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Foreword

The U.S. Geological Survey (USGS) is committed to providing the Nation with credible scientific
information that helps to enhance and protect the overall quality of life and that facilitates
effective management of water, biological, energy, and mineral resources (http:;//www.usgs.
gov/). Information on the Nation's water resources is critical to ensuring long-term availability of
water that is safe for drinking and recreation and is suitable for industry, irrigation, and fish and
wildlife. Population growth and increasing demands for water make the availability of that water,
now measured in terms of quantity and quality, even more essential to the long-term
sustainability of our communities and ecosystems.

The USGS implemented the National Water-Quality Assessment (NAWQA) Program in 1991 to
support national, regional, State, and local information needs and decisions related to water-
quality management and policy (http.//water.usgs.gov/nawga). The NAWQA Program is designed
to answer: What is the condition of our Nation’s streams and ground water? How are conditions
changing over time? How do natural features and human activities affect the quality of streams
and ground water, and where are those effects most pronounced? By combining information on
water chemistry, physical characteristics, stream habitat, and aquatic life, the NAWQA Program
aims to provide science-based insights for current and emerging water issues and priorities.
From 1991-2001, the NAWQA Program completed interdisciplinary assessments and established
a baseline understanding of water-quality conditions in 51 of the Nation’s river basins and
aquifers, referred to as Study Units (http.//water.usgs.gov/nawqa/studyu.htmi).

Multiple national and regional assessments are ongoing in the second decade (2001-2012) of
the NAWQA Program as 42 of the 51 Study Units are reassessed. These assessments extend the
findings in the Study Units by determining status and trends at sites that have been consistently
monitored for more than a decade, and filling critical gaps in characterizing the quality of surface
water and ground water. For example, increased emphasis has been placed on assessing the
quality of source water and finished water associated with many of the Nation’s largest
community water systems. During the second decade, NAWQA is addressing five national
priority topics that build an understanding of how natural features and human activities affect
water quality, and establish links between sources of contaminants, the transport of those
contaminants through the hydrologic system, and the potential effects of contaminants on
humans and aquatic ecosystems. Included are topics on the fate of agricultural chemicals,
effects of urbanization on stream ecosystems, bioaccumulation of mercury in stream ecosystems,
effects of nutrient enrichment on aquatic ecosystems, and transport of contaminants to public-
supply wells. These topical studies are conducted in those Study Units most affected by these
issues; they comprise a set of multi-Study-Unit designs for systematic national assessment. In
addition, national syntheses of information on pesticides, volatile organic compounds (VOCs),
nutrients, selected trace elements, and aquatic ecology are continuing.

The USGS aims to disseminate credible, timely, and relevant science information to address
practical and effective water-resource management and strategies that protect and restore
water quality. We hope this NAWQA publication will provide you with insights and information
to meet your needs, and will foster increased citizen awareness and involvement in the
protection and restoration of our Nation's waters.



The USGS recognizes that a national assessment by a single program cannot address all
water-resource issues of interest. External coordination at all levels is critical for cost-effective
management, regulation, and conservation of our Nation’s water resources. The NAWQA
Program, therefore, depends on advice and information from other agencies—*Federal, State,
regional, interstate, Tribal, and local—as well as nongovernmental organizations, industry,
academia, and other stakeholder groups. Your assistance and suggestions are greatly
appreciated.

Robert M. Hirsch
Associate Director for Water
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Chemical Characteristics, Water Sources and
Pathways, and Age Distribution of Ground Water
in the Contributing Recharge Area of a
Public-Supply Well near Tampa, Florida, 2002-05

By Brian G. Katz, Christy A. Crandall, Patricia A. Metz, William S. McBride, and Marian P. Berndt

Abstract

In 2001, the National Water-Quality Assessment
(NAWQA) Program of the U.S. Geological Survey began a
series of studies on the transport of anthropogenic and natural
contaminants (TANC) to public-supply wells. The main goal
of the TANC program was to better understand the source,
transport, and receptor factors that control contaminant move-
ment to public-supply wells in representative aquifers of the
United States. Studies were first conducted at regional scales
at four of the eight TANC study areas during 2002-03 and at
small (local) scales during 2003-05 in California, Nebraska,
Connecticut, and Florida.

In the Temple Terrace study area near Tampa, Florida,
multiple chemical indicators and geochemical and ground-
water flow modeling techniques were used to assess the
vulnerability of a public-supply well in the karstic Upper
Floridan aquifer to contamination from anthropogenic and
naturally occurring contaminants. During 2003-05, water
samples were collected from the public-supply well and
13 surrounding monitoring wells that all tap the Upper
Floridan aquifer, and from 15 monitoring wells in the
overlying surficial aquifer system and the intermediate
confining unit that are located within the modeled ground-
water contributing recharge area of the public-supply well.

Six volatile organic compounds and four pesticides were
detected in trace concentrations (well below drinking-water
standards) in water from the public-supply well, which had
an open interval from 36 to 53 meters below land surface.
These contaminants were detected more frequently in water
samples from monitoring wells in the overlying clastic surfi-
cial aquifer system than in water from monitoring wells in the
Upper Floridan aquifer in the study area. Likewise, nitrate-N
concentrations in the public-supply well (0.72-1.4 milligrams

per liter) were more similar to median concentrations in the
oxic surficial aquifer system (2.1 milligrams per liter) than to
median nitrate-N concentrations in the anoxic Upper
Floridan aquifer (0.06 milligram per liter) under sulfate-
reducing conditions. High concentrations of radon-222 and
uranium in the public-supply well compared to those in
monitoring wells in the Upper Floridan aquifer appear to
originate from water moving downward through sands and
discontinuous clay lenses that overlie the aquifer.

Water samples also were collected from three
overlapping depth intervals (38-53, 43-53, and 49-53 meters
below land surface) in the public-supply well. The 49- to
53-meter interval was identified as a high-flow zone during
geophysical logging of the wellbore. Water samples were
collected from these depth intervals at a low pumping rate by
placing a low-capacity submersible pump (less than
0.02 cubic meter per minute) at the top of each interval. To
represent higher pumping conditions, a large-capacity portable
submersible pump (1.6 cubic meters per minute) was placed
near the top of the open interval; water-chemistry samples
were collected using the low-capacity submersible pump. The
49- to 53-meter depth interval had distinctly different chemis-
try than the other two sampled intervals. Higher concentrations
of nitrate-N, atrazine, radon, trichloromethane (chloroform),
and arsenic (and high arsenic (V)/arsenic (III) ratios); lower
concentrations of dissolved solids, strontium, iron, manganese,
and lower nitrogen and sulfur isotope ratios were found in this
highly transmissive zone in the limestone than in water from
the two other depth intervals.

Movement of water likely occurs from the overly-
ing sands and clays of the oxic surficial aquifer system and
intermediate confining unit (that contains high radon-222 and
nitrate-N concentrations) into the anoxic Upper Floridan aqui-
fer (that contains low radon-222 and nitrate-N concentrations).
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Differences in arsenic concentrations in water from the various
depth intervals in the public-supply well (3.2-19.0 micrograms
per liter) were related to pumping conditions. The high arsenic
concentrations found in the high flow zone during pumping
conditions indicates that oxic water from the surficial aquifer
system may travel into conduits in the Upper Floridan aquifer
and mobilize arsenic from pyrite in the aquifer matrix.

Geochemical mass-balance mixing models for the
public-supply well indicate that 50 to 70 percent of water
withdrawn from the public-supply well is being contributed
from the surficial aquifer system and 30 to 50 percent from the
Upper Floridan aquifer. Geochemical models also indicate the
dissolution of small amounts of calcite, gypsum, and dolomite
as water moves toward the public-supply well.

Concentrations of age tracers sulfur hexafluoride (SF)),
tritium (*H), and helium-3 (*He) in samples from the public-
supply well during low- and high-rate pumping conditions
were consistent with binary mixtures dominated by young
water (less than 7 years). Similarly, water samples from
monitoring wells in the surficial aquifer system had SF, and *H
concentrations that indicate a substantial proportion of young
water (less than 7 years). In contrast, most water samples from
monitoring wells in the Upper Floridan aquifer had lower SF,
and *H concentrations than water from the public-supply well,
indicating mixtures containing higher proportions of older
waters (greater than 50 years). The presence of young water
(less than 7 years) in the public-supply well and surficial
aquifer system indicates the vulnerability of public-supply
wells in this area to contamination associated with highly
transmissive zones in the Upper Floridan aquifer that are
directly connected to the overlying surficial aquifer system.

