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Surface fuel deposition and decomposition rates are important to fire management 
and research because they can define the longevity of fuel treatments in time and 
space and they can be used to design, build, test, and validate complex fire and 
ecosystem models useful in evaluating management alternatives. We determined 
rates of surface fuel litterfall and decomposition for a number of major forest types 
that span a wide range of biophysical conditions in the northern Rocky Mountains, 
USA. We measured fuel deposition for more than 10 years with semi-annual 
collections of fallen biomass sorted into six fuel components (fallen foliage, twigs, 
branches, large branches, logs, and all other canopy material). We gathered this 
material using a network of seven to nine, 1-m2 litter traps installed at 28 plots 
that were established on seven sites with four plots per site. We measured 
decomposition for only fine fuels using litter bags installed on five of the seven sites 
and monitored for biomass loss from the bags each year for 3 years. Deposition 
and decomposition rates are summarized by plot, cover type, and habitat type 
series. We also present various temporal and spatial properties of litterfall and 
decomposition fluxes across the six fuel components.

Keywords: fuel dynamics, fuel accumulation, deposition, decay, downed dead 
woody, simulation modeling

Robert E. Keane is a Research Ecologist with the U.S. Department of Agriculture, 
Forest Service, Rocky Mountain Research Station at the Missoula Fire Sciences 
Laboratory, Missoula, MT 59808. Since 1985, Keane has developed various 
ecological computer models for the Fire Ecology and Fuels Research Project 
for research and management applications. His most recent research includes 
1) developing ecological computer models for the exploring landscape, fire, and 
climate dynamics, 2) mapping of fuel characteristics, 3) investigating the ecology 
and restoration of whitebark pine, and 4) conducting fundamental fuel science. He 
received his B.S. in forest engineering in 1978 from the University of Maine, Orono; 
his M.S. in forest ecology from the University of Montana, Missoula, in 1985; and 
his Ph.D. in forest ecology from the University of Idaho, Moscow, in 1994.

Rocky Mountain Research Station
Natural Resources Research Center

2150 Centre Avenue, Building A
Fort Collins, Colorado 80526

Abstract

The Author



I would like to acknowledge all those field technicians who spent countless hours 
collecting, sorting, and weighing litter: Todd Carlson, Kirsten Schmidt, Wayne 
Lynholm, Courtney Couch, Laurie Dickinson, Myron Holland, Curtis Johnson, 
Micha Krebs, Eric Apland, Daniel Covington, Amy Rollins, and Ben McShan 
of the Rocky Mountain Research Station Missoula Fire Sciences Laboratory. I 
also thank Joseph White of Baylor University; Ceci McNicoll U.S. Department of 
Agriculture, Forest Service, Gila National Forest; Wendel Hann U.S. Department 
of Agriculture, Forest Service, Washington Office; Dan Fagre, USGS Glacier 
Field Station; Dave Peterson, U.S. Department of Agriculture, Forest Service, 
Pacific Northwest Research Station; and Matt Rollins, Russell Parsons, Dennis 
Simmerman, Helen Smith, and Kathy Gray, U.S. Department of Agriculture, Forest 
Service, RMRS Missoula Fire Sciences Laboratory for support and assistance in 
this project. We thank Roger Ottmar and Tom Spies, U.S. Forest Service, Pacific 
Northwest Research Station, Elizabeth Reinhardt, Rocky Mountain Research 
Station, and Jan van Wagtendonk, Yosemite National Park for insightful technical 
reviews. This work was partially funded by the USGS National Biological Service 
and Glacier National Park’s Global Change Research Program under Interagency 
Agreements 1430-1-9007 and 1430-3-9005 and the USGS CLIMET project.

Acknowledgments

Contents

Introduction............................................................................................ 1
Background.......................................................................................... 1

Methods.................................................................................................. 3
Measuring Litterfall.............................................................................. 5
Measuring Fuel Decomposition........................................................... 5
Analyzing Collected Data..................................................................... 7

Results................................................................................................... 7
Litterfall Rates...................................................................................... 7
Decomposition Rates........................................................................... 8
Leaf Area Index (LAI)........................................................................... 9

Discussion............................................................................................. 9
Litterfall Rates...................................................................................... 9
Decomposition................................................................................... 15

Management Implications.................................................................. 19

References........................................................................................... 19





USDA Forest Service RMRS-RP-70.  2008.	 1

Introduction

Fire exclusion policies, coupled with a success-
ful fire suppression program in many Western United 
States and Canadian landscapes over the last 70 years, 
have resulted in excessive accumulations of surface 
fuels that have, in turn, increased the potential for se-
vere fires (Ferry and others 1995; Keane and others 
2002c; Kolb and others 1998; Mutch 1994). Many 
government land management agencies are advocating 
extensive fuel treatments and ecosystem restoration 
activities to reduce the possibility of severe and in-
tense wildfire that could damage ecosystems, destroy 
property, and take human life (GAO 2002, 2003; 
Laverty and Williams 2000). Knowledge of fuel de-
position and decomposition rates before and after fuel 
treatments could help managers prioritize, design, and 
implement more effective fuel treatment programs. 
Unfortunately, these rates remain relatively unknown 
for many ecosystems. This is especially true for small 
down dead woody material because most studies mea-
sured only litter or large log fuel decay and accretion 
rates (Harmon and others 1986b).

Fuel dynamics across managed landscapes are 
important to fire managers and researchers for many 
reasons. Rates of fuel buildup and decomposition can 
be used to define how long treatments will last and how 
long before an area needs fuel treatment (Fernandes 
and Botelho 2003). Fuel and fire modeling efforts of-
ten require estimates of deposition and decomposition 
rates to realistically simulate fuel dynamics across en-
tire landscapes to compare alternative fuel treatment 
strategies (CH2MHill 1998; Keane and others 2002b). 
The rates can also be used as validation of simulated 
ecological processes in existing and future ecosystem 
process models (Botkin 1993; Keane and others 1996a; 
Keane and others 1989; Kercher and Axelrod 1984; 
Pastor and Post 1985; Vanderwel and others 2006).

In this study, the rates of deposition and decom-
position were determined for several surface fuel 
components for major forest types of the northern 
Rocky Mountains, U.S.A. The study was specifi-
cally designed to quantify fuel dynamics parameters 
for use in complex landscape models of fire and veg-
etation dynamics (Keane and others 1996a, b; White 
and others 1998, 2000). Litterfall and decomposition 
rates are summarized by vegetation type and habitat 
type (Pfister and others 1977) and then their spatial 
and temporal properties are discussed in the context 
of fuel modeling and mapping. Since it was impossi-
ble to measure fuel dynamics for all stand types in all 
northern Rocky Mountain ecosystems, the measured 
litterfall and decomposition rates were correlated to 

a number of biophysical and vegetation variables in 
a companion paper (Keane 2008, in press). The envi-
ronmental variables were either measured at the field 
sites or simulated with ecosystem process models so 
that fuel accumulation processes could be extrapolated 
across northern Rocky Mountains landscapes.

