroscopic and micro-
scopic parameters, (Jc/β)α=(σw/σu)m.  Gao et al. [8] and Ruggieri et al. [12,13] show that non-unique cali-
brations are produced with this method since two parameters (m, σu) are calibrated with experimental data 
having crack-front fields at fracture controlled by a single loading parameter (J).  They also showed that 
use of test specimens with widely differing constraint levels does lead to a unique calibration.  Recent 
work by Petti and Dodds [14] argues that the Weibull modulus, m, may be independent of temperature in 
the DBT region, while the Weibull scale parameter, σu, increases with temperature.  If this holds, calibra-
tions would still appear to be required at every temperature of interest over the DBT region.  To overcome 
this severe limitation, Petti and Dodds [14] suggest coupling the Master Curve description of the macro-
scale toughness-temperature relationship with the calibration procedure to set the Weibull scale parame-
ter, σu.  This method produces an estimate of σu as a function of temperature for the material throughout 
the DBT with a direct calibration at only one temperature, most likely the testing temperature adopted to 
establish T0.  There does not appear to exist a “Master Curve” for ferritic steels in terms of parameters (m, 
σu) since these parameters, for the limited set of materials calibrated to date, vary significantly. 

Recently, Wallin [15] applied the E1921 procedures to the extensive datasets produced in a European Un-
ion project [16] entitled “Fracture toughness of steel in the ductile-to-brittle transition regime.” This pro-
ject thoroughly characterized the behavior of a quenched-and-tempered pressure vessel steel, DIN 
22NiMoCr37 (similar to the American A508 Cl.3 steel).  More than 800 tests were performed using com-
pact tension (C(T)) specimens ranging in size from 0.5T to 4T with test temperatures spanning the entire 
DBT.  Follow-on work by Heerens et al. [17], among others, tested over 400 pre-cracked Charpy (CVN) 
specimens extracted from the broken larger specimens.  These very large datasets validate the statistical 
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and Master Curve concepts-procedures adopted in E1921 and provide invaluable datasets for validation of 
micromechanical models such as described in this study. 

Starting from the recent work by Petti and Dodds [14], the present study utilizes the extensive datasets 
from the Euro-testing program to explore the temperature dependence of the Weibull stress modulus, m.  
Calibrations described here at two widely different temperatures demonstrate clearly the temperature in-
dependence of m over the DBT region, in addition to the temperature dependence of the Weibull scale 
parameter, σu.  The calibration procedure adopted here also examines “best fit” values for the threshold 
toughness, Kmin.  Finally, we describe examples of the procedure that demonstrate practical use of the 
Weibull stress model for engineering applications in defect assessments.  The procedure requires calibra-
tion of the Weibull parameters at only one temperature and knowledge of the reference temperature, T0, 
for the material.  The procedure assumes m remains invariant of temperature and uses a modified version 
of the method introduced by Petti and Dodds [14] to estimate σu at temperatures throughout the DBT 
without direct calibration through use of the Master Curve.  As would be followed in practice, Kmin is 
fixed in this demonstration example at the E1921 recommended value of 20 MPa√m.  Applications of this 
engineering procedure to several datasets for the Euro-material, not included in calibrations, show excel-
lent predictions and demonstrate significant promise for this method. 

The organization of this report is as follows.  Section 2 reviews the modeling of cleavage fracture includ-
ing both the weakest link-based model and Weibull stress framework.  Section 3 presents an improved 
calibration procedure for the three-parameter Weibull stress model.  Section 4 describes the finite element 
models and computational procedures.  Section 5 discusses the European testing program and the calibra-
tion of the Euro-material at two temperatures, –110°C and –40°C.  Section 6 employs the Master Curve to 
perform multi-temperature predictions throughout the DBT region.  Finally, Section 7 summarizes the 
conclusions supported by this study. 
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2  Modeling of Cleavage Fracture 
 

2.1 Weakest Link–Based Model 

Weakest link concepts form the technical basis for the first testing standard developed specifically to ad-
dress the unique statistical issues with ferritic steels in the ductile-to-brittle transition region (ASTM 
E1921 [1]).  As expressed in E1921, the weakest-link model requires that the local stress field and J-
values remain essentially uniform along the entire crack front and that small-scale yielding (SSY) condi-
tions prevail at the cleavage fracture event.  This greatly simplifies description of the crack-front loading 
but limits the application of such approaches to fracture specimens (and structures) prior to the develop-
ment of significant constraint loss under increased plastic deformation.  Under SSY conditions, the crack 
driving force may be expressed for convenience in terms of a KJ - value, i.e., ( )21JK EJ υ= − . 

Based on these assumptions, the three-parameter statistical model employed in E1921 adopts a constant 
exponent (modulus) of four in the Weibull expression for the cumulative fracture probability at each tem-
perature over the ductile-to-brittle transition, 

( )
4

0
1 exp Jc min

f Jc
min

K KP K
K K

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
 ,  (1) 

where Kmin denotes the minimum fracture toughness, Pf (KJc ≤ Kmin) = 0.  E1921 sets Kmin equal to 20 
MPa√m, invariant of material flow properties, crack-front configuration, and temperature.  The tempera-
ture dependent K0-value corresponds to the fracture toughness when the cumulative probability of failure 
equals 63.2%, Pf (KJc = K0) = 0.632.  The maximum likelihood method provides the estimate for K0 from 
measured toughness values as, 

 
( )

( )

1/ 44
( )

0
1 0.3068

N
Jc i min

min
i

K K
K K

r=

⎡ ⎤−⎢ ⎥= +
⎢ ⎥−
⎢ ⎥⎣ ⎦
∑  , (2) 

where N and r denote the total number specimens in a dataset and the number of uncensored (valid) val-
ues, respectively.  The E1921 procedures censor measured values of fracture toughness that violate SSY 
conditions; toughness values have a limiting value of KJc given by, 

( )
0

21
Jc

limit

EbK
M

σ
ν

≤
−

 ,  (3)  

where b, E, ν, and σ0 denote the remaining ligament, Young’s modulus, Poisson’s ratio, and yield stress.  
E1921 currently adopts a value of 30 for the limiting, non-dimensional deformation, Mlimit; a value now 
widely accepted as applicable for standard, deep-notched compact tension specimens, C(T)s.  

Toughness values measured using fracture specimens tested at other (xT) than 1T thickness (crack-front 
length of 25.4 mm), require a statistical adjustment to an equivalent 1T value for comparisons.  The 
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E1921 requirement for a uniform J-value along the front and for SSY conditions makes the adjustment 
process straightforward.  The highly stressed volume of material along the crack front then scales with 

4
JB K×  and thus equivalent Pf values for different crack-front lengths through Eq. (1) require that 

( )
1/ 4

E1921(1T) E1921 ( T) E1921 T

1T

x x
Jc min Jc min

BK K K K
B

⎛ ⎞
= + − ⎜ ⎟

⎝ ⎠
,  (4) 

where 1921E
minK  = 20 MPa√m and B denotes specimen thickness. 