Selected monitoring wells in the surficial aquifer
system were sampled several times during 2003-05 at different
hydrologic conditions to evaluate temporal variability in water
quality. These wells were sampled four times before and after
three tropical cyclones that passed through the area in summer
2004. Additionally, water-quality variations were evaluated for
the public-supply well based on five samples collected during
2002-05. Chloride concentrations decreased from the
summer 2004 water samples to the winter 2004-05 samples
from three wells following the recharge pulse from high rain-
fall and corresponding peak in water-level elevation in October
2004. Nitrate-N concentrations increased in water from one
well from January 2004 to August 2004, but decreased in
water from another well during the same period. Nitrate-N
concentrations also increased in water samples from two other
monitoring wells in the surficial aquifer system, from January
2004 to August 2004, but decreased in subsequent samples
from these two wells. Nitrate-N concentrations in water from
a well located near the Hillsborough River remained below
the detection limit, as reducing conditions persisted during
December 2003 to July 2005. Dissolved oxygen concentra-
tions increased in water samples from two wells in the surfi-
cial aquifer system, and the public-supply well in August and
September 2004 during and following the above normal rain-

fall in June through September 2004. The increase in dissolved
oxygen concentrations likely results from recent recharge of
water containing high levels of oxygen compared to low levels
in ground water prior to the excess rainfall period. Dissolved
oxygen concentrations decreased in water from a well near the
Hillsborough River in fall 2004, which may indicate the influx
of river water with high dissolved organic carbon and subse-
quent consumption of oxygen as water moves toward this well.

Introduction

The vulnerability of public-supply wells to contamina-
tion has raised health concerns throughout the United States.
Anthropogenic contaminants, such as solvents, disinfection
byproducts, and other volatile organic compounds (Ivahnenko
and Zogorski, 2006; Schaap and Zogorski, 2006; Zogorski and
others, 2006) and pesticides (Gillion and others, 2006) have
been detected in low concentrations in water from drinking-
water supply wells across the United States. Ground-water
contamination from nutrients, such as nitrate, are widespread
(Nolan and others, 1998) particularly in karstic aquifers
(Katz, 2004). In addition, other studies have found high levels
of naturally occurring contaminants, such as radon (Sowerby
and others, 2000), uranium (B. Jurgens, U.S. Geological
Survey, written commun., 2007; M.K. Landon, U.S.
Geological Survey, written commun., 2007), and arsenic
(Focazio and others, 1999; Welch and others, 2000) also are
present in drinking water wells.

In response to these concerns, the U.S. Geological Survey
(USGS) National Water-Quality Assessment (NAWQA)
Program began a series of studies in 2001 to assess the
vulnerability of public-supply wells to contamination with
regard to the transport of anthropogenic and naturally occur-
ring contaminants (TANC) to public-supply wells at regional
and small scales at several sites in the United States (Eberts
and others, 2005). The TANC studies were built on previous
NAWQA studies that found low levels of mixtures of contami-
nants in ground water beneath urban areas across the United
States (Hamilton and others, 2004).

The overall objectives of the TANC studies are to:

(1) identify the dominant contaminants and sources of those
contaminants in public-supply wells in representative water-
supply aquifers across the United States; (2) assess the effects
of natural processes and human activities on the occurrence of
contaminants in public-supply wells in representative aquifers;
(3) identify the factors that are most important to incorporate
into public-supply well vulnerability assessments in different
settings and at different scales; (4) develop simple methods
and models for screening public-supply wells for vulnerabil-
ity to contamination in unstudied areas and from emerging
contaminants; and (5) increase understanding of the potential
effects of water-resources development and management deci-
sions on the quality of water from public-supply wells (Eberts
and others, 2005).



The Floridan aquifer system provides drinking water to
millions of people throughout the southeastern United States.
The Upper Floridan aquifer is particularly vulnerable to
contamination from various land-use activities in areas where
it is unconfined or poorly confined as in west-central Florida.
This vulnerability is due in part to the presence of numerous
karst features, such as sinkholes, which facilitate the
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movement of water from surface features and overlying
hydrogeologic units to the Upper Floridan aquifer (fig. 1). In
addition, lineaments of sinkholes and other solution features
that trend predominantly in a northeast-southwest direction
have been mapped throughout the area and reveal the
regionally extensive karst terrane (fig. 1).
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Figure 1. Large- and small-scale areas for the study of the transport of anthropogenic and natural contaminants
(TANC) to public-supply wells, photolineaments (modified from Culbreath, 1988; Knochenmus and Robinson, 1996),
degree of confinement of the Upper Floridan aquifer, and selected karst features in west-central Florida.
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This study focuses on a public-supply well located in
an urban area where various anthropogenic activities at the
land surface provide potential sources of contaminants, such
as underground storage tanks, fertilizers applied to lawns and
golf courses, stormwater retention ponds, and other commer-
cial operations. Additionally, hydrogeologic and geochemical
conditions in the subsurface may facilitate the ground-water
transport of uranium, radon-222, and arsenic present in miner-
als that make up the limestone that composes the Upper
Floridan aquifer and overlying material to public-supply wells.

The public-supply well (referred to as TTP-4) in the City
of Temple Terrace was sampled for a variety of chemical and
bacteriological constituents, as part of a source water-quality
assessment study by the USGS NAWQA Program in 2002.
Several contaminant groups, at concentrations below
maximum contaminant levels, were found in water from
TTP-4 including nitrate, volatile organic compounds, pesti-
cides, methyl tert-butyl ether (MTBE), solvents, uranium, and
arsenic. Several of these compounds have been detected in
other community water system wells in the northern Tampa
Bay area (Metz and others, 2007). Construction and opera-
tional practices of TTP-4 are similar to many other community
water system wells that supply water in the Tampa Bay region
at a pumping rate of 2,650 L/min (liters per minute).

The construction and operational practices of TTP-4
also are representative of community and public-supply wells
throughout northern Florida and other karstic aquifers in the
United States. Consequently, this study provides important
information about the transport and fate of contaminants that
can be introduced to the land surface or released from miner-
als that compose the aquifer matrix and material overlying the
principal aquifer, as they move to deeper ground water that
is eventually withdrawn for public-water supply. This study
investigates the dominant factors affecting the vulnerability
of public-supply wells to contamination, such as geochemical
conditions in the aquifer, the amount and rate of pumping, and
mixing of water from different hydrogeologic units.

Purpose and Scope

The purpose of this report is to assess factors affecting
the vulnerability to contamination of a public-supply well in
the Upper Floridan aquifer near Tampa, Florida. The report
presents information on the hydrogeologic setting, occurrence
and distribution of ground-water ages, and selected chemical
characteristics of the ground water in the contributing recharge
area of a public-supply well. The occurrence and distribution
of selected inorganic and organic chemical constituents that
are useful for developing basic interpretations of ground-water
recharge and discharge patterns and pathways are described.
Factors are assessed that influence transport of anthropogenic
contaminants (for example, nitrate, volatile organic com-
pounds, and pesticides) and naturally occurring compounds of
concern (radon-222, arsenic, uranium, dissolved organic

carbon, and hydrogen sulfide) to supply wells for the TANC
study area at Temple Terrace near Tampa, Florida. This report
includes a description of the design of the monitoring well
network, methods of data collection and analysis, estimates
of apparent ground-water ages and ground-water age distribu-
tions using atmospheric tracers and lumped parameter models,
and isotopic and other chemical information for ground- and
surface-water samples. This report is intended to serve as a
foundation for synthesis analyses comparing results between
the Temple Terrace study area and other TANC study areas in
Nebraska, California, and Connecticut.

Description of Study Area

The small-scale study area is 86 km? (square kilometers)
and encompasses the city of Temple Terrace, which is located
northeast of Tampa, Florida, in north-central Hillsborough
County (fig. 1). Temple Terrace is in the Hillsborough River
drainage basin, and is bounded on the west and southwest by
the city of Tampa and on the east and south by the Hillsbor-
ough River (fig. 2). Public-supply wells in Temple Terrace tap
the Upper Floridan aquifer, which underlies most of the South-
east and is a significant drinking-water source for the Tampa
Bay region, as well as about 9 million people living in parts of
Alabama, Florida, Georgia, and South Carolina (Marella and
Berndt, 2005).

The population of Temple Terrace has grown
exponentially during the past 50 years — with about
430 people in 1950, 10,751 people in 1974, and 20,918 people
in 2000. The population density in 2000 was 1,135 people
per square kilometer. The growth in population occurred while
land use transitioned from agricultural in 1950 to commer-
cial and residential in the 1970s and later. Temple Terrace is
located on a local topographic high, with land-surface
elevations close to 27 m (meters) along the western edge of the
city to less than 6 m at the Hillsborough River. Urban drain-
age within Temple Terrace is routed to a series of stormwater
retention basins. During high-water conditions, excess
water is pumped from these basins and discharged into the
Hillsborough River.

Average annual rainfall in the Tampa area was 114 cm
(centimeters) for the period 1971-2000, as recorded at the
National Oceanic and Atmospheric Administration (NOAA)
station at the Tampa International Airport (National Climatic
Data Center, 2005). On average, about 60 percent of the rain-
fall occurs from June through September. August is typically
the wettest month, with about 17 percent of the annual rainfall.
November is typically the driest month, with slightly less than
4 percent of the annual rainfall.

Potential sources of contaminants to ground water in
the Temple Terrace study area include underground storage
tanks, septic tanks, stormwater runoff to retention ponds, dry
cleaners and other commercial operations that use solvents,
chemicals applied to golf courses and lawns, and hazardous
waste sites (fig. 2).