Background

Six surface fuel components are recognized in this 
study. Freshly fallen leaves and needles from trees, 
shrubs, and herbaceous plants are considered foliage, 
while all other non-woody material, such as fallen 
cones, bark scales, lichen, and bud scales, are lumped 
into a category called other canopy fuels. The woody 
material is sorted into four diameter classes using 
definitions required by the fire behavior and effects 
models (Anderson 1982; Burgan 1987; Fosberg 1970; 
Reinhardt and Keane 1998; Rothermel 1972). The 
smallest size class, called twigs, defines 1 hr timelag 
fuels with diameters less than 3 mm. Branches with 
diameters between 3 and 25 mm are 10 hr timelag fu-
els and large branches with diameters ranging from 25 
to 75 mm are 100 hr timelag fuels. The logs, downed 
woody fuels greater than 75 mm in diameter, are of-
ten referred to as coarse woody debris and define the 
1,000 hr timelag fuel component (Hagan and Grove 
1999). We use the term litterfall to describe the pro-
cess of fuel deposition so all fuels that hit the ground 
are called litter for simplicity and the devices used to 
measure fuel dynamics (litterfall and decomposition in 
this study) are referred to as litter traps and litter bags. 
We did not measure duff, tree, shrub, and herbaceous 
fuel dynamics in this study because duff is a byprod-
uct of decomposition and many studies have already 
quantified the growth and mortality of live fuels.

Litterfall rates have been measured for many eco-
systems of the world (Bray and Gorham 1964; Facelli 
and Pickett 1991; Harmon and others 1986a; Van 
Cleve and Powers 1995) and especially those of the 
Unites States Pacific Northwest (fig. 1). But, most 
studies only measured the rate of foliage or log de-
position (Harmon and others 1986b, Vogt and others 
1986). Small woody debris additions to the forest 
floor, such as twigs and branches, are rarely reported 
even though they may be the most important to fuels 
management and fire behavior prediction because they 
contribute most to fire spread (Albini 1976, Rothermel 
1972). There are some exceptions, such as Ferrari 
(1999), who measured twigfall in hardwood-hemlock 
forests and Meier and others (2006), who measured 
fine woody material, along with other canopy litterfall, 
in an alluvial floodplain hardwood forest. Deposition 
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rates for logs are usually measured from historical tree 
mortality and snag fall rates over time, but this as-
sumes tree fall is the only input to log buildup. Large 
branches and tree tops, however, also contribute to log 
inputs to the forest floor in some ecosystems (Harmon 
and others 1986b).

Figure 1. Ranges of a) litterfall and b) decomposition rates 
(decay constant k) as measured in the literature taken 
mostly from studies in the Pacific Northwest, U.S.A. 
Each mark (bar or x) identifies a separate study. These 
data were taken from the following sources: Alexander 
1954; Avery and others 1976; Berg and Ekbohm 1993; 
Bray and Gorham 1964; Busse 1994; Christiansen and 
Pickford 1991; Dimock 1958;, Edmonds 1979, 1987, 
1991; Edmonds and Eglitis 1989; Edmonds and others 
1986; Fogel and Cromack 1977; Gottfried 1978; Graham 
1982; Grier and Logan 1977; Harmon and others 1986a; 
Harmon and Hua 1991; Hart and others 1992; Keenan 
and others 1996; Klemmedson 1992; Klemmedson 
and others 1990; Kueppers and others 2004; Laiho and 
Prescott 1999; Maguire 1994; Means and others 1985; 
Pearson 1987; Prescott and others 1993, 2000, 2003; 
Sollins 1982; Sollins and others 1987; Spies and others 
1988; Stohlgren 1988; Stump and Binkley 1993; Taylor 
and others 1991; Trofymow 1991; Turner and Long 1975; 
Wright and Lauterback 1958; and Yavitt and Fahey 1982.

Decomposition rates have also been documented 
for many ecosystems (Aber and Melillo 1980; Horner 
and others 1988; Millar 1974; Olsen 1963), but again, 
these rates are usually for the foliage and large log ma-
terial, especially in the Western United States (fig. 1). 
The exceptions here are Edmonds (1987) and Taylor 
and others (1991), who measured decay of twigs, 
branches, and cones and Carlton and Pickford (1982) 
and Christiansen and Pickford (1991), who estimated 
small wood losses by sampling different aged timber 
slash.

The parameter k is often used to describe rates of 
decay because it is the parameter in the following ex-
ponential curve that if often used to describe decay 
over time (Olsen 1963; Robertson and Paul 2000).

A
0
  
=  e-kt	 (1)A

t

where A is the amount of material at time zero (A
0
) 

and time t (A
t
), and t is time. Decomposition is often 

expressed as an exponential function because organ-
ic material takes longer to decay as time progresses. 
Easily decomposed cellulose is quickly decayed, 
while the less digestible lignin remains and it decom-
poses slower (Kaarik 1974; Moorhead and Sinsabaugh 
2006).

It is difficult and costly to measure surface fuel 
dynamics in the field because it requires extensive 
networks of litterfall traps that must be frequently 
monitored over long time periods (5 to 10 years or 
longer). The density and spacing of the collection 
devices are highly dependent on the type of fuel 
collected. Large fuels require installing larger traps 
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across larger areas and are monitored for longer time 
periods, whereas small fuels require smaller and 
fewer traps that are frequently visited to minimize 
decomposition losses. Forest fuel accumulation is 
highly variable in space due to the clustered forest 
canopy and small scale canopy disturbances (Brown 
and Bevins 1986).

Methods

This study originated from two previous stud-
ies that explored the use of ecosystem modeling and 
gradient analysis to create digital maps of current 

and future landscape characteristics. In 1993, we 
installed a set of litter traps on two sites in western 
Montana to parameterize and validate two ecosystem 
models: Biome-BGC (White and others 1998) and 
Fire-BGC (Keane and others 1996b) (Sites CO and 
SB in table 1; fig. 2). Then, in 1995, we started an in-
tensive project, called Gradient Modeling and Remote 
Sensing (GMRS), where measured and simulated 
environmental variables were used to map ecosys-
tem characteristics, such as fuels, across landscapes 
(Keane and others 1997, 2002a; Rollins and oth-
ers 2004). To parameterized and validate the various 
models used in both studies, we expanded the number 
of sites from two to six by establishing four new sites 

Table 1. General description of the study sites and plots included in this study.

							       Basalc	 Treec	 Fueld 
Study		  Cover	 Habitat	 Elevation		  Collection	 area	 density	 loading	 LAIe 
site	 Plot	 typea	 typea	 (m)	 Aspectb	 years	 (m2 ha-1)	 (t ha-1)	 (kg m-2)	 (m2 m-2)

Coram	 1	 DF/WL	 GF/CU	 1,185	 SW	 1993 to 2005	 29.87	 296.4	 27.26	 1.75
(CO)	 2	 WC/WH	 WH/CU	 1,184	 NW	 1993 to 2005	 50.44	 741.0	 1.84	 2.24
	 3	 SF	 SF/MF	 1,937	 NE	 1993 to 2005	 10.58	 222.3	 8.43	 0.63
	 4	 WP	 SF/XT	 1,915	 SW	 1993 to 2005	 34.34	 938.6	 18.45	 3.10

Snowbowl	 1	 PP	 DF/VS	 1,680	 NW	 1995 to 2005	 31.28	 864.5	 1.02	 2.85
(SB)	 2	 DF	 DF/PM	 1,596	 S	 1995 to 2005	 36.57	 666.9	 1.37	 2.77
	 3	 LP	 SF/XT	 1,972	 SW	 1995 to 2005	 30.11	 988.0	 2.61	 1.74
	 4	 SF/WP	 SF/MF	 2,073	 E	 1995 to 2005	 32.76	 568.1	 2.19	 3.17

Red Mtn	 1	 PP	 DF/CR	 943	 E	 1995 to 2005	 34.96	 197.6	 3.10	 4.01
(RM)	 2	 WC/WH	 WH/CU	 942	 E	 1995 to 2005	 55.68	 395.2	 28.12	 3.38
	 3	 WP	 SF/XT	 1,988	 SE	 1995 to 2005	 19.00	 395.2	 2.22	 1.81
	 4	 SF	 SF/MF	 1,529	 NW	 1995 to 2005	 31.31	 395.2	 8.42	 2.47