 
2.2 The Weibull Stress Model 

The macroscopic fracture model represented by Eqs. (1, 4) applies under conditions of high-constraint (T-
stress 0≥ ), SSY when each crack front location has the same applied J-value.  SSY conditions insure the 
unique correspondence across specimens between the crack-front J-value and the local crack-front 
strains-stresses at fracture.  The corresponding microscopic fracture model employs directly the strain-
stresses at each crack-front location; SSY conditions then become unnecessary to establish the link with 
the scalar measure (J) of the loading.  The Beremin group [6] introduced the most widely used and devel-
oped microscopic model.  In this model, a local fracture parameter, the so-called Weibull stress (σw), de-
fines a scalar measure of the crack-front conditions driving cleavage fracture at increasing levels of exter-
nal loading.  Numerical analyses connect values of σw with external loading of the specimen-structure and 
may include complexities from variable crack-front geometry, large-scale yielding, thermo-mechanical 
loading, etc.  In its original form, σw describes the crack-front loading in a two-parameter Weibull expres-
sion for the cumulative fracture probability [6] follows as, 

( ) 1 exp
m

w
f w

u
P σ

σ
σ

⎡ ⎤⎛ ⎞
⎢ ⎥= − −⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

,  (5) 

where the scalar Weibull stress, σw, is given by,  
1/

1
0

1
m

m
w V

dV
V

σ σ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

∫ . (6) 

where V denotes the highly-stressed volume of material just ahead of the crack front over which the trig-
gering event of cleavage fracture occurs.  The Beremin grouped showed the link between the Weibull 
modulus, m, and the postulated shape of the probability density function for pre-existing microcracks that 
form at metallurgical- scale inclusions, at grain boundaries, etc.  The value of m quantifies the degree of 
“scatter” reflected in the cumulative failure probability distribution, analogous to the “4” exponent in the 
macroscopic model of Eq. (1).  The Weibull-stress scale parameter, σu, denotes the Weibull stress value 
for a cumulative probability of fracture equal to 0.632, Pf (σw = σu) = 0.632.  The Weibull stress is com-
puted most often by integrating the maximum principal stress, σ1, over the fracture process zone, V, at 
each stage of loading.  This zone consists of the region of plastically deformed, crack-front material over 
which the maximum principal stress exceeds a multiple (λ) of the yield stress σ1 ≥ λσ0.  Petti and Dodds 
[18] illustrate that the specified value for λ does not affect the calibrated values of m for smaller m-values 



7 

≤ 10 to 12, but not the relative toughness values between differing crack-front conditions.  Here we em-
ploy the common value of 2 for λ.  The normalizing volume, V0, cancels in applications of the Weibull 
stress model to compare crack-front conditions for the same material and is assigned a value here of unity. 

Under strict plane-strain and SSY conditions, the macroscopic and microscopic fracture models have a 
unique and the now well-understood connection [6,8], 

2m
w BJσ =C or  4m

w JBKσ =C ,  (7) 

where Cand ( ) 221 / Eν= −⎡ ⎤⎣ ⎦C C denote a material constant dependent on the material flow properties at 
the temperature of interest and on Weibull stress parameters (m, V0).  
Actual fracture specimens eventually violate SSY conditions to varying degrees with increasing load.  
Gao and Dodds [19] modified Eq. (7) by inserting a non-dimensional constraint function, g(M).  The g-
function characterizes the level of constraint difference between the ideal, plane-strain SSY conditions 
(with T-stress = 0) and a specific fracture specimen, 

2 ( )m
w avgBJ g Mσ =C or  4

( ) ( )m
w J avgBK g Mσ =C ,  (8) 

Where 0 avgM b Jσ=  and Javg denotes a through-thickness average value.  The constraint function, g(M), 
equals 1.0 for all materials under plane-strain, SSY conditions with T-stress = 0.  For a specific configura-
tion, 3-D nonlinear finite element analyses and Weibull stress computations produce σw vs. Javg values.  A 
plane-strain, SSY boundary-layer analysis with T-stress = 0 readily yields the constant Cfor a specific 
material and m value (see [8] for examples).  The g-function value (with respect to M) then follows by 
solving Eq. (8) for g(M) at each loading level in the specimen--structure.  As SSY conditions degenerate 
along the crack-front under increased loading, the g(M)-values gradually fall below the 1.0 level.  By ex-
pressing g-functions in terms of the non-dimensional deformation, M, the g(M) function for a material 
remains invariant for all geometrically similar specimens, e.g., all SE(B)s for the material at the specified 
temperature with 0.5,a W B B= ×  cross-section and span = 4W have the same g(M) invariant of the spe-
cific thickness B.  

Figure 1 illustrates the Weibull stress values for the SSY reference condition and for plane-sided C(T) 
specimens computed using the stress-strain properties for the Euro material at –40°C.  Figure 1a com-
pares the Weibull stress values (normalized by the yield stress at –40°C) with increased loading for 1T 
SSY and 1T C(T) configurations using a representative Weibull stress modulus of m=10.  The 1T SSY 
values enable computation of the material constant Cappearing in Eq. (7).  Figure 1b recasts the same 
results with the loading normalized in terms of the non-dimensional deformation parameter, M, where J-
values for SSY are normalized using b for the C(T) specimen.  Figure 1c shows the constraint function, 
g(M), for the C(T) specimen computed directly from the curves in Fig. 1b through Eq. (8) and the mate-
rial constant C .  Differences between the 1T SSY, which have ( ) 1.0g M ≡ , and 1T C(T) curves reflect the 
levels of constraint loss in the C(T) specimen under increasing load.  Figures 1c also reveals the strongly 
positive T-stress in the C(T) specimen at large M-values where g(M) exceeds 1.0.  Figures 1(a-c) illustrate 
clearly the very gradual constraint loss, which makes difficult the specification of a “single” limiting M-
value for specimens in testing standards.  Recall also that the m=10 used in these illustrative results influ-
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ences the constraint loss - calibrated m-values larger than 10 would reduce the differences between the 
SSY and C(T) curves.  Compared to the strict plane-strain, SSY reference condition, the C(T) specimen 
begins to lose constraint ( )( )g M  when M ≈ 300 (based on m = 10).  The value g(M) = 0.5, for example, 
implies a 16% difference in KJ-values between C(T) and SSY conditions at the same Weibull stress value, 
and thus the same fracture probability.  Figure 1d shows the effect of specimen size on the Weibull stress 
values for the C(T) specimen.  The C(T) curves reflect the coupled effects of absolute crack front length 
(statistical) and constraint loss (deterministic) for increasing J-values.  However, each of these propor-
tionally scaled C(T) specimens has the identical g-function curve shown in Fig. 1c. 

By adopting the three-parameter form for the cumulative fracture probability in Eq. (1), E1921 assumes 
high-constraint, SSY conditions exist at fracture and includes threshold toughness.  Extension of the 
Weibull stress model to match the E1921 characterization of toughness scatter at each temperature re-
quires threshold toughness in a three-parameter cumulative probability of fracture [18].  Gao and Dodds 
[19] and Petti and Dodds [14,18] modified the Weibull stress model to include constraint loss, crack-front 
length effects, and a minimum Weibull stress value to predict a minimum (threshold) toughness, 

( )
4/ 4 / 4

/ 4 / 41 exp
m m
w w min

f w m m
u w min

P σ σ
σ

σ σ
−

−

⎡ ⎤⎛ ⎞−⎢ ⎥= − −⎜ ⎟⎜ ⎟−⎢ ⎥⎝ ⎠⎣ ⎦
 for  σw > σw-min,  (9) 

( ) 0f w w w minP forσ σ σ −= ≤   (10) 

 
The minimum (threshold) Weibull stress, ( )w min w min w J minK Kσ σ σ− −⎡ = = ⎤⎣ ⎦ , depends on the crack-front 
length, material flow properties, and the Weibull parameters (m,V0).  For plane strain SSY conditions, 
Petti and Dodds [18] showed that the specific three-parameter form above leads to identical scaling of 
crack-front length effects on the fracture toughness using the Weibull stress model (for all m-values) and 
the E1921 expression, Eq. (4).  
In the two-parameter Weibull stress model, Eq. (5), the denominator within the exponential (σu) remains 
invariant of changes in crack-front length and constraint level for a constant temperature and loading rate, 
i.e., σu represents a material property.  The three-parameter expression in Eq. (9) introduces a σw-min in the 
denominator.  But because σw-min varies with crack-front length and (potentially) constraint, σu must now 
change to maintain a constant denominator for all crack-front lengths and (potentially) different constraint 
levels [14].  In practice, the small differences in constraint levels between identical thickness, deep-notch 
SE(B) specimens, C(T) specimens, and the plane-strain SSY (T-stress = 0) reference condition when Kmin 
≤ 20 MPa√m lead to a negligible effect on σu.  