Previous Studies

A detailed hydrogeologic and water-quality study was
conducted by the USGS in the early 1970s, in cooperation
with the City of Temple Terrace, to provide information to the
City for the development of additional ground-water supplies
and to minimize problems with poor quality water (Stewart
and others, 1978). Data were collected on aquifer properties,
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water-quality variations with depth in the Upper Floridan
aquifer, geohydrologic characteristics of the Upper Flori-

dan aquifer and surficial material, ground-water levels, and
chemistry and microbiology of water samples from wells and
surface-water sites. Degradation of water quality in Temple
Terrace public-supply wells as early as 1968 was documented,
including high concentrations of total coliform bacteria, fecal
streptococci, and color (Stewart and others, 1978).
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Figure 2. Location of potential sources of contaminants to ground water in the Temple Terrace, Florida,

study area.
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Geologic sections showing the thickness and configura-
tion of shallow sedimentary layers that underlie the Hillsbor-
ough River were constructed from seismic-profile records
along a river subreach near Temple Terrace as part of a study
to evaluate connections between ground water and surface
water in the Hillsborough River basin (Wolansky and Thomp-
son, 1987). That study described leakage of river water to the
Upper Floridan aquifer based on decreasing river flow along
a section of the river that included Temple Terrace (Wolansky
and Thompson, 1987). However, interactions between ground
water and surface water are complex, as a study in the early
1970s found that the Hillsborough River receives inflow from
both the water-table aquifer (within the surficial aquifer sys-
tem) and the Upper Floridan aquifer south and east of Temple
Terrace due to head relations between ground water and sur-
face water that change seasonally (Stewart and others, 1978).

Other studies have characterized the hydrogeology and
hydrochemistry of the Upper Floridan aquifer and surficial
aquifer system in this area (Miller, 1986; Trommer, 1987;
Aucott, 1988; Bush and Johnston, 1988; Sprinkle, 1989;
Berndt and Katz, 1992; Katz, 1992; Knochenmus and Rob-
inson, 1996; Yobbi, 2000). Swancar and Hutchinson (1995)
related the stable isotope composition and tritium concentra-
tions to the potential for contamination of ground water in the
shallow Upper Floridan aquifer in west-central Florida.

A regional study of the transport of anthropogenic and
natural contaminants in 2002-03 in the Tampa, Florida, area
was designed to identify factors affecting contaminant trans-
port based on existing data for public-supply wells, and to
delineate contributing recharge areas of public-supply wells
using an existing ground-water flow model (Paschke, 2006).
During October 2002 to January 2003, a number of (30)
community water system wells in the northern Tampa Bay
area were sampled for 260 anthropogenic organic compounds
as part of a NAWQA source water study for wells that provide
drinking water (Metz and others, 2007). The 10 most
frequently occurring anthropogenic organic compounds in
the United States (Zogorski and others, 2006) were detected
in more than 10 percent of the 30 source water samples, and
included volatile organic compounds and pesticides. Samples
generally averaged three compounds, and 70 percent of the
samples had at least one volatile organic compound (Metz and
others, 2007). This study also found a significant correlation
between the number of anthropogenic organic compounds
detected and population within a 500-m radius of a community
water system well. Chloroform concentrations were highest
beneath areas where residential land use was greater than
73 percent. Similar findings were noted for pesticides in
source water for community water system wells (Metz and
others, 2007).
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Methods

This section contains information about the sampling
network design, monitoring well installation, water-quality
sampling and analysis, quality assurance, and data analysis.
This section also describes the collection of aquifer mate-
rial samples for characterizing lithology and mineralogy and
elemental analysis of core material from hydrogeologic units,
collection and analysis of chemical and isotopic constituents,
and age dating of ground water.

Design of Monitoring Well Network

Wells were installed in the contributing recharge area of
public-supply well TTP-4 based on a regional ground-water
flow model (C.A. Crandall, U.S. Geological Survey, written
commun., 2007) and in adjacent areas to better understand
ground-water flow patterns and to determine the occurrence of
various chemicals in the surficial aquifer system, intermedi-
ate confining unit, and Upper Floridan aquifer. Additionally,
selected monitoring wells were sampled several times during
the study to evaluate temporal variability in water quality.
Monitoring wells were installed in two phases: (1) during late
fall 2003 and winter 2004, and (2) during summer 2004
(fig. 3). Monitoring wells were located in the contributing
recharge area of the public-supply well. Contributing recharge
areas of the public-supply well were delineated using particle-
tracking software and a stochastic model that incorporated
fracture flow (C.A. Crandall, U.S. Geological Survey, written
commun., 2007). During the first phase of well drilling,

15 wells were installed in 5 well nests, with each nest contain-
ing 3 wells. Most of these nests consisted of one shallow well
screened in the surficial aquifer system, one well screened
near the top of the Upper Floridan aquifer, and one deep

well in the Upper Floridan aquifer. Because the intermediate
confining unit was absent at most locations, only one well
(113RC-H50) was installed in that unit during phase 1. During
the second phase of well drilling, another 15 monitoring wells
were installed. These well locations were based on updated
estimates of the contributing recharge area of public-supply
well TTP-4 based on Monte Carlo probabilistic methods to
incorporate uncertainty and karst features into the model (C.A.
Crandall, U.S. Geological Survey, written commun., 2007).

A total of 12 monitoring wells were installed in the surficial
aquifer system, 4 in the intermediate confining unit, and 14

in the Upper Floridan aquifer. Surface-water samples were
collected from the Hillsborough River (denoted as station



HRiver in figures and tables) and stormwater retention ponds
(fig. 3). Well depth and other well construction information are
contained in table 1.

Drilling, Coring, and Well Installation

Hollow-stem augering techniques that conformed to
USGS protocols (Lapham and others, 1995) were used to
install monitoring wells in the surficial aquifer system, inter-
mediate confining unit, and shallow Upper Floridan aquifer
(wells less than 60-m deep). Mud-rotary methods were used
for the installation of the deep monitoring wells in the Upper
Floridan aquifer. Equipment was decontaminated between
sites by steam cleaning. All monitoring wells consisted of
threaded polyvinyl chloride (PVC) pipe (schedule 40, 10-cm
diameter) and had 3-m-long screens with 1-mm (millimeter)
slots. Clean silica sand was packed around the well screens.
The wells were sealed by placing bentonite above the sand
packing material to land surface, and cementing above the
bentonite at the surface with a steel well protector and locking
cap. Wells were developed using a surging pump until
stabilization of field properties (pH, specific conductance,
temperature, dissolved oxygen) and turbidity.
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Split-spoon samples were collected in boreholes, and
samples of rock (cores) were collected in one well
(MAS-F160). A description of the lithology of the cores and
cuttings obtained during well drilling and a summary of
analyses performed on selected core samples are presented in
table 2. Core samples were collected using a split-spoon
sampler (with clear plastic liners) in unconsolidated sedi-
ment or a core barrel in rock. Subsamples were processed in
a closed chamber that was purged with ultra-pure nitrogen
gas. Some subsamples of core material were stored in capped
plastic cylinders, and other samples were stored in glass jars
and kept on ice. Core samples were analyzed for bulk and clay
mineralogy, elemental composition, organic matter content,
bulk density, and volumetric moisture content (table 3).
Recharge estimates were based on unsaturated zone properties
(R. Healy, U.S. Geological Survey, written commun., 2004).
Pore water extracted from cores collected at various depths
at the Lynnwood Park (LP) and Lightfoot Retention Pond
(LRP) sites were analyzed for nitrate-N, chloride, sulfate,
and bromide (P. McMahon, U.S. Geological Survey, written
commun., 2004). Particle-size distribution of core subsamples
was characterized using optical diffraction and a particle-size
analyzer (Gee and Or, 2002). Sediments in the size range of

82°23'30" 82°23' 82°22'30" 82°22'
T T
LP-
aso
40
Lap- L4
28°03' |- 25 _
H105 WP-
F160 S64
POND  F150 62SRP
Y F299 S34
® H55
j S F160 P
@3 é N OND

A @ Public- \' -

MAS-R  supply
S30 well
Fod TTP-4
F160

28°02'30" |- POND B

EXPLANATION

B B’ HYDROGEOLOGIC CROSS SECTION B-B'
A_ _ A  HYDROGEOLOGIC CROSS SECTION A-A'

DIRECTION OF GROUND-WATER FLOW IN

UPPER FLORIDAN AQUIFER

° SAMPLING LOCATION FOR WELL OR POND

BBP-

S45 AND SITE IDENTIFIERS

025 050 KILOMETERS
0.25 0.50 MILES

oTo

Figure 3. Lines of hydrogeologic sections, sampling site locations, and direction of ground-water
flow in the Upper Floridan aquifer in the Temple Terrace, Florida, study area.



Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water

v9°81 ANOd-d¥'1 puOd UONUIRY I3JUI)) UOHBINNY JOONYSIT  00TEETTS00STOST ve
7981 ANOd-ddST9 puod uonudlRy IS PUZ9  0080ETTROTHTOST €€
66°S1 ANOd-SYIN puod UONUIRY BN  006T£TTR0THTOST 43
LT'L YHARH ToARy Y3no1oqs([IH “ed Kem[iey  00T0TIT0YFI08T 1€
VAN 0¢ 9¢ €S S9ve #-dLL (1rom Addns-oriqnd) 4 ooeria, o[dway, d[qe[reat 10N 0¢
SVS 01 8 11 el 0FS-ddvI puod 19y Joqiy duipenber  10THTTT801$T08T 6T
vdn 01 9% 67 €€°0T 0914-d¥T puod 19 100PYSIT  100££TTR00STOST 8T
viAn 01 6T (43 8€°0T SOTH-dYT puod 19y 100PYSIT  ZO0EETTR00STOT LT
SVS 01 S 8 0T STS-dyu1 puod 1Y 100PYSIT  €00££TTR00STOT 9T
VAN ST vl o £r'0T 0914-4-SVIN Q0URPISY SLIN  [0FTETTROTHTOST 54
vian 0l 91 0T YE0T +94-4-SVIN QURPISY SEIN  €0FTETTROTHTOST T
SVS 01 9 6 0%°0T 0£S-4-SYIN Q0USPISY SEIN  €0FTETTROTHTOST €T
SVS 01 6 1 1€°91 SyS-ddd yied sexg uuog  [0S1£2T808TTO8T (4
viAn 01 9% 67 Y91 0914-d¥STY puod 19y 1920S PUz9  10L0ETTSOIHTO8T 1T
noI1 01 ! Ll 9L'1T SSH-d¥ST9 puod 19y 1931S PUz9  TOLOETTROIHTO8T 0T
SVS 01 L 01 9L°1T PES-dASTY puod 19y 190NS PUZ9  €0LOETTYOIHT08T 61
SVS 0l ¢ 9 6011 0TS-d440 puod 19y Aemsuoand)  [06£228011€08T 81
noI 01 6 Tl €TS1 OFH-d'T yied poomuukT  1060£TTI0E0E08T L1
SVS 01 9 6 0TSI 0£S-dT Jed poomuukT  Z060£TT0E0L08T 91
viAn 01 8T ¢ STl €01d-dd yied Kem[rey  10L0T¢C8067708CT SI
VAN 01 0T € YTl LLA-dd yied Kem[rey  20L0TTT806¥T08T vl
SVS 01 € 9 YTl 0TS-dd yred Aempred  €0L0TTT806¥C08T €1
vian 0l 8¢ 19 0s°Tl 0024-04VD MRID B ND Y [08€TTTYOESTOT 4!
vdan 01 0T €T 86°T1 SLA-DUVO WD DD Y TOYETTTYOESTOST I
SVS 01 L L 6¢Tl €7S-OUVO PAY ONR[[ID I N 0 £08ETTTROESTOST o1
VAN 01 88 16 65T 66Cd-dM W[ M [061€2T80LPT08T 6
VAN 0l 5 9% 85T 0STd-dM Jue[d IR T061€£TT80LYTOST 8
SVS 01 91 0T YT +9S-dM e[ OIBM €061 €£TT80LYTOST L
vdn 01 LS 09 091 L6TA-DHL SPID [[IH BMAL  [0¥4TTT801HT08T 9
VAN 01 0T € 0091 SLA-DHL SN [[IH 99BLRL,  TOYYTTT801¥T08T S
NDI/SVS 01 11 ! 86°S1 9%H/VS-OHL OPID [[IH BIRAL  €0FHTTI8014T08T v
VAN 01 SS 8¢ 16Tl 0614-D¥ET 1 PAY IEIT DD O 10LTTTTI0I0E08T €
noI1 0l Tl S1 €8°C1 OSH-DEN T OAY IEIT DD O TOLTTTITSOI0E08T z
SVS 0l 8 I 06Tl SES-DNEN T OAY IEIT DD O €0LTTTTOI0E08T I
Am‘_cucE_Ecuv Am._uuu_:v .ww GAVN .
sopnby Joowelp u080198 J0 (s13)aw) anoqe siaja) aweu owen [op 1aynuapt ou
Buises doy 03 ydeg pdap j1ap ‘uonend|d alg alg Xapuj

ageyns pue]

[99B3INS puB] MO[aq SI2IOW UI I U221 Jo doy 01 yadap pue yidap [jopm
"8861 JO WM [BONISA URdLIDUIY (IION ‘88 JAVN JRLIIUSPI UONE)S ) JO SISIP €] ISIIJ UT PAUTLIUOD AIL [[oM (OB IO (SPUOOS ‘SAINUIW ‘S92I39p) 9pmISuo] pue opmine] '] 2[qe) Ul pAyHUIPI oIk sIoquinu Xapuf]

"(v4n) J8yinbe uepuol4 Jaddn pue ‘(nNJ]) uun Buiuyuod sleipawalul ‘(SS) waisAs Jayinbe |eroiuns ayl Buiddey sjjam Buriojuow 104 UOIIEWIOLUI UOIIEDO| PUB UOIINIISUOI [|BAN °L 3]qeL



Methods 9
Table 2. Description of lithology and results from grain-size analysis from sediments underlying the study area.
[Index numbers are identified in table 1. Depth, in meters below land surface; zone: SZ, saturated zone; UZ, unsaturated zone; NA, no samples available]
Percent
. uz A clay and
L0 S LI Lithology Lithologic description S
no. name meters based on
SZ . on class
class size -
size
1 113RC-S35 0-1.2 UZ Silty sand Sand, top soil, and organics; tan to white
1.2-1.8 UZ Silty sand Sand, fine while with iron staining; brownish-yellow top soil; silt
2.7-3.4 UZ Silty sand Sand, fine white sand with small amount of pale brown silt 83 17
4.3-49 UZ Silty sand Light gray sand; silt
7.3-7.9 SZ Clayey sand Olive-yellow clayey sand, iron staining
8.8-9.8 SZ Clayey sand Yellow clayey sand, pieces of weathered limestone
10.4-11.0 SZ Clayey sand Light gray clayey sand, pieces of weathered limestone
2 113RC-H50 11.9-12.5 SZ Clayey sand Light gray clayey sand, pieces of weathered limestone
13.4-13.7 SZ Clayey sand Light brownish gray clayey sand, pieces of weathered limestone
13.7-14.0 SZ Clayey sand Dark gray clayey sand, very dark layer at 46 ft
13.7-15.2 SZ  Limemud Drilled 100 ft into a paleo sink, backfilled to 50 ft
3 113RC-F190 15.2-25.9 SZ Limestone 75-85 ft void
25.9-31.7 SZ Limestone 85-104 ft very soft
31.7-62.5 SZ Limestone Hard to soft limestone
4 THC-SA/H46 0-0.61 UZ Silty sand Soil zone, dark grey sand, silt, and organics
1.5-2.1 UZ Silty sand Pale yellow sand
3.0-3.7 UZ Clayey sand Pale yellow sand and clay with iron staining 93 7
4.6-5.2 UZ Clayey sand Brownish yellow clayey sand (iron staining) to dense plastic clay 93 7
6.1-6.7 UZ Clayey sand Yellow sand at top interlaced with clay/sandy clay
7.6-8.2 UZ Sandy clay Light-gray, sandy clay, light greenish gray dense clay
9.1-9.8 UZ Clayey sand Light yellow-brown sandy clay, small pieces of weathered limestone
10.7-11.3 SZ Clayey sand Light yellow-brown sandy clay to soft lime mud
11.6-14.0 SZ Clayey sand Light yellow-brown sandy clay to soft lime mud
5 THC-F75 14.0-23.8 SZ Limestone Pale yellow, soft to hard, void at 73 ft
6 THC-F197 22.9-60.0 SZ Limestone Hard to soft, moderately sandy and clayey
7  WP-S64 0-0.61 UZ Silty sand Pale yellow silty sand, some organics
1.5-2.1 UZ Silty sand Pale yellow silty sand
3.0-3.7 UZ Silty sand Pale yellow sand and dark brown silt 95 5
4.6-5.2 UZ Silty sand Pale yellow sand and dark brown silt 74 26
6.1-6.7 UZ Silty sand Pale yellow sand and dark brown silt
7.6-8.2 UZ Silty sand Pale yellow sand and dark brown silt 74 26
9.1-9.8 UZ Silty sand Pale yellow sand and dark brown silt
10.7-11.3 UZ Silty sand Pale yellow sand and dark brown silt
12.2-12.8 UZ Clayey sand Pale yellow sand and light greenish gray clay 53 47
13.7-14.3 UZ Limestone Clayey, weathered
14.9-15.2 UZ Limestone Pale yellow soft, lime mud
15.2-16.8 SZ  Limestone Pale yellow soft, lime mud
16.8-19.8 SZ Limestone Limestone, soft
WP-F150 19.8-45.7 SZ  Limestone Hard to soft, moderately sandy and clayey
WP-F299 45.7-91.4 SZ  Limestone White to tan, soft to hard, vuggy, grandular, fossiliferous
10 GARC-S523 0-0.61 UZ Silty sand Pale yellow top soil; pale brown sand and organics
1.2-1.8 UZ Silty sand Pale yellow sand, organics, silt, iron staining 93 7
2.7-34 UZ Clayey sand Pale yellow sand, silt; clayey sand, iron staining 52 48
4.3-49 SZ Clayey sand Reddish yellow sand and clay, hit a hard pan layer, iron stained
5.8-6.4 SZ Clay Dense reddish yellow plastic clay with iron staining
11 GARC-F75 6.4-7.0 SZ Limestone White
7.0-22.9 SZ Limestone Hard to soft
12 GARC-F200 22.9-61.0 SZ  Limestone Hard to soft
13 RP-S20 0-1.5 UZ Silty sand Soil zone, dark grey silt and organics
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Table 2. Description of the lithology and results from grain-size analysis from sediments underlying the study area.—Continued