Spar Lake	 1	 WC	 WH/CU	 1,090	 SE	 1995 to 2005	 64.85	 1,284.4	 9.67	 7.90
(SL)	 2	 DF	 GF/XT	 1,124	 S	 1995 to 2005	 48.48	 419.9	 9.33	 6.58
	 3	 WC	 WH/CU	 1,260	 S	 1995 to 2005	 52.71	 988.0	 6.02	 6.10
	 4	 WL	 WH/CU	 1,600	 SE	 1995 to 2005	 68.22	 617.5	 19.87	 7.02

Red River	 1	 PP	 DF/LB	 1,425	 N	 1995 to 2005	 37.41	 345.8	 19.94	 4.40
(RR)	 2	 GF/DF	 GF/LB	 1,407	 SW	 1995 to 2005	 35.42	 172.9	 4.82	 2.69
	 3	 LP	 SF/XT	 1,988	 W	 1995 to 2005	 28.65	 543.4	 6.27	 2.21
	 4	 LP	 SF/XT	 1,979	 E	 1995 to 2005	 32.32	 889.2	 6.98	 2.69

Keating Ridge	 1	 GF	 GF/LB	 1,041	 E	 1995 to 2005	 46.53	 518.7	 20.09	 8.39
(KR)	 2	 PP	 PP/SA	 1,340	 W	 1995 to 2005	 47.35	 345.8	 10.12	 3.01
	 3	 LP	 SF/XT	 2,004	 W	 1995 to 2005	 51.31	 1,630.2	 2.35	 4.41
	 4	 SF	 SF/XT	 2,078	 E	 1995 to 2005	 70.72	 1,654.9	 5.20	 6.59

Tenderfoot	 1	 LP	 SF/VS	 2,302	 F	 1997 to 2005	 53.75	 1,309.1	 2.76	 4.24
(TF)	 2	 LP/SF	 SF/VS	 2,299	 F	 1997 to 2005	 44.26	 839.8	 0.47	 3.31
	 3	 LP	 SF/VS	 2,143	 F	 1997 to 2005	 25.95	 716.3	 0.71	 2.23
	 4	 LP	 SF/VS	 2,158	 F	 1997 to 2005	 38.23	 1,284.4	 0.77	 3.38

a Cover type and habitat type species: trees are PP-ponderosa pine (Pinus ponderosa var. ponderosae), DF-Douglas-fir (Pseudotsuga mensezii),  
WL – western larch (Larix occidentalis), WC-western red cedar (Thuja plicata), WH-western hemlock (Tsuga heterophylla), LP-lodgepole pine (Pinus 
contorta var. contorta), WP-whitebark pine (Pinus albicaulis), SF-subalpine fir (Abies lasiocarpa), GF-grand fir (Abies grandis), and undergrowth 
species are CR-Calamagrostis rubescens, CU-Clintonia uniflora, LB-Linnaea borealis, MF-Menziesia ferruginea, PH-Physocarpus malvaceus,  
VS-Vaccinium scoparium, XT-Xerophyllum tenax. Habitat types are from Pfister and others (1977).

b Aspect codes are N-north, S-south, E-east, W-west, F-flat.
c Only overstory trees (greater than 10 cm DBH) were used to compute basal area and density.
d Fuel loading only includes downed dead woody fuels of all four size classes.
e LAI is projected leaf area index (m2 m-2) and was computed from foliar biomass equations, not the LAI-2000.
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along elevational and aspect gradients within the larger 
Northern Rockies study area (fig. 2). We only estab-
lished plots in mature stands that had no evidence or 
record of disturbance for at least 20 years. Forest types 
represented by these sites include stands dominated 
by ponderosa pine (Pinus ponderosa), Douglas-fir 
(Pseudotsuga menzeisii), western red cedar (Thuja pli-
cata), subalpine fir (Abies lasiocarpa), and whitebark 
pine (Pinus albicaulis). In 1997, a site was established 
in the ubiquitous lodgepole pine (Pinus contorta) eco-
system that occurs east of the Continental Divide (Site 
TF in table 1; fig. 2).

Each site consisted of four plots established along 
major topographic gradients of elevation and aspect 

(fig. 3). We felt that establishing the plots in read-
ily accessible areas at low and high elevations and 
on north and south aspects adequately described the 
diversity of the important direct environmental gradi-
ents such as productivity, moisture, and temperature 
(Keane and others 2002a). At each plot, we measured 
a number of topographic, vegetation, and ecosystem 
characteristics on 0.1 acre (0.04 ha) circular plots us-
ing the ECODATA sampling methodology (Hann and 
others 1988; Jensen and others 1994; Keane and others 
2002a). An entire list of sampled attributes is given in 
Keane and others (2002a). The most important among 
them are an inventory of all trees within the plot to 
compute basal area, leaf area, and stand density, and 

Coram (CO)
Spar Lake (SL)

Snowbowl (SB)

Tenderfoot (TF)

Butte

Missoula

Boise

Montana

Idaho

0
100

Miles

Red Mountain (RM)

Red River (RR)

Keating Ridge (KR)

Figure 2. The geographic locations of 
the seven litter collection sites in the 
northern Rocky Mountains, USA.

Plot 1

Plot 4Plot 3

Plot 2

North South
Figure 3. Four litter collection plots were 

established at each of the seven sample 
sites in figure 2. Plots were installed at high 
and low elevations and on north and south 
aspects for each site.
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a network of 30-m fuel transects (Brown 1970) to es-
timate fuel loadings for five fuel components used in 
this study.

Measuring Litterfall

At each plot, we installed seven to nine litter traps 
in the pattern shown in figure 4 to collect fallen bio-
mass. Nine litter traps were established on the two 
sites that were installed in 1993 (CO, SB; fig. 2, ta-
ble 1) but a subsequent analysis of variance of fallen 
foliage showed that only seven traps were needed 
to adequately sample litterfall. The litter traps were 
constructed by creating a 1x1-m frame (inside di-
mensions) with 2x9-cm (1x6-inch) boards and then 
tacking a coarse grid hardware cloth on the bottom of 
the frame to allow water drainage and minimize losses 
from accumulated material due to decomposition and 
wind (fig. 5). We also tacked a plastic screen (mesh 
size 0.7 mm) on top of the hardware cloth to block fine 
material from falling through the coarse hardware grid 
and to facilitate efficient litter collection.

Each plot was visited once a month during the snow-
free periods of the year and all material in each trap 
was placed into heavy paper bags that were labeled to 
identify site, plot, trap, and date. Woody fuel particles 
that lay partially out of the trap were sawed directly at 

the trap border as defined by the inside dimension of 
the trap boards. An estimate of projected LAI (Leaf 
Area Index, m2 m-2) was taken with a LiCor LAI-2000 
(LI-COR 1992; Nackaerts and others 2000; Welles 
and Norman 1991) during each plot visit to document 
any major changes in the forest canopy. The frequent 
monthly visits were designed to minimize mass losses 
due to decomposition that occur as the newly fallen 
material sat in the traps, but we found that there was 
little decomposition occurring during the hot, dry 
months of summer. The most critical times for sam-
pling were directly after snowmelt and just before the 
first autumnal snows. Therefore, starting in 2002, we 
only visited the plots during these two times.