By using the three-parameter expression in Eq. (9), a “toughness scaling” model arises which converts 
measured toughness values for xT size specimens (including constraint loss) to 1T plane-strain SSY con-
ditions [18].  Written as an extension of Eq. (4), the toughness scaling model has the form 

( ) ( )
1/ 4

1/ 4 1/ 4SSY(1T) ( T) ( T) ( T) T

1T

x x x x
Jc min Jc min min

B
K K g M K g M K

B
⎛ ⎞⎡ ⎤= + − ⎜ ⎟⎢ ⎥⎣ ⎦ ⎝ ⎠

,  (11) 



9 

where ( )( )1.0xT
ming M ≠ , with ( ) ( )2 2

0 1xT
min xT minM b E Kσ υ⎡ ⎤= −⎣ ⎦ , for low constraint specimens and for high 

constraint specimens when Kmin ≥ 20MPa√m [18].  For common test specimen sizes (1T), no constraint 
loss occurs at the applied loading of K = Kmin and the above expression simplifies with ( )( )1.0xT

ming M ≠ .  
The g(M) function varies with temperature and loading rate due to the change in material flow properties.  
This approach also applies equally for a different selection of the “reference” condition.  For example, 
ongoing work of the E1921 committee envisions use of a 1T C(T) specimen as the reference condition 
rather than the more stringent 1T, plane-strain SSY (T-stress = 0) condition. 

 
2.3 Summary of Weibull Stress Parameters 

At the macroscale, the cleavage fracture toughness under SSY conditions is taken here to be described by 
the approach in ASTM E-1921.  At each temperature in the DBT region, the statistical distribution of 
measured fracture toughness values is represented by Eq. (1).  The macroscale parameters are: (1) the 
fixed exponent of 4 (taken as invariant of temperature), (2) the median fracture toughness, K0, which var-
ies with temperature and crack front length, and (3) the threshold toughness Kmin below which the fracture 
probability vanishes (taken as temperature and crack-front length invariant in E-1921).  The fixed expo-
nent of 4 derives from the (strict) conditions of SSY under which the “in-plane” plastic zone size in-
creases in area proportional to 4

JK  (invariant of temperature).  The volume of crack front plastic zone thus 
increases proportional with crack front length (i.e., B) x K4.  In Eq. (1), the probability of cleavage frac-
ture thus varies in proportion to the volume of highly stressed material containing metallurgical triggering 
points along the crack front.  In this work, we use the extensive experience with large-scale fracture test-
ing programs conducted over the past 10+ years framed in terms of the E-1921 approach.  Under SSY 
conditions, a calibrated implementation of the Weibull stress model must predict the toughness-
temperature variation of E-1921 and the statistical distribution of KJc values at each temperature described 
by Eq. (1). 

In the Weibull stress microscale model, the exponent (m) is coupled to an assumed, inverse power law 
description for the probability density function of initiating sites for cleavage fracture.  Because the expo-
nent reflects the statistical distribution of pre-existing trigger points for cleavage fracture, it is argued to 
be temperature and constraint invariant.  The temperature dependence appears in the toughness scale pa-
rameters, σu, analogous to the temperature dependent K0 value in Eq. (1).  Petti and Dodds [14] re-
examine the fundamental assumptions of the Weibull stress model and argue that σu reflects the micro-
scale toughness (Γc) of material that encloses metallurgical scale cracks and thus varies with temperature.  
The temperature dependence of the material flow stress enters into σu as well but is a clear second-order 
effect.  As a “local,” metallurgical-scale parameter, σu is assumed to not vary with constraint, since it re-
flects the actual stress computed to act upon a local material volume that drives the Weibull stress model, 
not the stress inferred to exist on the assumption that SSY conditions exist with stress field amplitude 
governed by KJ. 

The simplest, two-parameter Weibull stress model does not predict a threshold value of macroscopic 
toughness.  This contradicts directly the E-1921 description of toughness which has the threshold tough-
ness, Kmin.  Ruggieri, et. al. [13] suggest using Kmin to define a threshold value of the Weibull stress, σw-min 
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= σw (KJ = Kmin), together with the 3-parameter form in Eq. (9), which enables prediction of the E-1921 
statistical distribution, Eq. (1), when SSY conditions do exist.  Because the material flow properties vary 
with temperature, σu likewise varies with temperature and crack front length for a fixed Kmin. 
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3 Calibration of the Weibull Stress Model 
 
The values of fracture toughness predicted using the Weibull stress model depend strongly on the cali-
brated values of the Weibull stress parameters (m, σu).  Gao et al. [8, 20] and Ruggieri et al. [13] first 
demonstrated the source of difficulties in earlier calibration procedures which employ a single set of high-
constraint toughness values, with crack-front fields characterized by only J, to calibrate the two parame-
ters.  They introduced a new calibration procedure, which leads to unique sets of calibrated parameters.  
This procedure utilizes the constraint differences between two different sets of measured fracture tough-
ness values - one set measured using high constraint specimens and one set measured using low constraint 
specimens.  The low constraint specimens fracture at crack-front conditions characterized by at least two 
independent parameters (i.e., J and the T-stress or the Q-stress), which enables calibration for a unique 
pair (m, σu).  The method proceeds by using trial values of m to constraint correct (scale) each set of 
toughness values to a common reference configuration (most often plane-strain, SSY with zero T-stress).  
The calibrated pair of Weibull parameters (m and then σu) best collapses the two experimental data sets to 
the same distribution of cumulative fracture probability when scaled to the reference condition.  

For three-parameter models such as Eq. (9), additional procedures must be introduced to calibrate the 
third-parameter, Kmin (or σw-min).  Petti and Dodds [14,18] employ a simple least squares procedure in com-
bination with constraint correction to calibrate all three-parameters.  They assign equal weight to all 
measured toughness values in the calibration process.  This method not only produces similar toughness 
distributions for the high and low constraint data sets when scaled to a common reference condition, but 
finds the set of parameters that produce a “best-fit” of Eq. (9) to the experimental data.  In earlier work 
[8,13,20], the simple calibration procedure forced equivalence of only K0-values for the two scaled distri-
butions, which often led to less than satisfactory fits for toughness values at low and high fracture prob-
abilities.  Here, we employ an updated version of the least squares procedure.  This error function applies 
a weight factor to each measured toughness value designed to reduce the relative contribution of experi-
mental values that differ the greatest amount from the mean of the measured values.  The Appendix pro-
vides a detailed description of the error measure.  

The following steps describe the calibration procedure: 

1. Test two sets of specimens at the same temperature in the DBT region that have markedly different constraint: 

• high constraint (HC) data set, with nHC specimens, that approaches small-scale yielding conditions, 
having M ≥ 100 

• a low constraint (LC) data set, with nLC specimens, under large-scale yielding but without significant 
ductile tearing prior to cleavage fracture in each specimen 

The subsequently calibrated parameters for the Weibull stress model then apply strictly for the test tempera-
ture. 

2.  Obtain uniaxial, (true) stress-strain curve for the test temperature to strain values of ≈ 2.0 (needed for finite 
element modeling). 

3.  Rank order each of the experimental data sets and calculate the rank probability of failure for each specimen 
in each data set,  
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−
=

+
 ,  (12)  

where nHC and nLC denote the number of specimens in each data set and i denotes the rank number, respec-
tively (see Bompas-Smith [21]). 

4.  Perform nonlinear 3-D finite element analyses as described here and in [8,13,20] for: 

• both HC and LC test specimen geometries, and 

• the plane-strain reference configuration, 1T SSY (T-stress = 0). 

The stored, stress-strain results for each element at each analysis load step enable very rapid computation of 
the Weibull stress value using Eq. (6) for a specified, trial value of m. 