[Index numbers are identified in table 1. Depth, in meters (m) below land surface; SZ, saturated zone; UZ, unsaturated zone; NA, no samples available]

Percent
Index Site Depth vz szm clay and
no. name merer; or Lithology Lithologic description based on silt based
sz classsize  °" t_:lass
size
1.5-2.1 UZ Silty sand Light brownish gray top soil, sand with silt and organics 83 17
2.7-34 UZ Silty sand Light brownish gray sand, with silt and organics
4.3-4.9 SZ  Silty sand Very dark gray sand, with silt and organics
5.8-6.1 SZ Clayey sand Light brownish gray sand and clay
6.1-6.4 SZ  Sandy clay Light greenish gray clay and sand
14 RP-F77 6.4-6.7 SZ  Sandy clay Light greenish gray
6.7-7.0 SZ Limemud Limemud, white, some chert
7.0-8.2 SZ  Limestone Chert in places, voids, soft to hard
15 RP-F103 23.5-31.4 SZ  Limestone Voids down section, soft to hard
16 LP-S30 0-1.5 UZ Sand Orange-brown to orange
1.5-3.0 UZ Sand Pale yellow-orange
3.0-4.0 UZ Sand Pale yellow-white
4.3-4.6 UZ Clayey sand Pink-orange
4.6-8.2 SZ Clayey sand Red-orange
8.2-8.8 SZ  Sandy clay Yellow, stiff
17 LP-H40 8.8-10.7 SZ Clayey sand Yellow-orange, dark to pale
10.7-11.9 SZ  Sandy clay Yellow-orange clay, stiff to gummy with sand
11.9-12.5 SZ  Limestone White-Pale yellow, very soft, weathered residuum
18  QRP-S20 0-2.4 UZ Sand Light gray to light yellow brown
2.4-2.7 SZ  Sand Brown
2.7-5.5 SZ Clayey sand Light yellow brown
5.5-6.1 SZ Clayey sand Very pale brown to pink clay with sand
19 62SRP-S34 0-3.0 UZ Sand Light yellow-orange
4.0-5.2 UZ Sand Light orange
5.5-7.9 UZ Clayey sand Light orange
7.9-9.1 UZ Clayey sand Light brown
9.1-10.4 SZ Limemud Light yellow clayey carbonate mud, weathered limestone
20 62SRSP-HS55 10.4-12.2 SZ Limemud Dense clay/carbonate mud, with light yellow limestone chips
12.2-13.7 SZ  Sandy clay White with iron staining
13.7-16.8 SZ Limestone White, muddy fine-grained
21 62SRP-F160 16.8-19.8 SZ  Limestone White, friable,
19.8-22.9 SZ  Limestone ‘White, circulation loss
22.9-26.5 SZ  Limestone Light brown, hard
26.5-27.1 SZ  Limestone Hard, circulation loss
27.4-29.0 SZ Limestone Soft
29.0-33.5 SZ  Limestone White
33.5-34.1 SZ Limestone Hard slow drilling possibly clay
34.7-36.6 SZ Limestone White
36.6-37.2 SZ Chert Chert
37.2-40.5 SZ NA Void
42.7-44.2 SZ Limestone Very hard
44.2-47.9 SZ NA Void
47.9-48.8 SZ Limestone Greenish-gray clay with light brown
48.8 SZ  Limestone Light brown, fossiliferous
22 BBP-S45 0-3.0 UZ Sand Yellow
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Table 2. Description of the lithology and results from grain-size analysis from sediments underlying the study area.—Continued

[Index numbers are identified in table 1. Depth, in meters (m) below land surface; SZ, saturated zone; UZ, unsaturated zone; NA, no samples available]

Percent
. uz Secen clay and
Lok i P or Lithology Lithologic description il silt based
no. name meters s7 based on o class
class size size
3.0-4.6 UZ Clayey sand Mottled orange
4.6-6.1 UZ Clayey sand Pale brown to yellow
6.1-8.8 UZ Sandy clay Stiff, some possibly oxidized chert
8.8-10.1 SZ NA Lost circulation, small amount of rock present
10.1-10.7 SZ NA Void
10.7-12.2 SZ NA No cuttings
23 MAS-R-S30 0-4.6 UZ Sand Light brown to red-orange
4.6-6.1 UZ Sand Red-orange to red-brown
6.1-9.1 SZ Sand Light brown to gray-red
9.1-9.8 UZ Clayey sand Pinkish-white
24 MAS-R-F64 10.1-10.7 UZ Clay Light greenish gray
12.2-13.7 SZ NA Lost circulation, bit dropped 4 ft
13.7-21.3 SZ Limestone Soft drilling carbonate mud
25 MAS-R-F160 21.9-25.0 SZ  Limestone Hard, chert, brown limestone
25.6-27.4 SZ Limestone Alternating hard and soft drilling
28.7-42.7 SZ Limestone Alternating hard and soft drilling
42.7-45.7 SZ Limestone White
45.7-46.3 SZ  Limestone White, highly fossiliferous, friable fractured
46.3-46.9 SZ  Limestone Poorly cemented, fossiliferous, mollusks, gastropods
46.9-48.8 SZ Limestone Cavernous, calcite, vugs and fossil derived moldic porosity
48.8 SZ Limestone Well cemented
26 LRP-S25 0-2.1 UZ Sand Yellow-orange, brown
2.1-4.9 SZ Sand Yellow-orange, brown
4.9-8.5 UZ Sand Very pale brown
27 LRP-H105 8.5-9.8 UZ Sand Very pale brown with small white nodules
9.8-12.2 UZ Sand Very pale brown with small white nodules
12.2-12.8 UZ Sand Very pale brown with small white nodules
12.8-14.0 SZ Sand Fine white
14.0-16.5 SZ Clayey sand Light brown, pinkish-gray sand, slight clay
16.5-17.7 SZ Clayey sand Red changing to yellowish-green brown sand with clay
17.7-23.2 SZ Sand, clay, chert Red-orange clayey sand, siliceous fossilferous/agatized coral/chert
26.5-27.4 SZ Limestone Brown chert capping friable pale yellow limestone, iron stained
27.4-28.3 SZ Clay Pale blue-green, stiff
28.3-31.7 SZ  Limestone Crumbly, fossiliferous, molluscs, at 105 ft sandy infill
31.7-32.0 SZ Limestone Sandy infill, light yellow-brown
28 LRP-F160 32.0-33.5 SZ  Limestone Pale yellow/white, hard, fine grained, difficult drilling
33.5-34.4 SZ Clay Blue, plastic
34.4-35.1 SZ Limestone Sandy infill light yellow-brown
37.2-39.6 SZ Limestone Light brown
45.7-47.9 SZ Limestone Pale yellow, fractured, vugs, molluscan moldic porosity
47.9-48.8 SZ  Limestone Soft drilling, crumbly
29 JARP-S40 0-6.1 UZ Sand Fine to very fine brown sand
6.1-8.8 SZ Sand Light brown sand with small amounts of red-orange clay
8.8 SZ  Chert Chert and clay
9.1-12.2 57 ok by Alternating hard and soft sand clay; clayey sand; light greenish-

gray




12

0.04 um (micron) to 2 mm were analyzed using a commer-
cially built apparatus (K.S. Perkins, U.S. Geological Survey,

Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water

Table 3. Summary of water-quality and solid-phase analyses in the transport of anthropogenic and natural contaminants

(TANC) small-scale study area.

Samples and sampling locations

Chemical and physical analyses

Public-Supply Well, TTP-4

A total of 7 well head samples from
entire open interval

A total of 5 samples from three targeted
zones during depth-interval sampling
with various pumping conditions

Tritium/Helium-3 and sulfur hexafluoride (age dating), radon-222, radium, 85 volatile organic
compounds (VOCs), trace elements, arsenic species (As(IIl) and As(V)), major ions, nutrients,
dissolved gases, dissolved organic carbon, 128 pesticides and pesticide degradation products,
stable isotopes (carbon, nitrogen, oxygen, hydrogen, and sulfur), 67 organic wastewater com-
pounds

Monitoring Wells (Installed in 2003-2004)

A total of 64 samples collected from
29 wells tapping the surficial aquifer
system, intermediate confining unit
and Upper Floridan aquifer

Tritium/Helium-3 and sulfur hexafluoride (age dating), radon-222, radium, 85 volatile organic
compounds (VOCs), trace elements, arsenic species (As(IIl) and As(V)), major ions, nutrients,
dissolved gases, dissolved organic carbon, 128 pesticides and pesticide degradation products,
stable isotopes (carbon, nitrogen, oxygen, hydrogen, and sulfur)

Surface-Water Sites

A total of 4 surface-water samples
collected from three stormwater
retention ponds and 1 streamwater
site (Hillsborough River)

Major ions, nutrients, 85 volatile organic compounds (VOCs), stable isotopes (carbon, nitrogen,
oxygen, hydrogen, sulfur), pesticides, and trace elements

Core and Solid Phase Material Collected During Initial Well Installation

A total of 13 samples of sediment or
rock collected at 9 sites (details
shown in table 4)

X-Ray diffraction, elemental analysis of acid extracts, organic matter, bulk density, moisture
content, nitrate, chloride, particle size, bulk and clay mineralogy, denitrification measurements
with pore water extracts

written commun., 2005).