The collected materials were transported to the lab-
oratory and the labeled bags were placed in an oven 
set at 90oC for 2 to 3 days. The dried litter was then 
placed in cake tins and sorted by hand into the six fuel 
components (foliage, twigs, branches, large branches, 
logs, and other canopy material). The weight of each 
fuel component was recorded to the nearest 0.01 g 
along with the date, site, plot, and trap information 
written on the bag. A small sample of the dried ma-
terial was set aside for the decomposition experiment.

Measuring Fuel Decomposition

We used litter bags to estimate the rate of decay 
for four fuel components of freshly fallen foliage, 
twigs, branches, and large branches (Bocock and 
Gilbert 1957; Edmonds 1979; Johannsson 1994; 

Figure 4. The location of the litter traps within a plot was 
in a cross-like pattern with nine litter traps at the Coram 
and Snowbowl sites (CO and SB in table 1) and seven 
traps per plot at the remaining sites (missing the NE and 
SW traps). Circles are at 11.6 m and 5 m radius from 
plot center and numbers represent azimuths. Acronyms 
reference compass directions: N-north, NW-northwest, 
NE-northeast, E-east, S-south, SE-southeast,  
SW-southwest, W-west, PC-plot center

Figure 5. One of the litter traps used in this study. These 
traps were 1x1 m inside dimensions and about 10 cm 
deep. Each trap was made of 2x9-cm (1x6-in) boards 
with hardware cloth tacked on the bottom. A screen 
was placed over the hardware cloth to catch the smaller 
material. The bottom of the trap was reinforced with  
4x4-cm (2x2-in) boards for stabilization.
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Prescott and others 2000; Preston and others 2000; 
Robertson and Paul 2000). These bags were made by 
sewing together a fiberglass screen with a pore size 
of about 2 mm for the top and a rumen bag or pool 
cover material with a pore size of 0.055 mm for the 
bottom using UV resistant thread (fig. 6a). One end of 
the bag was left open. Bags for foliage were roughly 
170 mm square, while bags for the woody fuels were 
roughly 170 mm by 130 mm (0.0221 m2). We put ap-
proximately 100 to 150 g of the material taken from 
the litter traps (see previous section) into each bag 
and then sewed the bag closed. We firmly attached a 
unique numbered tag to the side of the bag. The bags 
were then dried at 50oC for 3 days and weighed to 
the nearest 0.01 g with the weight recorded by bag 
number. We did not measure decomposition rates for 
logs and other canopy material because of limited 
time, lack of appropriate equipment, and incompat-
ible methods.

At each plot, we installed three sets of three bags 
for the three fine woody fuel components (1, 10, and 

100 hr timelag) and three sets of six bags for the foli-
age material (fig. 6b). We placed one set from each of 
the four components near plot center, about 7 m (23 
ft) northwest of plot center, and about 7 m southeast 
of plot center (fig. 6). We laid litter bags on top of the 
existing litter layer in late autumn and secured them 
with a wire that was sewn through each bag and at-
tached to large 20-cm spikes driven into ground to a 
depth of 19 cm (7.5 in) to prevent movement down 
slope and ungulate damage. We flagged and staked 
the locations of each bag set. Decomposition was 
measured over 3 years by taking one foliage bag 
from each wire set every 6 months and one woody 
bag from each woody fuel set every 12 months. We 
cut the retrieved bags from the wire, and any material 
that had fallen onto the bag or became attached to the 
bottom of the bag was scraped off using a knife. We 
then placed the litter bags in paper bags, dried them at 
50oC for 3 days, and then weighed them to the near-
est 0.01 g with the weight, tag number, and tag date 
recorded for analysis.

N

b)

E

S

W Plot Center

Litterbag
Locations

7m (23 ft)

a)

Foliage

1 hr

10 hr

100 hr

Spikes

Litterbags

Figure 6. Details of the 
litterbags that were  
used in this study.  
a) picture of a litterbag 
and b) the locations of 
the litter bags on the 
plot representing each 
site. Litterbags were 
not placed at the Spar 
Lake (SL) and Red River 
(RR) sites due to lack of 
funding and resources.
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Analyzing Collected Data

We summarized the measured deposition and de-
composition rates by fuel component for each plot to 
create tables to use as reference for parameterization 
and validation of fuel dynamics models. We computed 
the annual litterfall rates (kg m-2 yr-1) by dividing the 
total amount of accumulated material over all traps on 
a plot for the entire time period by the number of days 
in that time period, and then multiplied this daily flux 
rate by 365 to obtain an annual rate. We then summa-
rized these rates by plot, cover type, and habitat type 
series (Pfister and others 1977) and correlated them 
with measured LAI.

Two estimates of decomposition were calculated. 
We estimated the parameter k by parameterizing the 
exponential decay function described in Equation 1. A 
mass loss rate (percent yr-1) was also calculated from 
differences in bag weights over the 3-year period. 
Statistical summaries included an analysis of variance 
to determine the adequate level of sampling intensity 
and strength of the fuels flux estimates. We performed 
the analysis to determine the decomposition parameter 
k in the Olson (1963) equation in SPLUS using a lin-
ear mixed effects model whose form is as follows:

ln xi0
xij

b l= -k+ bi] gt j+ fij 	 (2)

where x
ij
 is the weight of the ith trap at time j (t

j
) and 

x
i0
 is the initial weight of the ith trap; b

i
 is the random 

effect of trap i representing the deviation of the slope 
from the fixed effect for trap i; and ε

ij
 are the random 

errors assumed to be independently distributed with a 
normal distribution.

An analysis of variance for litterfall was performed 
across all fuel components on each plot to determine 
if we had sufficient sampling rigor. First, we evalu-
ated the variation of litterfall using a bootstrap method 
where traps were randomly removed from the analysis 
to determine the number of traps required to minimize 
variance. Then, we estimated the probability of detec-
tion for each fuel component over the entire length of 
the study and for 1 year to verify the results generated 
from the bootstrap variance calculations.

To address litterfall distribution across litter traps, 
we examined the skewness of the total accumulation 
of the traps for each plot (Hirabuki 1991). Since the 
skewness statistic is a measure of lack of symmetry, 
well distributed fuel components would have a fairly 
symmetric distribution for accumulation at each plot. 
However, if fuel distributions were spotty or clustered, 
then we would expect the distribution to be skewed. 
Skewness is equal to zero for symmetric or uniform 

distribution, negative when data are skewed left (more 
low litterfall years), and positive when data are skewed 
right (more high litterfall years).

We used cumulative sum (CUSUM) graphical plots 
to examine trends across time for each fuel compo-
nent by trap and plot. CUSUM graphs are often used 
to monitor industrial processes but have been used to 
monitor environmental processes. CUSUM graphs 
show the accumulated deviations from the mean of 
that particular plot after sorting the plots in order of 
magnitude. This allows the detection of any system-
atic differences between the observed value and the 
expected value over the time span of collection.

Results

Litterfall Rates

Sampled rates of average annual fuel deposition for 
all fuel components across all plots in the study are 
shown in table 2 and figure 7. The highest rates were 
recorded for foliage, which also had the highest vari-
ability (fig. 7a) and these high rates tended to occur 
on plots with northern exposure, high basal area, and 
high LAI (fig. 7b). Rates for fine woody fuel and other 
canopy material components were similar across most 
of the sites (table 2). Log fall, which had the lowest 
rates, was recorded in only 47 percent (15 of 28) of 
the plots across all traps for the entire 10+ year re-
cording period, but 90 percent of the plots experienced 
large branch fall and all plots recorded foliage, twig, 
branchwood, and other canopy material litterfall. 
Fallen foliage, twigs, and other canopy material were 
recorded in all traps for nearly all of the visits (99.8 
percent). Annual variation of deposition rates were 
low (about 10 percent of annual mean) for fine woody 
fuel components, but tended to increase with increas-
ing fuel size, probably because large fuels were rarely 
found in the traps (fig. 7a; table 2).