5.  Assume trial values for m and Kmin (or assume Kmin is fixed at 20 MPa√m as in E1921).  From 3-D finite ele-
ment results, compute σw vs. J loading curves for the specimens (HC and LC) and for the 1T SSY reference 
condition.  Convert J-values to KJ -values by applying the plane-strain conversion (the calibration process is 
expressed in terms of KJ to maintain similarity with E1921 terminology).  Set the value of σw-min = σw(KJ = 
Kmin). 

6.  Correct the high and low constraint toughness values to the 1T SSY plane-strain condition using Eq. (11).  This 
yields two sets of toughness values termed 1TSSYHC

JcK −  and 1TSSYLC
JcK − , or generally as 1TSSYxC

JcK − . 

7.  Use Eq. (2) to compute 1TSSY
0
HCK −  for the high constraint data set.  Use 1TSSY

0
HCK −  and the trial value of Kmin 

to define a continuous, cumulative failure probability function termed here 1TSSY
JcK  from Eq. (1). 

8.  For the trial pair m and Kmin, calculate a scalar error measure to characterize differences between the HC and 
LC constraint-corrected distributions.  The new error measure here includes two parts: (1) the summed differ-
ences between the high and low constraint-corrected data sets (Step 6) and the continuous SSY distribution 
(Step 7); and (2) the summed differences between the KJc-values for the high and low constraint data sets 
scaled to SSY (both from Step 6). 

min( , )
1TSSY 1TSSY 1TSSY 1TSSY

( ) ( ) ( ) ( ) ( ) ( )
1 1

( , )
LC HC LC HCn n n n

xC HC LC
min Jc i Jc i i Jc i Jc i i

i i

Error m K K K WF K K WF
+

− − −

= =

= − + −∑ ∑  (13) 

The multiplier, WF, denotes a weight factor (ΣWF ≡ 1), which scales the error contribution for a given value of 
i based on the confidence in the current failure probability.  See the Appendix for additional details including 
modifications to handle the nHC ≠ nLC case. 

Other, similar error measures likely would lead to equally satisfactory estimates for the parameters. 

9.  Repeat steps 5-8 for additional trial pairs of m and Kmin. 

10.  The calibrated pair (m, Kmin) minimizes the error function.  

 
After calibration of m and Kmin, compute values for σu and σw-min using the finite element results for σw vs. 
J.  Remember that 1TSSY

uσ  corresponds to 1TSSY
0JK K=  (Step 7) and 1TSSY

w minσ −  to KJ = Kmin calculated for 
the reference configuration.  The following equation scales the calibrated 1TSSY

uσ  to the experimental 
specimen configuration (xT xC), 

TT / 4 1TSSY / 4 1TSSY / 44 /
x xCx xC m m mm

u w w min w minσ σ σ σ− −= − − , (14)  

where Tx xC
w minσ −  denotes the σw value corresponding to KJ = Kmin for the xT size specimen of interest.  Equa-

tion (7) may be used to compute Tx xC
w minσ −  if the specimen has not experienced constraint loss at Kmin, oth-
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erwise, use Eq. (8).  Using m, Tx xC
uσ , and Tx xC

w minσ − , predictions of the cumulative probability of failure for 
the xT size specimen at a given temperature follow from Eq. (9). 
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4 Finite Element Modeling 
 
Nonlinear finite element analyses are performed on highly refined meshes using the research code 
WARP3D [22].  The material response follows a Mises constitutive model with J2 flow theory-isotropic 
hardening and includes the effects of large displacements and finite strains.  Each finite element model 
consists of standard three-dimensional, 8-node elements with 2×2×2 Gauss quadrature and a B formula-
tion to prevent volumetric locking.  WARP3D includes a domain integral procedure that enables compu-
tation of J-integral values point-wise along the front of a crack and the through-thickness average value.  

At each temperature, the analyses use piecewise-linear representations of the quasi-static, true stress-true 
strain curves measured [16,23] for the Euro material — a quenched and tempered pressure vessel steel 
DIN 22NiMoCr37 similar to ASME Grade A508 Cl.3 (see Fig. 2).  The tests and instrumentation enabled 
logarithmic strain values to reach ε = 2.0; the curves input to WARP3D have no further hardening for ε > 
2.0.  As commonly observed in ferritic steels, the yield stress decreases slowly with increasing tempera-
ture over the DBT region.  The complete experimental stress-strain curve at –110°C remained unavailable 
to us at the time of our analyses; consequently, we adopted the material flow properties at –91°C in analy-
ses for specimens tested at –110°C.  Temperature invariant values of E = 206 GPa and ν = 0.3 are em-
ployed in the analyses.  The strong dependency of computed Weibull stress values on the stress-strain 
fields just ahead of the blunted region along the crack front leads to a direct dependence on details of the 
stress-strain curves input to the analyses.  Preliminary analyses to compute the σw-J curves using initial 
stress-strain curves with measured strains ε ≤ 0.12 showed a significant variability depending on the as-
sumptions made for the input curves at larger strain levels (overall load-displacement curves from the 
analyses show no effect since very small volumes of material at the crack front experience severe strain-
ing).  The availability of stress strain curves at the higher maximum strain values eliminated this issue.  

The plane-strain, SSY stress fields with zero T-stress define a very high constraint, reference condition at 
the crack front to assess constraint loss in the fracture specimens.  To generate these fields, this study em-
ploys a standard boundary layer model [24, 25].  At maximum load, the extent of the plastic zone (Rp) 
remains small compared to the outer boundary radius (Rp < 0.05R).  The one-quarter symmetric, finite 
element mesh shown in Fig. 3c contains approximately 2,800 elements with one element layer through 
the thickness.  A plane-strain, Mode I displacement field applied to the outer boundary loads the model, 

( )( , )
(1 ) cos 3 4 cos

2 2
Iu R

K R
E

θ
ν θ ν θ

π
=

+ ⎛ ⎞ − −⎜ ⎟
⎝ ⎠

,  (15) 

( )( , )
(1 ) cos 3 4 cos

2 2
IR

K R
E

υ θ
ν θ ν θ

π
=

+ ⎛ ⎞ − −⎜ ⎟
⎝ ⎠

, (16) 

w(R, θ) = 0 (17) 
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The crack-tip region of the SSY mesh has a small initial root radius of 2.5 μm to aid convergence of the 
finite-strain analyses in the early stages of loading.  The σw-J curves obtained from the SSY analyses en-
able computation of the C  and C  constants in Eq. (7).  
Nonlinear finite deformation analyses are also performed on 3-D models of CVN and C(T) specimen ge-
ometries using very refined meshes.  Figures 3(a,b) show the one-quarter symmetric finite element 
meshes defined for these two specimens.  The CVNs are 0.4T SE(B)s with a square cross-section, pre-
cracked to a/W = 0.12 or 0.5.  The proportionally scaled C(T) specimens range in size from 0.5T to 2T, all 
analyzed with a/W=0.56 (the g-function approach described previously enables simple scaling of the 1T 
size used in the analyses to all other sizes).  Focused rings of elements surround the crack-tip region of 
each specimen.  The specimen meshes also contain an initial root radius at the crack front.  Under increas-
ing load, extensive element distortion near the notch root prevents convergence of the global Newton it-
erations.  To remedy this problem, several different meshes are employed for each fracture specimen, 
each mesh has an increasingly larger initial root radius.  This process enables generation of solutions over 
the complete loading history to quite high J-values.  The number of elements in the CVN and C(T) mod-
els ranges from 16,200 to 28,500 depending on the specimen type and initial root radius, which ranged 
from 0.25-108 μm for C(T)s and 0.25-36 μm for CVNs.  The key results (σw-J curves) for a mesh are not 
used until the deformed root radius exceeds ≈ 3× the undeformed radius.  Previous work shows that 
crack-front fields at higher loading then remain unaffected by the initial notch radius [26].  Simple spline 
fitting of these multi-mesh results yields the final σw-J curve for a specimen (at a specific temperature) 
over the complete load history. 
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5 Results from Calibration Procedure 
 

5.1 European program 

Ten laboratories generated extraordinarily large datasets of fracture toughness values (>800) for a single 
material during the European Union project entitled “Fracture toughness of steel in the ductile to brittle 
transition regime.” Heerens et al. [16] provide a detailed description of the experimental procedures, ma-
terial properties, specimen dimensions and locations in the forging.  The project participants executed 
fracture toughness tests using standard, deep notch C(T) specimens with sizes ranging from 0.5T to 4T.  
The datasets span test temperatures from the lower shelf to the upper shelf with significant coverage of 
the DBT region.  The fracture datasets and experimental stress-strain curves may be downloaded from the 
GKSS ftp-server at ftp://ftp.gkss.de/pub/eurodataset.  Subsequent additional work by Heerens et al. [17], 
among others, tested over 400 pre-cracked Charpy specimens machined from the broken halves of 4T 
C(T)s tested in the Euro-program.  