Collection and Analysis of Water Samples

Water samples were collected from monitoring wells,
public-supply well TTP-4, stormwater retention ponds, and
the Hillsborough River during 2003-05 according to NAWQA
protocols (Koterba and others, 1995; Lapham and others,
1995). Use of these methods allows for the collection of con-
sistent ground-water chemistry data among study units across
the United States. Samples were collected using a submersible
pump with PTFE (Teflon) tubing to minimize cross contami-
nation from one well site to another. Each well was purged a
minimum of three casing volumes, and water samples were
collected after field properties (temperature, pH, specific
conductance, and dissolved oxygen) had stabilized. Chambers
were used to process and preserve samples. Alkalinity (as
calcium carbonate) was measured in the field using fixed end-
point titration methods. Sampling equipment was cleaned after
the collection of samples at each site using dilute phosphate-
free liquid detergent and a methanol rinse, followed by several

rinses of deionized water.

Water samples were collected from each stormwater
retention pond using slightly different techniques to coincide
with different configurations of inflow pipes and pond
characteristics. All samples were collected under static condi-
tions, when no water was entering the ponds, using a stainless
steel weighted bottle sampler with a Teflon bottle. There are
two storm drains that empty into the Lightfoot Retention Pond
(LRP). At this site, a 1-L (liter) water sample was collected at
each of six locations around the circumference of the retention
pond at a depth of about 16 cm about 1 m from the edge of
water. At the MAS retention pond, 2 L of water were collected
directly in front of each of three storm drains. A depression in
front of each drain allowed the sampler to be completely
submerged in these locations. The sample was collected at a
depth of about 30 cm and located approximately 1 m from the
edge of water. At the 62nd Street retention pond, water levels
were low. However, there was a small depression (about
3-5 m in circumference), containing water directly in front of
the storm drain that feeds this pond. A 2-L sample was col-
lected at each of three points around this depression at a depth
of about 8 cm and located about 1 m from the edge of water.
The 6 L of water collected from each pond were composited
using a 14-L Teflon churn splitter before being split into
multiple sample containers. The composited samples were sent
to the various laboratories for analyses as described below.



Field properties (temperature, specific conductance, dissolved
oxygen, and pH) were measured at various locations in each
pond and median values were recorded.

Samples of ground water and surface water were ana-
lyzed for major ions, nutrients, dissolved organic carbon, dis-
solved gases, 128 pesticides and pesticide degradates,

85 volatile organic compounds (Connor and others, 1998),
stable isotopes (carbon, nitrogen, oxygen, hydrogen, and
sulfur), trace elements, arsenic speciation, uranium, and radon-
222 (table 3). Selected ground-water samples were collected
for age dating and analyzed for sulfur hexafluoride (SF)),
tritium (°*H), and helium-3 (*He).

Samples for major ions, trace elements, and nutrients
were filtered through a 0.45-um capsule filter and analyzed
using inductively coupled plasma atomic emission spec-
trometry, graphite furnace atomic absorption spectrometry,
ion-exchange chromatography, and colorimetry procedures
described in Fishman and Friedman (1989), Faires (1993),
Fishman (1993), McLain (1993), Garbarino (1999), and Patton
and Kryskalla (2003).

Dissolved gases (nitrogen gas, argon, carbon dioxide, and
methane) were analyzed in ground-water samples at the USGS
Chlorofluorocarbon Laboratory in Reston, Virginia. Dissolved
gases were measured by gas chromatography after extraction
in headspaces of glass samplers (Busenberg and others, 1998).
Hydrogen sulfide was measured in the field using colorimetric
methods (Hach, 2002).

Water samples for radon-222 were collected in a syringe
prior to contact with the atmosphere and injected into a
mineral-oil based scintillation solution in a 30-mL (milliliter)
glass scintillation vial. The sample was shipped overnight to
the laboratory and analyzed by liquid-scintillation counting
methods (Prichard and Gesell, 1977).

Stable isotopes of oxygen, hydrogen, carbon, sulfur, and
nitrogen are used in this study to help understand sources of
water and reactions affecting the chemical composition of
ground water. Their effectiveness in the identification and
quantification of biogeochemical processes in numerous
hydrogeologic studies has been well documented (including
Clark and Fritz, 1997; Cook and Herczeg, 2000). Samples for
stable isotopes of hydrogen, oxygen, sulfur, and nitrogen were
analyzed by the USGS Stable Isotope Laboratory in Reston,
Virginia. Isotope data are presented in delta (5) notation as the
ratio of the heavy to the light isotope, normalized to a standard
(eq. 1).

8., = 1000[(R,, /R, )-1] (1)

sample sample

whereR_  andR . are the ratio of the heavy to the light
isotope in the sample and in the standard, respectively. Delta
hydrogen-2 (3°H) and delta oxygen-18 (3'%0) are analyzed
using an isotope ratio-mass spectrometer by hydrogen gas
water equilibration and carbon dioxide water equilibration
techniques, respectively, and reported relative to Vienna Stan-
dard Mean Ocean Water (Epstein and Mayeda, 1953; Coplen

and others, 1991, 1994; K.M. Revesz, U.S. Geological Survey,

Methods 13

written commun., 2003). Dissolved sulfate is analyzed for
delta sulfur-34 (5*S) using methods of Carmody and

others (1997) and reported relative to the Vienna Canyon
Diablo Troilite. Isotopes of nitrogen and oxygen of nitrate are
analyzed by bacterial conversion of nitrate to nitrous oxide
and reported relative to nitrogen gas in air and Vienna Stan-
dard Mean Ocean Water, respectively (Sigman and others,
2001; Casciotti and others, 2002; Revesz and Casciotti, 2003).
Water samples are analyzed for delta carbon-13 (8"*C) using
mass-spectrometry techniques at the University of Waterloo
Environmental Isotope Laboratory and reported relative to the
Vienna Pee Dee Belemnite standard (Coplen, 1994).

Volatile organic compounds, pesticides, pesticide degra-
dates, dissolved organic carbon, major ions, trace elements,
nutrients, and radon-222 were analyzed by the USGS National
Water Quality Laboratory in Lakewood, Colorado. Samples
for volatile organic compounds were unfiltered and deter-
mined by gas chromatography and mass spectrometry using
methods described in Connor and others (1998). Pesticides
were sampled using a 0.7-um glass-fiber filter and analyzed
by carbon-18 solid-phase extraction and capillary column gas
chromatography and mass spectrometry (Zaugg and
others, 1995; Lindley and others, 1996; Sandstrom and others,
2001; Madsen and others, 2003). Dissolved organic carbon
samples were collected by forcing raw water samples through
a 0.45-um glass-fiber filter using high purity nitrogen gas.
Dissolved organic carbon samples were analyzed by methods
described by Brenton and Arnett (1993).

Age Dating of Ground Water

Water samples were collected and analyzed from selected
wells for the transient environmental tracer *H, its radioactive
decay product *He, and SF,. Anthropogenic activities, such as
industrial processes and atmospheric testing of thermonuclear
devices, have released SF, and ’H into the atmosphere in low
but measurable concentrations (fig. 4). Precipitation that incor-
porates SF, and *H from the atmosphere infiltrates into the
ground and carries a particular chemical or isotopic signature
related to atmospheric conditions at the time of recharge to
ground water. The tritium/tritiogenic helium-3 CH/°He ) and
SF, dating methods assume that gas exchange between the
unsaturated zone and air is fast, but that shallow ground water
remains closed to gas exchange after recharge (Schlosser and
others, 1989; Plummer and Busenberg, 1999; Busenberg and
Plummer, 2000).

Tritium and Tritiogenic Helium-3

The continued decrease and low concentrations of *H
in rainfall in the Southeast have resulted in limited use of the
’H method for age dating ground waters recharged during the
past 20 to 30 years. However, by measuring *He , the stable
daughter product of *H decay that has accumulated in ground-
water systems, the dating range and precision can be enhanced
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Figure 4. Input of sulfur hexafluoride to atmosphere in the
northern hemisphere (from Busenberg and Plummer, 2000;
E. Busenberg, U.S. Geological Survey, written commun.,
2005) and tritium concentrations in rainfall from Ocala,
Florida, (from Michel, 1989; R.L. Michel, U.S. Geological
Survey, written commun., 2005), during 1950-2005.