The mesic cover types with shade tolerant species, 
such as western red cedar (WC), grand fir (GF), and 
Douglas-fir (DF), usually had the highest litterfall 
rates (table 3). The low elevation, xeric cover types, 
such as ponderosa pine (PP) and Douglas-fir (DF), had 
nearly the same litterfall rates for all fuel components 
as the high elevation cover types such as whitebark 
pine (WP) and subalpine fir (SF). The pine cover types 
(WP, PP, LP) had a higher foliage to fine wood fuel 
litterfall ratio than all other species. The most pro-
ductive habitat type series (Pfister and others 1977) 
had the highest litterfall rates, especially for foliar 
deposition (table 3). Since only mature stands were 
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sampled, no differences in litterfall across stand age 
were evaluated.

Decomposition Rates

Decomposition measurements (k values and mass 
loss rates) were quite diverse across all plots in the 
study (table 4, fig. 8). Decay rates were higher for foli-
age (k = 0.085 to 0.283) than woody fuel (k = 0.045 
to 0.125) (table 4), but foliage decay and mass loss 
rates were more variable (fig. 8a and 8b) and more 
closely tied to site conditions. Large woody fuels 
had lower decay and mass loss rates than the smaller 
size woody fuel classes, but many sites had the same 
woody decay rates across all woody size classes (ta-
ble 4). The slowest decomposition occurred in the low 
elevation, south-facing forests, especially those with 
high LAI (fig. 8c). Decay rates were the highest in the 
most productive sites, namely those on low elevation 

north aspects or high elevation south aspects. In fact, 
the order of plots in figure 8c, from left to right, ap-
pears to correlate to a wet to dry moisture gradient 
(Keane 2008, in press). The most productive sites 
(SB-2, KR-2, and TF-2) had woody decay rates that 
were equivalent to foliage rates. The low variability of 
woody fuel decay might suggest little correlation with 
site environment.

Cover types with shade tolerant species usually 
had the highest decomposition rates (table 3). The 
most productive habitat type series (the most mesic) 
had the highest decomposition rates, especially foliar 
deposition (table 3). Again, the span of measured de-
composition rates appears to correlate to an available 
moisture gradient. While dry site (PP, DF) decom-
position of foliage was low compared to other mesic 
series (table 3), the woody fuel decomposition ap-
pears to be higher indicating a possible correlation to 
temperature.

Table 2. Litterfall rates for the six fuel components in this paper. Values in table are in kg m-2 yr-1 dry weight biomass and values in parentheses 
are the standard error. Cells with dashes indicate that fuel was never sampled or collected on that plot. Cover type codes are defined in 
table 1.

	 Plot-						      Other 
	 cover		  1 hr	 10 hr	 100 hr	 1,000 hr	 canopy 
Site	 type	 Foliage	 (twigs)	 (small branch)	 (large branch)	 (logs)	 material

Coram CO	 1-DF	 0.079 (0.005)	 0.016 (0.001)	 0.005 (0.001)	 0.001 (0.001)	 —	 0.042 (0.005)
	 2-WC	 0.121 (0.011)	 0.031 (0.004)	 0.015 (0.004)	 0.012 (0.006)	 —	 0.031 (0.003)
	 3-SF	 0.036 (0.005)	 0.005 (0.001)	 0.003 (0.001)	 0.003 (0.003)	 —	 0.011 (0.001)
	 4-WP	 0.077 (0.011)	 0.013 (0.006)	 0.006 (0.003)	 0.002 (0.002)	 0.035 (0.024)	 0.012 (0.004)

Snowbowl	 1-PP	 0.057 (0.003)	 0.015 (0.003)	 0.006 (0.002)	 —	 —	 0.026 (0.005)
SB	 2-DF	 0.106 (0.013)	 0.029 (0.008)	 0.013 (0.005)	 0.015 (0.015)	 0.012 (0.012)	 0.020 (0.002)
	 3-LP	 0.100 (0.005)	 0.010 (0.001)	 0.003 (0.001)	 0.020 (0.016)	 0.001 (0.001)	 0.021 (0.002)
	 4-SF/WP	 0.094 (0.007)	 0.029 (0.011)	 0.030 (0.022)	 0.015 (0.015)	 0.158 (0.158)	 0.028 (0.003)

Red	 1-PP	 0.110 (0.014)	 0.006 (0.001)	 0.019 (0.009)	 0.011 (0.006)	 —	 0.042 (0.009)
Mountain	 2-WC	 0.135 (0.015)	 0.032 (0.008)	 0.011 (0.004)	 0.003 (0.003)	 —	 0.056 (0.017)
RM	 3-WP	 0.061 (0.016)	 0.003 (0.001)	 0.001 (0.001)	 —	 —	 0.021 (0.003)
	 4-SF	 0.058 (0.007)	 0.012 (0.003)	 0.007 (0.002)	 0.023 (0.021)	 —	 0.022 (0.003)

Spar Lake	 1-WC	 0.144 (0.008)	 0.043 (0.004)	 0.026 (0.004)	 0.054 (0.036)	 0.080 (0.080)	 0.035 (0.009)
SL	 2-DF	 0.132 (0.012)	 0.035 (0.006)	 0.032 (0.009)	 0.067 (0.063)	 0.117 (0.061)	 0.045 (0.008)
	 3-WC	 0.150 (0.008)	 0.032 (0.003)	 0.021 (0.004)	 0.039 (0.039)	 0.058 (0.058)	 0.050 (0.007)
	 4-WL	 0.230 (0.022)	 0.060 (0.013)	 0.033 (0.010)	 0.026 (0.020)	 —	 0.075 (0.019)

Red River	 1-PP	 0.089 (0.015)	 0.001 (0.0004)	 0.008 (0.004)	 0.002 (0.001)	 —	 0.023 (0.008)
RR	 2-GF/DF	 0.099 (0.014)	 0.032 (0.008)	 0.048 (0.030)	 0.001 (0.001)	 —	 0.055 (0.012)
	 3-LP	 0.068 (0.009)	 0.006 (0.001)	 0.003 (0.001)	 0.001 (0.001)	 —	 0.027 (0.004)
	 4-LP	 0.071 (0.008)	 0.024 (0.009)	 0.015 (0.006)	 0.003 (0.002)	 0.073 (0.073)	 0.030 (0.004)

Keating	 1-GF	 0.134 (0.008)	 0.034 (0.004)	 0.018 (0.004)	 0.002 (0.001)	 0.192 (0.192)	 0.020 (0.003)
Ridge	 2-PP	 0.129 (0.005)	 0.002 (0.000)	 0.012 (0.003)	 0.001 (0.001)	 —	 0.045 (0.005)
KR	 3-LP	 0.094 (0.005)	 0.025 (0.002)	 0.016 (0.004)	 0.006 (0.005)	 —	 0.061 (0.002)
	 4-SF	 0.157 (0.010)	 0.048 (0.012)	 0.038 (0.013)	 0.001 (0.001)	 0.0001 (0.0001)	 0.062 (0.005)