Wallin’s analysis [15] of all the C(T) fracture toughness data generated in the testing program leads to an 
ASTM E1921 T0 temperature of –90°C (i.e., the temperature at which the median toughness of a 1T, 
high-constraint geometry = 100 MPa√m).  Figures 4(a,c) show the rank distributions of cumulative frac-
ture probability, Eq. (12), for the raw experimental fracture toughness values for the 0.5T, 1T, and 2T 
C(T) specimens at –40°C and at –20°C — temperatures at the upper-end of the DBT region.  In contrast, 
Fig. 4(b) shows the cumulative fracture probabilities for the deep-notch CVN and 0.5T C(T) specimens 
tested in the lower-transition region at –110°C.  Three of the 0.5T C(T)s at –40°C and most of the 0.5T 
C(T) specimens at –20°C experienced significant, stable ductile tearing prior to cleavage fracture.  All 
other specimens failed by cleavage fracture without measurable ductile tearing.  To better characterize the 
relative amount of deformation in various size specimens across the DBT shown in Fig. 4, markers corre-
sponding to different M-values are provided, where M = bσ0/J with the temperature dependent σ0 taken 
from Fig. 2.  To place these values in perspective, E1921 requires censoring of values for deep-notch 
specimens with M ≤ 30, although some amount of constraint loss does occur at higher M-values, espe-
cially in the SE(B) specimens.  

Figure 5 shows the distributions of cumulative fracture probability for raw experimental toughness values 
of datasets used here later to explore the robustness of the calibrated Weibull stress model.  These datasets 
are not used in any present calibrations and include: (1) deep notched (a/W = 0.5) CVNs at –91°C; (2) 
0.5T C(T)s at –60°C, and (3) shallow-notched (a/W = 0.12) CVNs at –110°C.  All deep-notch C(T) 
specimens in all datasets have a nominal a/W = 0.56.  

Figure 6 shows the experimental datasets of Fig. 4 scaled to a common, 1T crack-front length using Eq. 
(4) as described in E1921.  This statistical adjustment corrects the different datasets at a common tem-
perature to have the same cumulative failure probabilities provided there exists no deterministic constraint 
loss from large-scale yielding effects.  In Fig. 6(a) for –40°C, the 2T and 1T datasets merge very closely 
but the 0.5Ts diverge for specimens with M ≤ 20.  At –20°C in Fig. 6(c), the 0.5T specimens all have M ≤ 
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20 and show a markedly different behavior from the 1T and 2T specimens (which also appear to show 
some constraint differences).  Figure 6(b) shows that even at –110°C (20°C below T0) there appears to 
exist a constraint difference between deep-notch CVNs and C(T)s with nominally the same crack-front 
length (0.4T vs. 0.5T). 

 
5.2 Calibration Strategy 

The procedures to calibrate the three-parameter Weibull stress model described in Section 2 rely upon the 
existence of fracture toughness datasets at a fixed temperature with differing amounts of constraint loss.  
The present work uses the toughness datasets for the Euro-material measured at –40°C and at –110°C to 
calibrate the parameters (independently) to investigate the temperature dependence of the Weibull 
modulus (m).  These two test temperatures of T0 – 20°C and T0 + 50°C lie at the extreme ends of the DBT 
for this material and should indicate the temperature effect on m if it exists.  

Bernauer et al. [27] previously combined a continuum damage model for ductile tearing with the stan-
dard, two-parameter Beremin model to calibrate Weibull stress parameters for this same Euro-material.  
Based on initial quasi-static fracture and tensile tests produced by the program, the calibrated m in [27] 
varied from 22 to 103 depending on test temperature and specimen geometry.  Their results using fracture 
tests relied on a single set of high-constraint specimens, C(T)s, combined with the maximum likelihood 
parameter calibration method of Minami et al. [11] and thus their results may have been influenced by the 
non-uniqueness issue [8,12,13].  The calibration process here uses the final, very large datasets combined 
with a three-parameter Weibull stress model and the constraint-based procedure to overcome the non-
uniqueness issues. 

 
5.3 Calibration at – 40 °C 

Here we calibrate the Weibull stress parameters for the Euro-material at –40°C using the 0.5T and 1T 
C(T) fracture toughness data (see Fig. 4a).  Exceptionally large fracture toughness values (M ≤10) are 
excluded from the calibration procedure.  Excessive deformation occurs along the crack front in the finite 
element models and predicted strain levels exceed the experimental stress-strain curves input to the analy-
ses.  Some specimens with M values ≤ 10 reportedly have ductile tearing not incorporated in the present 
analyses.  The calibration procedure follows the steps outlined in Section 2.  Figure 7(a) provides the er-
ror function of Eq. (13) over a wide range of trial m and Kmin pairs (m and Kmin range from 1 to 30 and 
from 0 to 80 MPa√m, respectively).  Figure 7(a) illustrates the error as a function of m; Figure 7(b) shows 
the corresponding value of Kmin at each of these m-values that leads to the indicated minimum error.  The 
Eq. (13) error values are normalized by the maximum error value found over the examined range of m 
and Kmin.  At –40°C, the error function remains relatively constant for values of m ranging from 18 to 22.  
Similarly, the corresponding Kmin values remain nearly constant at 40 MPa√m for values of m ranging 
from 18 to 22 (recall that E1921 adopts a temperature invariant Kmin = 20 MPa√m for all materials to re-
duce the required number of test specimens to a practical value of 6 minimum).  
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The Weibull stress parameters m = 20 with σw-min computed at Kmin = 40 MPa√m appear to best minimize 
the error function at –40°C.  Figure 8(a) illustrates the effects of the now combined statistical crack-front 
length (thickness) adjustment and the deterministic constraint correction.  Each measured toughness value 
for the 0.5T and 1T C(T) specimens is corrected to an equivalent 1T SSY value using Eq. (11), where the 
g-function corresponds to the calibrated m = 20 (for the C(T) geometry and stress-strain curve at –40°C) 
and Kmin equals the calibrated value of 40 MPa√m.  The rank probabilities (Pf) follow from Eq. (12).  The 
continuous curve on the figure represents Eq. (9) based on these values: m = 20, σw-min computed at Kmin = 
40 MPa√m in the 1T-SSY boundary layer model, and σu = σw at 1TSSY

0JK K=  for the 1T-C(T) specimen 
(see Step 7 in the calibration process).  Table 1 lists the computed values of σu and σw-min for each speci-
men and C .  The Pf value for each σw value is plotted in terms of the corresponding 1TSSY

JK  value com-
puted with Eq. (7) given C at –40°C (and a unit value for V0).  

These constraint corrected values in Fig. 8(a) should be compared to those in Fig. 6(a), which reflect only 
the (statistical) crack-front length adjustment.  Since this m and Kmin pair minimizes the error function 
based on constraint differences, the constraint corrected toughness values collapse to essentially the same 
distribution in Fig. 8(a) as expected.  For reference, Fig. 8(b) shows the constraint corrected values for the 
same datasets but using a very different pair of Weibull stress parameters of m = 4 and Kmin = 20 MPa√m.  
Here the corrected datasets do not collapse to same distributions indicating an incorrect pair of values (m, 
Kmin).  