(Plummer and others, 1998; Cook and Bohlke, 1999).
Combined measurements of *H and its daughter product of
radioactive decay, 3Hem[, define a relatively stable tracer of the
initial °*H input to ground water, which can be used to calcu-
late the *H/°He , age from a single water sample (Schlosser
and others, 1988, 1989; Solomon and Sudicky, 1991). The
*H/’He , ratio yields the following equation for the piston-
flow assumption in which the apparent age (T, years) can be
expressed as (Torgersen and others, 1979):

T = 1/A[In (1 + *He /H)], @)

where A._is the radioactive decay constant for *H (the
concentration in tritium units), and *He _ is the tritiogenic
helium-3 content in tritium units. One tritium unit is equal to
1 3H atom in 10 hydrogen atoms, and is equivalent to
3.2 pCi/L (picocuries per liter) of water. A He-isotope
mass balance is used to calculate the amount of tritiogenic
and non-tritiogenic *He in the sample. Non-tritiogenic *He
(which generally is negligible in a shallow aquifer with local
recharge) is corrected for by using measured concentrations of
helium-4 (“He) and neon (Ne) in the water sample and assum-
ing solubility equilibrium with air at the water temperature
measured during sampling (Schlosser and others, 1988, 1989).
It is assumed that *H and *He  concentrations in ground water
are not affected by contamination, sorption, and microbial
degradation processes that can alter the concentrations of other
transient tracers, such as chlorofluorocarbons (Plummer and
others, 1998). The distribution of *H and *He  can be affected
by hydrodynamic dispersion and mixing different age waters
(Solomon and Sudicky, 1991; Reilly and others, 1994).
Information about ground-water transit times can be
obtained by comparing measured *H concentrations in ground

water with the long-term *H input function of rainfall
measured at the International Atomic Energy Agency precipi-
tation monitoring station in Ocala, Florida (fig. 4), which is
about 175 km (kilometers) northeast of the Temple Terrace
study area. Atmospheric weapons testing beginning in the
early 1950s increased *H concentrations in rainfall in this area
to a maximum of several hundred tritium units during the
mid-1960s, followed by a nearly logarithmic decrease in
concentrations to the present. Analytical uncertainty (one
sigma) for *H using the low-level counting procedure is about
+0.15 to 0.30 tritium units (Ludin and others, 1998).

Water samples for the determination of *H/°He _, ‘He,
and Ne were collected in pinched-off copper tubes (10-mm
diameter, 80-cm length, about 40-mL volume) while apply-
ing back pressure to prevent formation of gas bubbles. These
samples were analyzed at the Noble Gas Laboratory of
Lamont-Doherty Earth Observatory in Palisades, New York,
by using quantitative gas extraction followed by mass spec-
trometric techniques (Schlosser and others, 1989; Ludin and
others, 1998). A similar procedure was used to collect water
samples from the public-supply well (depth-interval sampling
in October 2004) and other selected wells for analysis of
*H/°He ,, *He, and Ne by the USGS Noble Gas Laboratory in
Denver, Colorado.

Sulfur Hexafluoride (SF,)

The stability of SF,in the hydrosphere has led to its
effective use for dating ground water recharged during the
past 30 years (Busenberg and Plummer, 2000). This technique
presumes that SF, concentrations in the aquifer have not been
altered by biological, geochemical, or hydrologic processes.

Apparent ages for SF, are estimated based on the equi-
librium partitioning between recharging ground water and the
partial pressures of SF, in the troposphere or soil atmosphere
(fig. 4). Concentrations of SFin ground water are functions
of the atmospheric partial pressures and the temperature at the
base of the unsaturated zone during recharge. The recharge
temperature and the quantity of dissolved excess air (Heaton
and Vogel, 1981) are determined from gas-chromatography
analyses of nitrogen gas and argon in the headspace of water
samples collected in the field (Busenberg and others, 1993).
An apparent age of the sampled water is determined from a
comparison of the partial pressure of SF,in the sample, calcu-
lated from measured concentrations using solubility data, with
the record of atmospheric partial pressures over the northern
hemisphere at different times (fig. 4). The input function for
SF, was obtained from atmospheric input curves, and assum-
ing a ratio of summer-to-winter infiltration coefficient of 1.0.

Ground-water samples for the SF, dating method were
collected in 1-L safety-coated glass bottles by placing the
sampling discharge line in the bottom of the bottle and dis-
placing the air in the bottle with ground water. After about 2 L.
of overflow, the sampling line was removed. The bottles were
capped with polyseal conical screw-caps without headspace
and wrapped with electrical tape to prevent the caps from



coming loose during shipping. Samples were analyzed for
SF, at the Chlorofluorocarbon Laboratory in Reston,
Virginia, using procedures described by Busenberg and
Plummer (2000).

Quality Assurance

Quality-assurance samples were collected to assess
laboratory performance and to help identify potential con-
tamination problems associated with field collection methods.
Quality-assurance information for this study included the
collection of 10 replicate samples, 24 blank samples, and labo-
ratory surrogate spike samples. Surrogate compounds were
added to each of the samples submitted for pesticide and vola-
tile organic compound analyses including laboratory reagent
blank samples, field blank samples, and regular ground-water
and surface-water samples. These compounds, which are not
normally found in the environment, are used to determine if
there are interferences from other chemicals in the sample
matrix and to evaluate the efficacy of the laboratory’s analyti-
cal methods to detect compounds that are chemically similar.
Replicate samples were collected and analyzed for volatile
organic compounds, pesticides, major ions, nutrients, and trace
elements which were the most frequently sampled constitu-
ents. Field blank samples were processed using nitrogen-
purged universal blank water that was certified for use in the
collection of blank samples for volatile organic compounds,
pesticides, low-level nutrients, dissolved organic carbon, major
ions, and trace elements.

Only two organic compounds were detected in blank
samples (app. Al). Concentrations of methylene chloride
(dichloromethane) ranged from 0.1 to 0.6 ug/L (microgram
per liter) in five samples. Chloroform (trichloromethane) was
detected in one sample at a concentration of 0.09 ug/L. Several
inorganic constituents were detected in concentrations that
were slightly greater than the method reporting level in three
samples. These included cobalt, nickel, strontium, calcium,
sodium, and silica. The low concentrations of strontium, cal-
cium, sodium, and silica detected in blank water samples were
well below concentrations measured in water samples from
wells, ponds, and the river, and therefore, do not constitute a
contamination problem.

Replicate analyses for organic compounds generally
agreed within £10 percent, with the exception of dichloro-
methane and carbon disulfide, which agreed within
+30 percent (app. A2). Replicate analyses for inorganic
compounds were within £10 percent for most constituents,
with the exception of nickel and selenium (two constituents
not detected in most environmental samples). One set of repli-
cate water samples for dissolved organic carbon from WP-S64
(collected on June 14, 2005) showed considerable variability,
1.1 and 13.7 mg/L (milligrams per liter); however, the exact
cause for this analytical discrepancy (or contamination of one
replicate sample) is not known (app. A2). Three other water
samples collected from this well on previous dates had
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dissolved organic carbon concentrations that ranged from 0.6
to 1.5 mg/L.

Two surrogate organic compounds, alpha-HCH-d6
(chemical abstract service registry number 319-84-6) and
diazinon-d10, were added to each of the 30 pesticide samples
collected in this study. The median recoveries of alpha-
HCH-d6 and diazinon-d10 were 85.0 percent (range from
about 69-197 percent) and about 95.5 percent (range from
about 69-211 percent), respectively (app. A3). Recovery
values that range from 70 to 130 percent generally are
considered to be within acceptable limits, although this range
can vary considerably for specific compounds. Values that
exceed this range may indicate possible problems with
analytical methodology. Three surrogate compounds were
added to the 69 samples of ground water and surface water
analyzed for volatile organic compounds and laboratory
reagent samples (app. A3). Median percent recoveries for 1,2-
dichloroethane-d4, 1-bromo-4-fluorobenzene, and toluene-d8
were 115 percent (range from 99-147), about 93 percent
(range from about 58.3-112 percent), and about 99 (range
from about 93-113) percent, respectively.

Lithology, Mineralogy, and Elemental
Analysis of Core Material

Geologic descriptions of the surficial sediments,
intermediate confining unit, and limestone that composes the
hydrogeologic units were based on characterization of well
cuttings, split-spoon coring, and grain-size analysis. Miner-
alogical analysis of selected cores also was performed using
x-ray diffraction and mass spectrometry. Physical analyses
were made of selected core materials including bulk density,
percent organic matter (loss on ignition), and volumetric
moisture content (R. Healy, U.S. Geological Survey, oral
commun., 2005).

The abundance of elements in grain coatings or other
mineral phases from core samples were evaluated using
different acids and reagents, including: (1) 10-percent nitric
acid, (2) 6N hydrochloric acid, (3) 0.5 M hydroxylamine
hydrochloride extractable iron, and (4) acid-volatile and
chromium-reducible sulfides. All extractions were performed
on an “as received” basis (that is, wet), but the moisture
content was determined for a separate subsample and used to
correct the analytical concentrations to dry weight. The
extractions listed above were performed in the laboratory;
however, for the latter two extractions, core samples were first
subsampled in a nitrogen gas atmosphere glove bag and the
bottles and flasks were flushed with nitrogen gas in the field
before shipment to the laboratory for analysis.