Tenderfoot	 1-LP	 0.131 (0.006)	 0.024 (0.002)	 0.003 (0.001)	 —	 —	 0.061 (0.004)
Forest	 2-LP/SF	 0.099 (0.006)	 0.023 (0.010)	 0.018 (0.013)	 0.019 (0.019)	 0.207 (0.164)	 0.040 (0.007)
TF	 3-LP	 0.121 (0.004)	 0.014 (0.002)	 0.006 (0.002)	 0.002 (0.002)	 0.058 (0.058)	 0.040 (0.003)
	 4-LP	 0.086 (0.009)	 0.024 (0.004)	 0.012 (0.002)	 0.001 (0.001)	 —	 0.045 (0.004)
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Leaf Area Index (LAI)

Measurements of LAI using the LiCor LAI-2000 
were much more variable than expected but proved 
valuable none the less, even with the high variability 
(fig. 9). The instrument appeared to have the sensitiv-
ity to detect the loss of foliage over the fall and winter 
and the subsequent leaf growth in the spring and early 
summer (fig. 10). Leaf area was the highest on those 
plots that were dominated by shade tolerant conifers 
(DF, WC, SF) and lower on the pine dominated plots 
(PP, LP) (fig. 9). The western larch (WL) plot in Spar 
Lake (SL4) had a high leaf area due to its high pro-
ductivity and the abundance of shade tolerant conifers 

in the understory; LAI also tended to increase with in-
creasing productivity and foliar litterfall. There does 
not appear to be any trends in LAI measurements 
across the 10+ years of the study (fig. 10), but there 
does appear to be some suspect measurements prob-
ably due to operator error (fig. 10d).

Discussion

Litterfall Rates

Litterfall rates in this study are slightly lower than 
those in other studies (compare fig. 1a with table 2) 
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Table 3. Litterfall and decomposition rates for each fuel component averaged across cover type and habitat type series. Types are 
arranged from low to high in foliage litterfall. Dashes indicate missing data because either logs were not detected on the plot or 
litter bags were never installed at that plot. Definitions for cover or habitat type acronyms are given in table 1 (Pfister and others 
1977).

	 Other

Cover type or
	 1 hr	 10 hr	 100 hr	 1,000 hr	 canopy

habitat type
	 Foliage	 (twigs)	 (branches)	 (large branches)	 (logs)	 material

series	 Litterfall	 k value	 Litterfall	 k value	 Litterfall	 k value	 Litterfall	 k value	 Litterfall	 Litterfall

Cover type
WP	 0.069	 0.226	 0.008	 0.083	 0.003	 0.069	 0.002	 0.050	 0.035	 0.017
SF	 0.086	 0.140	 0.024	 0.082	 0.019	 0.037	 0.010	 0.038	 0.079	 0.031
LP	 0.096	 0.195	 0.019	 0.093	 0.010	 0.045	 0.007	 0.041	 0.085	 0.041
PP	 0.096	 0.111	 0.006	 0.039	 0.011	 0.028	 0.005	 0.074	 —	 0.034
DF	 0.106	 0.120	 0.027	 0.084	 0.017	 0.031	 0.062	 0.142	 0.064	 0.036
GF	 0.117	 0.128	 0.033	 0.063	 0.079	 0.072	 0.001	 0.042	 0.192	 0.038
WC	 0.138	 0.165	 0.034	 0.093	 0.018	 0.047	 0.027	 0.023	 0.069	 0.043
WL	 0.230	 —	 0.060	 —	 0.033	 —	 0.026	 —	 —	 0.075

Habitat type series
DF	 0.090	 0.098	 0.013	 0.034	 0.012	 0.024	 0.009	 0.014	 0.012	 0.028
SF	 0.090	 0.182	 0.019	 0.088	 0.011	 0.049	 0.008	 0.042	 0.076	 0.034
GF	 0.111	 0.142	 0.029	 0.074	 0.049	 0.059	 0.043	 0.092	 0.154	 0.041
PP	 0.129	 0.122	 0.002	 0.045	 0.012	 —	 0.001	 0.193	 —	 0.045
WH	 0.156	 0.165	 0.040	 0.093	 0.021	 0.047	 0.027	 0.023	 0.069	 0.050

Table 4. Measured decomposition rates for each of the plots averaged across all litter bag sets within a plot.  Values in cells are estimates of 
mass loss (percent yr-1) and the value k (yr-1) with numbers in parenthesis are standard error estimates.  Dashes indicate litter bags were never 
installed at that plot or they were missing from the plot at collection.  Cover type codes are defined in table 1.

	 Foliage	 1 hr (twigs)	 10 hr (branches)	 100 hr (large branches)

Site	 Plot	 Mass loss	 k value	 Mass loss	 k value	 Mass loss	 k value	 Mass loss	 k value

Coram CO	 1-DF/WL	 0.126	 0.156 (.007)	 0.059	 0.084 (.015)	 0.034	 0.046 (.007)	 0.131	 0.142 (.021)
	 2-WC	 0.137	 0.191 (.011)	 0.093	 0.119 (.009)	 0.057	 0.051 (.007)	 —	 —
	 3-SF	 0.114	 0.149 (.013)	 0.084	 0.113 (.011)	 —	 —	 0.041	 0.053 (.006)
	 4-WP	 0.121	 0.169 (.011)	 0.054	 0.068 (.008)	 0.068	 0.083 (.009)	 0.050	 0.061 (.006)

Snowbowl	 1-PP	 0.095	 0.102 (.018)	 —	 —	 0.021	 0.027 (.004)	 0.023	 0.016 (.006)
SB	 2-DF	 0.092	 0.085 (.011)	 —	 —	 0.018	 0.016 (.005)	 —	 —
	 3-LP	 0.115	 0.161 (.018)	 0.093	 0.125 (.011)	 0.051	 0.054 (.008)	 0.031	 0.043 (.005)
	 4-SF/WP	 0.148	 0.183 (.011)	 0.062	 0.069 (.015)	 0.062	 0.041 (.015)	 0.024	 0.034 (.005)

Red Mountain	 1-PP	 0.077	 0.108 (.016)	 0.033	 0.034 (.003)	 0.024	 0.029 (.005)	 0.007	 0.011 (.005)
RM	 2-WC	 0.097	 0.140 (.011)	 0.049	 0.067 (.009)	 0.026	 0.044 (.009)	 0.022	 0.023 (.002)
	 3-WP	 0.168	 0.283 (.027)	 0.083	 0.098 (.004)	 0.047	 0.056 (.006)	 0.033	 0.040 (.006)
	 4-SF	 0.075	 0.110 (.007)	 —	 —	 0.032	 0.033 (.005)	 —	 —

Keating Ridge	 1-GF	 0.093	 0.128 (.014)	 0.053	 0.063 (.008)	 0.056	 0.072 (.019)	 0.033	 0.042 (.015)
KR	 2-PP	 0.098	 0.122 (.007)	 0.047	 0.045 (.004)	 —	 —	 0.015	 0.193 (.006)
	 3-LP	 0.079	 0.104 (.006)	 0.050	 0.060 (.007)	 0.030	 0.032 (.005)	 0.022	 0.025 (.005)
	 4-SF	 0.081	 0.118 (.010)	 0.054	 0.063 (.005)	 —	 —	 0.024	 0.027 (.005)