Figures 9(a,c) show the cumulative probability of fracture predictions for the 0.5T, 1T and 2T C(T) 
specimens using the calibrated parameters.  The raw experimental toughness values (no adjustments, no 
corrections) are plotted at the corresponding rank probability values in each case.  The continuous curve 
for each dataset derives from Eq. (9) based on these values: m = 20, σw-min computed at Kmin = 40 MPa√m 
in the 1T-SSY boundary layer model, and σu = σw at 1TSSY

0JK K= for the 1T-C(T) specimen and adjusted 
via Eq. (14) to the actual specimen size (see Step 7 in the calibration process).  Table 1 lists the computed 
values of σu and σw-min for each specimen.  The Pf value for each σw value is plotted in terms of the corre-
sponding Tx

JK  value where σw values are computed with Eq. (8) given C  at –40°C (and a unit value for 
V0).  The g-function for each of these proportionally-sized C(T) specimens is identical.  This process, 
based on the calibrated Weibull stress parameters, leads to consistent predictions for the 0.5T and 1T C(T) 
specimens as indicated in Fig. 9a, i.e. the data used to calibrate the parameters.  The predicted distribution 
for the 2T C(T) dataset (not used in the calibration) shows excellent agreement as well. 

 
5.4 Calibration at –110 °C 

We repeat the above calibration procedure using large datasets of 0.5T C(T) and deep notch, pre-cracked 
CVN specimens at –110°C.  At this temperature, 20°C below T0 = –90°C, even the small C(T) specimens 
exhibit very nearly SSY behavior at fracture.  Consequently, the absence of constraint loss between, for 
example, 1T and 0.5 C(T) specimens precludes calibration of the Weibull stress parameters.  Figure 6(b) 
shows the 0.5T C(T) and CVN datasets adjusted to (statistically) equivalent 1T thickness using the E1921 
procedure.  The resulting distributions indicate sufficient constraint loss exists in the pre-cracked CVN 
specimens (0.4T SE(B)s with B×B cross-section) to calibrate the parameters. 
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Figure 7(c) provides values of the error function defined in Eq. (13) over a wide range of trial m and Kmin 
pairs (m and Kmin range from 1 to 30 and from 0 to 80 MPa√m, respectively).  Figure 7(c) illustrates the 
error as a function of m; Figure 7(d) shows the corresponding value of Kmin at each of these m-values that 
leads to the minimum error.  Here the Eq. (13) error values are again normalized by the maximum error 
value found over the examined range of m and Kmin.  The reduced level of constraint loss for these two 
specimen geometries (compared to the specimens used at –40°C) leads to less “sensitivity” in the calibra-
tion process.  This effect appears as the larger “flat” region of the error curve in Fig. 7(c).  As the con-
straint difference between the two datasets used in the calibration gradually vanishes, all values of m fit 
the datasets indicating the loss of uniqueness discussed in [8,12,13]. 

Figures 7(c,d) indicate that m = 18 and Kmin = 30 MPa√m minimize the error at this temperature.  Figure 
8(d) illustrates the effects of the now combined statistical crack-front length (thickness) adjustment and 
the deterministic constraint correction.  Each measured toughness value for the 0.5T C(T) and the CVN 
specimen is corrected to an equivalent 1T-SSY value using Eq. (11) and Kmin equals the calibrated value 
of 30 MPa√m.  Since m and Kmin minimize the error function, the constraint corrected toughness values 
collapse to nearly identical distributions.  For reference, Fig. 8(d) shows the constraint corrected values 
for the same datasets but using a very different pair of Weibull stress parameters of m = 4 and Kmin = 20 
MPa√m.  Here the corrected datasets do not collapse to same distributions indicating an incorrect pair of 
values (m, Kmin). 

Figure 9(b) shows the cumulative probability of fracture predictions for the 0.5T C(T) and CVN speci-
mens using the calibrated parameters.  The raw experimental toughness values (no adjustments, correc-
tions) are plotted at the corresponding rank probability values in each case.  The continuous curve for 
each dataset derives again from Eq. (9) based on these values: m =18, σw-min computed at Kmin = 30 
MPa√m in the 1T-SSY boundary layer model, and σu = σw at 1TSSY

0JK K=  for the 0.5T-C(T) specimens 
and adjusted via Eq. (14) to the actual specimen size (see Step 7 in the calibration process).  Table 1 lists 
the computed values of σu and σw-min for each specimen and C.  The Pf value for each σw value is plotted in 
terms of the corresponding Tx

JK value where σw values are computed with Eq. (8) given C at –110°C (and 
a unit value for V0).  The predicted distributions for these two datasets, both used in the calibration, show 
excellent agreement as expected. 

 
5.5 Consequences of Temperature Invariant m-Value 

Based on the independent calibrations using very large datasets at extremes of the DBT (–40°C, –110°C), 
the Weibull modulus, m, appears to remain essentially invariant of temperature with a value of 18 to 20 
for this key ferritic steel used to fabricate many commercial reactor pressure vessels.  Further, the best-fit 
Kmin value appears to increase slowly with temperature while σu increases more sharply with temperature 
over the DBT region.  These results are consistent with recent studies by Petti and Dodds [14].  In a re-
lated effort, Gao and Dodds [28] show, through similar calibrations, an invariance of m to loading rate at 
a fixed temperature in the DBT for a strongly rate-sensitive ferritic steel (A515-70).  Not surprisingly, 
they find that σu exhibits a dependence on loading rate (decreases with increased K-rate) but insufficient 
experimental data precludes a study of the Kmin rate dependence in their work. 
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The temperature invariance of m opens the real potential for practical applications of this methodology to 
quantify constraint effects on cleavage toughness over the DBT region.  Experimental datasets with suffi-
cient constraint difference are then required at only one temperature to calibrate m.  Petti and Dodds [14] 
outline a new procedure to predict the cumulative probabilities of fracture at any temperature over the 
DBT region for specimen geometries that experience constraint loss given a calibrated value for m and an 
estimated or assumed variation for Kmin with temperature (could be simply a constant value of, for exam-
ple, 20 MPa√m).  In the Petti and Dodds approach, the toughness-temperature relationship defined by the 
E1921 Master Curve for KJc enables computation of the σu temperature dependence — the process forces 
the Weibull stress model with a calibrated, temperature invariant m value to predict the E1921 Master 
Curve KJc-temperature dependence. 

In the next section, we employ the present calibrated Weibull stress parameters for the Euro-material and 
the Petti and Dodds procedure to predict the measured fracture distributions at various temperatures over 
the DBT region not used in the present calibrations.  This exercise thus very closely represents a likely 
application scenario in practical defect assessments. 
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6 Predictions Over DBT by Coupling with the Master Curve 
 

The previous section used extensive fracture data sets for the Euro-material to demonstrate that the 
Weibull modulus (m) remains essentially constant over the DBT range (≈ 20 at –40 °C and ≈ 18 at –110 
°C).  The experimental toughness values at these two temperatures, coupled with known m-values, also 
enabled determination of temperature specific σu and Kmin values (and thus σw-min).  In practical defect as-
sessments, such temperature specific calibrations become impractical.  Most likely, sets of low and high 
constraint fracture toughness values for the calibration process will be available at only one temperature.  

With the knowledge that m remains essentially constant over the DBT range for this important pressure 
vessel steel, this section describes an application of the Petti and Dodds procedure [14] to predict cumula-
tive fracture probabilities for specimens that experience constraint loss.  The recommended procedure 
uses the calibrated value of m for the material obtained from fracture toughness tests conducted above T0 
(but below the onset of ductile tearing) to maximize the constraint loss in the datasets and thereby in-
crease the calibration sensitivity.  Recall that when the temperature falls well below T0 the behavior of all 
fracture specimens approaches SSY (including small-sized specimens and specimens with shallow-
cracks).  Once SSY conditions are reached, a unique calibration of the Weibull stress parameters is no 
longer possible (see extended discussions in [8,15,19]).  The present calibration process thus relies on the 
large differences in fracture toughness between high and low constraint specimens that develop rapidly at 
temperatures above T0.  Predictions from the calibrated model at lower temperatures, approaching and 
below T0, are then expected to maintain accuracy as all datasets gradually merge to the SSY condition on 
the lower-shelf at which m becomes a non-unique parameter 

The large datasets of fracture toughness values with some constraint loss available for the Euro-material 
over the DBT region between –20°C and –110°C provide a unique opportunity to assess the practicality 
and effectiveness of the proposed procedure.  Let us assume then for this exercise that high and low frac-
ture toughness datasets are available only at –40°C.  The high toughness dataset, the 1T C(T) specimens, 
combined with conventional application of the ASTM E1921 procedures leads to an estimate of the refer-
ence temperature T0 ≈ –90°C.  Using the high constraint 1T C(T) specimens and the 0.5T C(T) specimens 
(which experience some constraint loss), the calibrated Weibull modulus again becomes m = 20, as de-
veloped in Section 5.3.  In practice, the number of available test specimens for the calibration (often 6–
10) would be far less than the number of specimens here for the Euro-material at –40°C.  The reduced 
number of specimens in practice would thus preclude the simultaneous calibration of Kmin, which is set 
now at the temperature invariant value of 20MPa√m, as required in E1921, rather than the calibrated 
value of 40 MPa√m. 

With m and Kmin now known over the full DBT range, the only remaining parameter required to estimate 
fracture probabilities at temperatures other than –40°C becomes the Weibull scale parameter, σu, which 
varies with temperature.  The procedure outlined by Petti and Dodds [14] predicts σu as a function of tem-
perature using the calibrated m-value and the known value for T0.  Given T0, the procedure adopts the 
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E1921 Master Curve to estimate the scale parameter 1T
0K  (assumed to represent plane-strain 1T SSY 

conditions) as a function of temperature.  Finite element analyses of the plane-strain SSY boundary layer 
model over a range of temperatures yield the Weibull stress vs. KJ curves and thus the constant C   for use 
in Eq. (7).  The finite element analyses of the SSY model and of the application geometries do require the 
measured, uniaxial stress-strain curves at the specific application temperatures.  The analyses and 1T

0K  
estimates from the Master Curve enable computation of the needed σu values as a function of temperature. 
With σu known, the cumulative fracture probabilities for the application geometry may be computed using 
the procedures described in Section 5.  

Here, we employ this procedure to estimate the cumulative fracture probabilities of the Euro-material for 
these configurations that have some level of constraint loss: (a) shallow notch CVN specimens at –110 
°C, (b) deep-notch CVN specimens at –91°C, (c) 0.5T C(T) specimens at –60°C, and (d) 2T, 1T and 0.5T 
C(T)s at –20°C.  Large datasets of measured fracture toughness values are available at each of these con-
ditions for the Euro-material to assess the reliability of this approach — none of these datasets have been 
used in any calibration processes described in this work. 

The following steps describe the procedure in additional detail: 

1.  Calibrate the Weibull stress parameter m as described in Section 3 using datasets of fracture toughness ob-
tained at a temperature above T0 but below the onset of significant ductile tearing (recommended).  The cali-
brated m-value then remains invariant of temperature.  Most often, Kmin will be set to the temperature invari-
ant, E1921 value of 20 MPa√m.  Here, we use the calibrated value of m = 20 at –40°C. 

2.  Use the high constraint experimental data from the calibration and calculate the E1921 reference temperature 
T0,  

1T
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T T
⎡ ⎤−
⎢ ⎥= −
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1T 1T
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−
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⎢ ⎥
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where N denotes the number of specimens in the dataset. 

3.  Using the Master Curve and T0, calculate 1T
0K  for the DBT temperature(s), T, at which predictions of fracture 

probabilities for specimens with constraint loss are desired, 

[ ]1T
0 031 77 exp 0.019( )K T T= + −   MPa√m, °C.  (21) 

4.  Using stress-strain curves at the application temperatures, perform finite element analyses to compute Weibull 
stress values (with calibrated m) for: (a) the 1T plane-strain SSY reference condition, (b) all specimens (sizes 
and geometries) of interest. 
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5.  Find the value of 1T
uσ corresponding to 1T

0IK K=  and σw-min corresponding to I minK K=  for the desired tem-
perature using results from the 1T plane-strain SSY analysis. 

6.  Calculate the denominator of Eq. (9), ( ) ( )
4 4

1TSSY 1TSSY
m m
u w minσ σ −− , for the application temperature.  This value 

remains constant with changes in constraint (e.g. specimen size and type).  Though not needed to make the 
predictions, the value of σu for the specimen of interest follows from Eq. (14). 

7.  Using results from the finite element analyses of the specimens, calculate Tx
w minσ − . 

8.  Use Eq. (9) with the constant denominator calculated in Step 6, the value of Tx
w minσ −  for the specimen of inter-

est calculated in Step 7, and the xT specimen’s Weibull stress distribution as a function of KJ from Step 4 to 
predict the distribution of cumulative fracture probability Pf  vs. KJ.  

From Step 3 above and with T0 = –90°C, 1T
0K  (assumed here to be plane-strain SSY) equals 106.5 

MPa√m, 167.2 MPa√m, and 322 MPa√m at –91°C, –60 °C, and –20°C, respectively.  Application of the 
remaining steps of the procedure leads to predictions of the cumulative fracture probabilities for the 
lower-constraint geometries across the DBT range.  Petti and Dodds [14] discuss the potential conse-
quences of assuming that the Master Curve actually represents 1T, plane-strain SSY conditions — at tem-
peratures in upper transition this strong connection diminishes and also contributes to errors in predictions 
of fracture probabilities at temperatures higher than the one used to calibrate m.  A quantitative recom-
mendation on the upper limit of testing temperature above T0 is not possible with this technology at the 
present time.  The current model (faithfully) reproduces built-in inaccuracies of the Master Curve shape at 
temperatures approaching upper transition. 

Figure 10(a) compares the predictions to the raw experimental data at –91°C for the deep notch CVNs.  
The Weibull stress-based prediction (curve) very closely matches the rank probability values for the 
measured experimental toughness values.  Figure 10(b) illustrates equally good agreement for the 0.5T 
C(T) specimens at –60°C.  Figure 10(c) illustrates the predictions at –20°C for the 2T, 1Tand 0.5T C(T) 
specimens.  The circles indicate those 0.5T C(T) specimens, which experienced ductile tearing prior to 
fracture.  In the finite element analyses, excessive deformation along the crack front in these 1T and 0.5T 
C(T) specimens at –20°C for very high toughness levels eventually limits the accuracy of the predictions.  
Nevertheless, the method produces reasonably good predictions of the cumulative probability of failure 
for these specimens at 70°C above T0 and at 20°C above the temperature used for calibration of m.  Fi-
nally, Figure 10(d) shows the predictions for the newly available shallow-notch (a/W = 0.12) CVN 
specimens tested at –110°C.  The solid line illustrates the prediction using the E1921 value of 20 MPa√m 
for Kmin.  For reference, the dashed line shows the improved prediction for the temperature specific, cali-
brated value of Kmin = 30 MPa√m described in Section 4.4. 