Tenderfoot	 1-LP	 0.154	 0.226 (.015)	 0.056	 0.082 (.012)	 —	 —	 0.032	 0.047 (.008)
Forest TF	 2-LP/SF	 0.139	 0.205 (.018)	 0.063	 0.106 (.027)	 —	 —	 0.033	 0.046 (.006)
	 3-LP	 0.167	 0.247 (.008)	 0.074	 0.093 (.008)	 0.037	 0.047 (.006)	 0.042	 0.051 (.006)
	 4-LP	 0.154	 0.229 (.008)	 —	 —	 0.033	 0.045 (.005)	 0.029	 0.036 (.004)
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Figure 9. Distribution of LAI measurements, taken with the 
LiCor LAI-2000 instrument, across all plots classified to 
cover type. Note the high variation across and within 
cover types and plots. Cover types defined in table 1.
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probably because the northern Rocky Mountain forests 
are less productive than the Pacific Northwest forests. 
The low elevation moist sites of this study (CO-2, 
RM-2, SL-1, SL-2, SL-3, and KR-1) are probably the 
most ecologically similar to the Douglas-fir study sites 
reported in figure 1 and the foliage deposition rates 
(0.12 to 0.15 kg m-2 yr-1) are comparable to the mini-
mum reported rates for Pacific Northwest Douglas-fir 
stands (0.17 to 0.50 kg m-2 yr-1). Fine woody fuel lit-
terfall rates measured in this study for those plots 
(0.001 to 0.139 kg m-2 yr-1) also compare well with the 
Douglas-fir sites (0.005 to 0.129 kg m-2 yr-1). Foliage 
litterfall rates of lodgepole sites (TF1 thru TF-4, RR-3, 
RR-4, and CO-3; 0.12 to 0.15 kg m-2 yr-1) are about 
half of those reported for the lodgepole pine sites 
(0.362 kg m-2 yr-1) in figure 1. Similarly, subalpine fir 
foliar litterfall rates in figure 1 are about double the 
foliage deposition rates (0.20 to 0.23 kg m-2 yr-1) as the 
subalpine fir sites in this study (CO-3, SB-4, RM-4, 
KR-4) (0.036 to 0.157 kg m-2 yr-1). Large woody fuel 
(logs, large branches) rates are highly variable in this 
study (0.0001 to 0.207 kg m-2 yr-1) but they also seem 
to agree with those reported for all studies (0.02 to 
0.30 kg m-2 yr-1; fig. 1).

Foliage litterfall is highly correlated with fine 
woody litterfall and litterfall of other canopy material 
but it is not significantly correlated with large woody 
fuel (fig. 11). Correlation of foliage litterfall to other 
woody fuel components might be important because 
foliage deposition can then be used to predict the lit-
terfall of other fuel components. Foliage is 1) easier to 
collect, 2) more homogeneously distributed across all 
litter traps (see later in this section) so fewer traps are 
needed, and 3) less variable across time so fewer years 
are needed to obtain an adequate sample (see later 
sections). Smaller woody fuels have the highest cor-
relation because of the consistency of detection in the 
litter traps (fewer years where no fuels are collected) 
(figs. 11a and 11b). The high number of zero values 
for large branches and logs (none fell into traps) re-
sulted in low correlations to foliage (figs. 11c and 
11d). Other canopy material (buds, cones, scales) had 
high correlations with foliage litterfall. It appears that 
foliage litterfall can only predict fine fuel (twigs, other 
canopy material, and branches) deposition rates with 
suitable accuracy and consistency.

Another indirect way to estimate litterfall is to 
correlate the litterfall rates to a commonly measured 
stand attributes (Huebschmann and others 1999). We 
regressed the litterfall rates for the five fuel compo-
nents to the LAI measured with LAI-2000 (averaged 
by plot across the entire 10 years) and tree basal area 
(trees larger than 10 cm DBH or 4 in DBH) and found 

high correlation in the fine fuels but low correlation in 
large fuels (branches and logs) (table 5). Again, this is 
mainly due to the inconsistency of sampling events in 
the time series for the large woody fuels, but it is also 
a function of the highly variable and difficult to mea-
sure LAI estimates. Equations in table 5 can be used 
to estimate litterfall rates across landscapes or stands 
to assess the longevity of fuel treatments.

Results of the bootstrap analysis of variance indi-
cated that the seven litter traps used in this study were 
sufficient for most forest types (for example, see fig-
ure 12 for four plots that span the range of litterfall 
rates measured for our study). Plots with high litterfall 
rates appear to need more traps to obtain an adequate 
sample and the asymptotic variability at seven plots is 
also much higher than low litterfall rate plots. Large 
woody fuels (100 hr and 1,000 hr) had the highest 
variances and they were also the fuel components that 
needed more traps than the 7 to 9 used in this study 
(fig. 12). This was especially true for logs (fig. 12c) 
where most traps did not record fallen logs during the 
entire span of the study (table 2).

Since our study failed to describe large woody fuel 
(large branches, logs) deposition with statistical valid-
ity, it is important to determine better sampling strategy 
for measuring litterfall of these large fuel particles that 
fall so infrequently. The probability of detection (p

d
) 

was calculated from the proportion of the seven or 
nine litter traps within a plot that recorded each fuel 
component for both the entire time period and across 
each year (fig. 13). For the entire 10+ year time pe-
riod, the average estimated probability of detection 
across all 28 plots was high for foliage (p

d 
= 1.0), twigs  

(p
d 
= 1.0), and small branches (p

d 
= 0.952), but low for 

large woody fuels (p
d 

= 0.27 for large branches and  
p

d 
= 0.0812 for logs). Nearly the same results were 

found when p
d
 was computed by year, except that the 

large woody fuels were rarely detected (p
d 

= 0.036 
for large branches and 0.0092 for logs). In an exten-
sion of this statistical analysis, it was found that over  
30 plots of 7 to 9 traps each (>210 traps total) would be 
needed to achieve a p

d
 greater than 0.9 for logs for the 

entire 10+ year record (fig. 13a) and, for a single year, 
this estimate is so large that it could not be calculated 
with our data (fig. 13b). Obviously, this large number 
of traps would be quite costly and time-consuming to 
install and maintain. The tree life table and mortality 
rate approaches used by other studies (Harmon and 
Hua 1991, for example) appear to be more effective, 
especially in ecosystems with large, long-lived trees.

The spatial distribution of the fuel litterfall across 
the traps within a plot was uniform for only the foliage 
material (fig. 14). Results from the skewness analysis 
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Figure 11. Regression analysis of annual foliage 
litterfall with all other fuel components: a) twig 
(1 hr), b) branch (10 hr), c) large branch (100 hr), 
d) CWD or logs (1,000 hr), e) other canopy 
material (cones, buds), f) fine woody fuels of twigs 
and branches, and g) total fuels across all fuel 
components. Outliers were removed from some 
sites due to collection errors and trap disturbance. 
All R2 are significant (p < 0.05) except for large 
woody fuels.
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Table 5. Regression equations that can be used to predict litterfall of the fine fuel components from 
basal area and LAI. Basal area is computed across all trees in the plot and LAI is measured using 
the LiCor LAI-2000 instrument.

Fuel component 	 Equation	 Standard error of regression	 R2

Basal Area ( m2 ha-1) for all trees
Foliage	 ŷ=.011+.0024 BA	 .0216	 .714
1 hour	 ŷ=-.001+.0008 BA	 .0094	 .603
10 hour	 ŷ=-.0037+.00046 BA	 .0101	 .308
100 hour	 ŷ=-.006+.00044 BA	 .0161	 .137
Other	 ŷ=.0038+.00082 BA	 .0122	 .494
Total	 ŷ=.0186+.0053 BA	 .0947	 .402

Leaf Area Index ( m2 m-2) as measured with LiCor LAI-2000
Foliage	 ŷ=.0168+.035 LAI	 .0324	 .355
1 hour	 ŷ=-.020+.0166 LAI	 .0097	 .534
10 hour	 ŷ=-.0093+.0095 LAI	 .010	 .292
100 hour	 ŷ=-.021+.0129 LAI	 .015	 .263
Other	 ŷ=.0121+.0099 LAI	 .0157	 .158
Total	 ŷ=-.039+.107 LAI	 .098	 .362

showed that the skewness statistic tended to be close 
to zero for foliage (evenly distributed) but quite large 
and positive for the larger woody fuel (100 hr fuel and 
1,000 hr fuel >2.0; fig. 13), indicating uneven fuel de-
position. This means that these large fuel types are not 
detected in many traps after our annual visits. Results 
seem to agree with Hirabuki (1991), who found that 
heterogeneous litter distribution was related to the 
distribution of canopy structure. All fuel components 
had a tendency to have positive values for the skew-
ness, which suggests that there was a tendency for 
one or two traps in a plot to have high litterfall while 
the rest of the traps have low litterfall. This again in-
dicates that additional traps might have been needed 
to collect large fuels because smaller fuels are more 
evenly distributed across the traps but logs and large 
branches tended to accumulate in “jackpots” within 
the plot.