The good agreement of predictions with measured experimental toughness values shown in each case in 
Fig. 10 provides an encouraging demonstration for application of the Weibull stress method, at least for 
this key ferritic steel used in many nuclear pressure vessels.  The demonstrated temperature invariance of 
the Weibull modulus, m, coupled with a fixed Kmin and the E1921 Master Curve to support temperature 
dependent σu represents a reasonably practical engineering methodology. 
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7 Summary and Conclusions 
 

This study utilizes the very large datasets of more than 800 specimens from a recently completed Euro-
pean Union research project entitled “Fracture toughness of steel in the ductile to brittle transition re-
gime” to investigate the temperature dependence of the Weibull stress modulus, m, over the ductile-to-
brittle transition range.  The material is a widely used, nuclear pressure vessel steel DIN 22NiMoCr37 
(similar to the American A508 Cl.3 steel).  The Weibull stress micromechanical model for cleavage frac-
ture adopted in this study has three-parameters in the expression for the cumulative fracture probability 
that require calibration: the modulus m, the scale factor σu and a threshold value, σw-min, of the Weibull 
stress below which cleavage fracture does not occur.  Once these parameters become known for a mate-
rial at a specified temperature over the DBT range, 3-D finite element analyses of fracture specimens may 
be used to predict cumulative probabilities of cleavage fracture under various levels of constraint loss that 
develop from large-scale plasticity. 

The work presented here supports the following conclusions:  

• Sufficient constraint difference exists in the available experimental datasets to calibrate the 
Weibull modulus, m, at the extreme range of temperatures of the DBT for this material.  The 
ASTM E1921 reference temperature T0 = –90°C.  Independent calibrations of m are described in 
this study at T = –40°C and –110°C.  

• The calibrated m-values are m = 20 at T = –40°C and m = 18 at T = –110°C, with greater sensitiv-
ity of the calibration process demonstrated at the higher temperature.  The calibration process se-
lects the value for m that collapses datasets with constraint differences to have the same distribu-
tions of cumulative fracture probability in a 1T, plane-strain SSY reference condition.  Based on 
these results derived from exceptionally large datasets, we conclude that m for this key ferritic 
steel remains invariant of temperature over the DBT range. 

• The very large datasets support simultaneous estimates for the best-fit value of the threshold 
toughness, Kmin, as used in the E1921 three-parameter Weibull expression for the cumulative frac-
ture probability.  The best-fit values are Kmin = 30 MPa√m at T = –110°C and Kmin = 40 MPa√m 
at T = –40°C.  ASTM E1921 recommends use of a temperature invariant value of Kmin = 20 
MPa√m unless quite large datasets are available for the calibration.  Not surprisingly, Kmin does 
increase somewhat with temperature for this material. 

• With calibrated values of the Weibull modulus, m, at T = –110°C, –40°C, corresponding tempera-
ture dependent σu and σw-min values derive from nonlinear finite element analyses of the 1T, plane-
strain SSY reference condition and of various fracture specimens.  The calibrated model predicts 
correctly the fracture toughness probability distributions for the combined deterministic effects of 
constraint loss and statistical effects of crack-front length at the two calibration temperatures. 
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• The temperature invariance of the Weibull modulus, m, for this pressure vessel steel makes possi-
ble more practical, “engineering” applications of the present Weibull stress model in defect as-
sessments.  The modulus, m, is calibrated at a single temperature from test data (recommended to 
be above T0 but below the temperature at which significant ductile tearing develops prior to 
cleavage fracture).  Here, we use m = 20 from the calibration at T = –40°C.  With m and T0 
known, along with stress-strain curves at temperatures of interest over the DBT region, this work 
demonstrates use of the E1921 Master Curve to compute the temperature dependence of σu for the 
Euro-material.  As would be most likely done in practice, Kmin is fixed over the DBT range at the 
E1921 recommended value of 20 MPa√m. 

• Applications of this “engineering” approach to additional, large datasets for the Euro-material 
over the DBT range that show some constraint loss lead to excellent predictions of the measured, 
cumulative fracture probabilities.  These comparisons use no datasets involved in any calibrations 
of the Weibull stress parameters. 
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Appendix: Calibration Error Measure 
 

The present calibration method employs an updated error measure (function) to characterize differences 
between the low-constraint (LC) and high-constraint (HC) data sets once they are constraint corrected to 
the 1T SSY condition for a trial value of m and Kmin. This procedure also accommodates a variable or 
fixed value for Kmin. The error function combines equally three contributions as 

min( , )
1TSSY 1TSSY 1TSSY 1TSSY 1TSSY 1TSSY

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
1 1 1

( , )
LC HC LC HCn n n n

LC HC HC LC

min Jc i Jc i i Jc j Jc j j Jc k Jc k k
i j k

Error m K K K WF K K WF K K WF− − − −

= = =

= − + − −+∑ ∑ ∑   (A1)  

where nLC and nHC denote the number of test specimens in the LC and HC data sets, respectively. As 
noted in Section 3, there are likely other, equally effective scalar measures of the calibration error. The 
one above is physically motivated to reflect data sets with a larger number of values and to (possibly) 
improve upon the earlier measure of Gao and Dodds [20] based on agreement of only K0 values for the 
data sets. Equation (A1) contains three independent parts calculated separately for a trial pair (m, Kmin). 
The first and second parts follow as, 

1TSSY 1TSSY 1TSSY 1TSSY
( ) ( ) ( ) ( ) ( ) ( )

1 1

LC HCn n
LC HC
Jc i Jc i i Jc j Jc j j

i j

K K WF K K WF− −

= =

− + −∑ ∑   (A2) 

and compute the difference between the high and low constraint experimental data sets constraint 
corrected to the reference configuration, ( )

1TSSYxC
Jc iK − , and the SSY distribution of ( )

1TSSY
Jc iK , see Fig. A1a. 

The reference (continuous) cumulative failure probability, ( )
1TSSY
Jc iK , follows from Eq. (1) using 1TSSY

0K  
taken equal to 1TSSY

0
HCK − . For each specimen toughness value i, the difference between ( )

1TSSYxC
Jc iK −  and 

( )
1TSSY
Jc iK  is thus computed at the same failure probability.  

The second part of the error function,  
min ( , )

1TSSY 1TSSY

( ) ( ) ( )
1

LC HCn n
HC LC

Jc k Jc k k
k

K K WF− −

=

−∑   (A3) 

captures the difference between the high constraint data set values, ( )
1TSSYHC

Jc iK − , and the low constraint 
data set values, ( )

1TSSYLC
Jc iK − , where both distributions are constraint corrected to the 1T SSY reference 

condition. Following the first two parts of the error function, the difference is calculated at equal failure 
probabilities. For LC and HC data sets with differing numbers of tested specimens (e.g. unequal failure 
probabilities for a given toughness value), we use linear interpolation to estimate the required toughness. 

The weight function, WF, reduces the relative contribution of the experimental data with the largest 
uncertainty in Pf (the tail and top of the distribution), 

( )

1

( )
1

( )

Jc

Jc

K i
i N

K i
i

CL z
WF

CL z
=

= −

∑
, where 1maxWF ⇒   (A4) 

and KJc
CL denotes the confidence limit for each sample and N denotes the total number of specimens in 

the data set. Another possible weight function has a simpler form 
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( )

( )
1

( )
Jc

Jc

K i
i max

K i

CL z
WF

CL z
= − , where 1maxWF ⇒   (A5) 

and max
JcKCL  is the confidence limit for the data value with the most uncertainty. This second weight 

function should be applied if it is desired to completely reduce the contribution of the data with the most 
uncertainty.  

The weight function is calculated separately for each data set 

 95% 5%( )
Jc i i iKCL z z z= + . (A6) 

The 5% ( )5%
iz  and 95% ( )95%

iz  confidence limits follow from nonlinear equation  

2( ) ( ) ( ) ( ) 0p i i e i e ie z A z P z P z± − = ,  (A7) 

where 

( )( )
2p i rank i
Ne z P z= − ,  (A8) 

( )1
2e rank rank iP P P z= − − ,  (A9) 

 }{( ) min 1.162 0.342 / ;0.82 ln( )i eA z N P N= − +  for Pe ≤ 0.5,  (A10) 

and 

( ) }{( ) min 1.162 0.342 / ;0.82 1 ln( )i eA z N P N= − + −  for Pe > 0.5.  (A11) 

The positive sign in Eq. (A7) corresponds to the 5% limit and the negative sign to the 95% limit. See 
Wallin [29] and Gao et al. [20] for additional details regarding confidence limits. 
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