Results of the CUSUM analysis showed that there 
were few statistically significant differences between 
years for the fine canopy fuels of foliage, other can-
opy material, and fine woody material (fig. 15), but 
there were major annual differences in large branch 
and log material. Foliage accumulations for the CO1 
plot declined slightly over the collection record (fig. 
15a), but the highest accumulations of 1 hr fuels oc-
curred for the years 1996 and 2001, which were more 
than double the accumulations of the two lowest years 
of 1994 and 2004 (rates for 1993 are low because the 
traps were installed in the middle of that year; figure 
15b). For 10 hr branch fuels, 1996 had nearly triple the 
litterfall compared with all other years. An analysis 

of the climate data for these years did not reveal any 
statistically significant reasons why this occurred, but 
it is probably due to a late heavy snow or high wind 
event that caused extensive branch breakage.

There are some limitations and shortcomings in this 
study that might influence the litterfall results. Several 
times, it was impossible to empty litter traps on high 
elevation plots in autumn because of early snowfalls, 
so there may have been some decomposition losses 
as the litter sat in the traps under the snow through 
the winter. Additionally, large snow banks on access 
roads sometimes delayed spring trap visits for weeks, 
allowing the litter to sit in traps under warm and moist 
conditions that were ideal for decomposition. Many 
conifer tree species shed their foliage during the late 
fall and early winter after the last trap visit, so many 
of the fallen needles remained in the snow above the 
traps contributing to additional decomposition and 
wind losses. Several traps were vandalized during the 
summer causing gaps in the collection record for some 
plots. One ponderosa pine plot (KR2) experienced an 
autumn prescribed fire that burned all but one of the 
traps. The sorting of foliage from other canopy mate-
rial was a difficult and tedious task and was probably 
inconsistently done by the 12 field technicians in-
volved in the project over the 10+ years of the study.

Decomposition

The decomposition phase of this study did not 
match the rigor, detail, and scale of the litterfall phase. 
Decomposition was only measured over a 3-year 
time span, which was probably not long enough for 
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Figure 12. Bootstrap analysis of variance results for the four most disparate plots across each of the six fuel components. The 
asymptote can be used to determine the optimum number of traps to install at a plot for each fuel component: a) foliage,  
b) 1 hr fuels (twigs), c) 10 hr fuels (small branches), d) 100 hr fuels (large branches), e) 1,000 hr fuels (logs), and f) other 
canopy fuels (cones, bud scales).
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Figure 13. The relationship of the probability 
of detection of each fuel component with 
the number of traps as computed from the 
litterfall data collected in this study on all 
traps. The results are summarized a) across all 
years in the study and b) for 1 year.

Figure 14. Spatial distribution, described 
by the skewness statistic, of surface fuel 
litterfall across the litter traps within 
a plot as analyzed across all 28 plots. 
Values of the skewness statistic near 
zero indicate even distribution across 
all traps in a plot. Positive values 
indicate one trap is receiving most of 
the fallen material
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the larger woody fuels. Decomposition was also only 
measured on five sites and it did not include logs and 
other canopy material. There were only three sets of 
litterbags installed at each site, so a comprehensive 
analysis of variance such as that done for the litter-
fall data was not possible with such a small sample. 
Moreover, it was difficult to remove the material that 
had fallen onto the litterbags over the 3 years while 
they were in the field. Freshly fallen needles and small 
materials sometimes worked their way into the bags 
through the coarse mesh, and we often found decom-
posing material below and on the top of the bags, and 
also brought into the bags by soil macrofauna. Some 
bags were chewed or torn apart by rodents and un-
gulates, while others were actually carried off site by 
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Figure 15. Annual surface fuel litterfall rates across the 10 years of record for the CO1 study site (low elevation Douglas fir):  
a) foliage, b) twig (1 hr), c) branch (10 hr), and d) large branch (100 hr). There were no differences between years for the 
foliage and twig fuel components (p < 0.05) excluding 1993, the first year of data collection. There was always 1 year for the 
large woody fuels that was significantly different (p < 0.05) than the others for nearly all plots.

unknown factors. We tried to separate the incorporat-
ed material from the original samples in the litterbags, 
but this was often difficult because of the small size of 
the particles. These limitations only affected around 
16 percent of the samples.

Despite the limitations of the decomposition mea-
surements, the measured rates seemed to compare quite 
well with those measured in other studies (compare fig. 
1b with table 4). The range of k values for foliage de-
composition measured in this study for the Douglas-fir 
sites (0.085 to 0.205 yr-1) are similar to those in figure 
1b (0.005 to 0.56 yr-1). Similar results are found for 
the lodgepole (foliage: 0.104 to 0.247 yr-1 in this study 
and 0.09 to 0.14 yr-1 in table 1) and subalpine fir sites 
(0.110 to 0.169 in this study and 0.09 to 0.17 in fig. 1b). 
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This indicates that the values calculated from this study 
should be useful for future modeling efforts.

Management Implications

The primary objective of this study was to quantify 
fuel dynamics for the purpose of designing, param-
eterizing, and validating ecosystem models, and the 
data presented here appears to provide an extensive 
parameter set for constructing and testing models of 
fuel processes and dynamics. These data can also 
provide managers with valuable estimates of fuel de-
position and decomposition rates that can be used to 
determine the longevity of fuel treatments and priori-
tize fuel treatment areas. This can be accomplished by 
using the fire behavior models to calculate how long 
it would take to accumulate enough surface fuels to 
ignite or support a crown fire or kill overstory trees 
using the fire behavior models. While the large woody 
fuel litterfall and decomposition estimates measured 
in this study may contain high error rates, the fine fuel 
dynamics, which is critically lacking in the literature, 
has been sufficiently estimated for use in models and 
management.

The major conclusions from this long-term study of 
fuel dynamics are:

Litterfall rates are highest on productive plots with • 
shade-tolerant conifers and plots with high LAI. 
The most productive habitat type series have the 
highest litterfall rates across all fuel components.

While foliage litterfall rates vary widely across • 
forest cover types and habitat type series, rates of 
woody fuel components are about the same across 
all plots and types, especially the largest woody 
fuels (large branches, and logs).

Decomposition appears to be positively correlated • 
to a moisture gradient where the highest 
decomposition rates occur on the most productive 
plots.

The temporal and spatial distribution of fine fuels • 
(foliage and twigs) is more homogeneous than 
large woody fuels (branches and logs) because 
of the consistent timing and distribution of the 
litterfall for these fine fuel components.

Many litter traps are needed across a large area • 
to adequately sample log (1,000 hr) deposition 
rates (>200) and this precludes efficient sampling 
for research and management. A better approach 
would be to quantify tree life tables to estimate 
eventual mortality and snag fall
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