The coatings extraction (hydrochloric acid and nitric
acid) methods were primarily intended to target ferric oxyhy-
droxides and their associated trace elements, but they also can
be used to extract other oxides and clay, carbonate, and sulfide
phases to varying degrees. The sample/solution ratio for the
6N hydrochloric acid and 10-percent nitric acid extractions
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were 5 =1 g (gram) of wet weight to 15 mL of acid solution,
whereas that for 0.5 M hydroxylamine hydrochloride extrac-
tion was 4 to 10 g (gram) of wet sediment to 75 mL of reagent.
The sediment-acid aliquots were set on a shaker table for

6 hours, then centrifuged, filtered with 0.45-um pore filters,
and analyzed for several minor elements including arsenic
and uranium. Leachate derived from the 10-percent nitric acid
extractions was analyzed for aluminum, chromium, copper,
iron, manganese, nickel, and vanadium by inductively coupled
plasma optical emission spectroscopy (ICP-OES). Further
dilution to 5 percent was required for analysis of arsenic,
cadmium, lead, and uranium with inductively coupled plasma
mass spectrometry (ICP-MS), which yielded lower detec-

tion limits. Analysis of the 6N hydrochloride acid extractants
required dilution to 1.6 N hydrochloride acid prior to analy-
sis by ICP-MS. Leachate derived from the 6N hydrochloric
acid extractions was diluted to 10 percent and analyzed by
ICP-MS for iron, manganese, aluminum calcium, cadmium,
chromium, copper, potassium, magnesium, sodium, nickel,
lead, vanadium, zinc, and uranium. The 0.5 M hydroxylamine
hydrochloride and 6 N hydrochloric acid extractions were per-
formed according to Lovley and Phillips (1987) and analyzed
by ICP-MS. The 0.5 M hydroxylamine hydrochloride and 6 N
hydrochloride acid extracts were analyzed using the ferrozine
method with a Hach DR/2400 Spectrophotometer (Hach,
2002).

Sulfide phases in sediments or rock were extracted using
the method described by Allen and others (1991, 1993) and
summarized in U.S. Environmental Protection method 9030B
(U.S. Environmental Protection Agency, 1996) for acid soluble
and acid insoluble sulfides. The method was modified to avoid
the oxidization of hydrogen sulfide by soluble ferric iron
by the addition of stannous chloride (M.L. Tuttle and K.M.
Conko, U.S. Geological Survey, oral commun., 2003) and
further modified by the addition of chromium chloride (Can-
field and others, 1986; Bowles and others, 2003) to include
pyrite-bound sulfide. Sulfide phases that are extracted by this
method include pyrite, elemental sulfur, and acid volatile
monosulfides. Samples of 5 to 20 g of undried sediment were
transferred to a 250-mL round-bottomed flask (under nitrogen
gas stream) with 10 g of stannous chloride. The flask was
attached to a nitrogen gas stream on a heating mantle, and
75 mL of deaerated 6 N hydrochloric acid and 50 mL of chro-
mium chloride were added. The samples were heated and kept
at a sub-boiling temperature for 1 hour. Hydrogen sulfide was
collected in two sequential aliquots of 100 mL of 0.5M sodium
hydroxide. Sulfide was analyzed colorimetrically by means of
a DR/2400 Hach Spectrophotometer using the methylene blue
method specified by the manufacturer (Hach, 2002).

Hydrogeologic Setting

The geology of the study area consists of sand, clay, and
carbonate rocks that were deposited primarily in a marine

environment. The geologic framework is characterized by
layers of sand to clayey sand to sandy clay that overlie a
highly weathered limestone sequence. Interspersed through-
out the study area are a number of localized surface or buried
depressions called sinkholes that disrupt this layering.
Numerous deep sinkholes are present in the floodplain of the
Hillsborough River. The area north of Temple Terrace also
contains large sinkholes; several are more than 60 m deep
(Stewart and others, 1978). Some of these sinkholes are open
to the Upper Floridan aquifer and may receive water from the
Hillsborough River or wetland areas near the sinks. These
wetland areas and the Hillsborough River usually contain
highly colored (tannic) water or have degraded water qual-
ity due to elevated bacteriological constituents. Continuous
seismic-reflection profiling on the Hillsborough River near
Temple Terrace indicated about a 3-m thickness of surficial
material overlying the limestone that composes the Upper
Floridan aquifer and filling large solution cavities in the
limestone (Wolansky and Thompson, 1987). Interactions
between ground water and the Hillsborough River have been
documented in previous studies (Stewart and others, 1978;
Wolansky and Thompson, 1987).

Principal hydrogeologic units that lie within this
sedimentary sequence include the surficial aquifer system,
intermediate confining unit, and Upper Floridan aquifer. The
uppermost surficial aquifer system, is an unconfined sand and
clayey sand aquifer and is separated from the Upper Floridan
aquifer by the clay-rich intermediate confining unit, which
controls the amount of recharge between the two aquifers.
The underlying Upper Floridan aquifer is a highly productive
carbonate aquifer and is the principal source of freshwater in
west-central Florida (Miller, 1986). The generalized hydro-
geologic columns and sections of the study area are shown in
figures SA and 5B. Lithologic information that was used to
construct the hydrogeologic sections is included in table 2.
Water-level data from wells completed at various depths are
included in these sections to show the vertical and horizontal
flow regime within the study area.

The surficial aquifer system is a permeable hydrogeologic
unit contiguous with land surface that principally consists
of unconsolidated to poorly indurated clastic deposits of the
undifferentiated surficial deposits (Southeastern Geological
Society, 1986). The surficial aquifer system contains a water
table; the depth to this water surface is variable and ranges
from about 3 to 15 m below land surface. The surficial aquifer
system is recharged by rainfall, and in some areas of the study
area, recharge is relatively rapid because the surficial sands are
highly permeable and the water table is relatively close to land
surface. This hydrogeologic unit is not used as a major source
of water supply because of the relatively low yields to wells
(less than 19 L/min), high iron content, and the potential for
contamination.

The intermediate confining unit is a nonwater-yielding
layer that controls the downward leakage between the surficial
aquifer system and Upper Floridan aquifer. The extent, thick-
ness, and permeability of the clay unit is variable throughout
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SERIES |STRATIGRAPHIC GENERAL HYDROGEOLOGIC
UNIT LITHOLOGY UNIT
Holocene Undifferentiated | Quartz sand, silty sand, .~ -
Sands and Clays | clayey sand, peat, shell surficial aquifer system
o _ ____________
, Clay, minor quartz sand, =~ -~
Pliocene phosphate, fine-grained intermediats ~
dolomite, residual limestone confining unit S
o
>
. o Tampa
Miocene (2 Member |Limestone, minor quartz sand,
5 of the phosphate, chert, clay, fine-grained
g Arcadia dolomite
®© Formation
T Tampa/Suwannee
Limestone, packstone to producing zone
Oligocene S grainstone, trace quartz sand, 5
Lil:nvéasrtlgr?g organics, variable dolomite and 5
clay content, highly fossiliferous, g
vuggy é ________
Limestone, micritic,chalky, very u—? Ocala
Ocal fine- to fine-grained, soft, 5 semiconfining
Li(riqaeesltone poorly indurated, trace organics, 2 unit
clays and dolomite, abundant e
foraminifera Ocala/Avon Park
producing zone
Limestone, dolomite,and | |_ _ _ _ _ _ _ |
evaporites
Limestone and dolomite interbeds
Eocene typical in upper part, deeper beds
Avon Park are continuous dolomite with in- Avon Park
Formation creasing evaporites at base producing zone
Limestone is fine-grained, tan,
recrystallized packstone with
variable amounts of organic-rich
laminations near top
Dolomite is hard, brown, sucrosic
in texture and commonly fractured
Evaporites occur in dolomite as T~
interstitial gypsum and anhydrite =~
with evaporite filling pore space =~
and as interbeds in the lower part | Middle confining unit

Figure 5A. Columns showing stratigraphic and hydrogeologic units of the Temple Terrace, Florida, study area

(from Tihansky, 2005).
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the study area. Breaches form in this clay unit from localized
subsidence activity that occurs when the underlying limestone
dissolves and the overlying clay layers collapse. Generally,
ground water moves laterally within the surficial aquifer
system and moves downward to the Upper Floridan aquifer
through breaches in the intermediate confining unit, where
present. Many of these breaches in the intermediate confining
unit serve as preferential flow paths to the underlying Upper
Floridan aquifer.

The Upper Floridan aquifer is the major source of water
supply within the study area and consists of limestone and
dolomite that contain many solution-enlarged fractures,
which commonly yield large supplies of water to wells. Most
production wells in the study area are developed in the Tampa
Member of the Arcadia Formation; wells that are deeper than
99 to 107 m likely tap the upper part of the Ocala Limestone
(Stewart and others, 1978).

Caliper logs of production and monitoring wells that
were logged by Stewart and others (1978) show sections of
relatively large borehole diameters. These large borehole
diameters represent solution openings and cavities that may be
intercepted by wells. The most productive water-yielding zone
of the Upper Floridan aquifer in the Temple Terrace area is a
cavernous zone ranging from 37 to 55 m below land surface
(Stewart and others, 1978). Wells that tap this zone can yield
as much as 5,700 L/min. Public-supply well TTP-4 (index
no. 30; table 1) is open to this high-yielding cavernous zone.

Lithology and Mineralogy of the
Hydrogeologic Units

The geologic description of the surficial sediments, clay
unit, and limestone that compose the hydrogeologic units
is based on well cuttings, split-spoon coring, and grain-size
analysis. Mineralogical analysis of selected cores also was
performed using x-ray diffraction and mass spectrometry. The
lithology, lithologic description, and the results of the grain-
size analysis for selected wells are presented in table 2.

Mineralogical results of the x-ray diffraction and ICP-MS
analyses that were used to determine the chemical composi-
tion of major oxides and trace metals in acid extractions of
solid-phase material are summarized in table 4. The x-ray
diffraction methods used list the relative abundance of bulk
minerals, with 1 being the highest and 5 being the least abun-
dant mineral (table 4). Carr and Alverson (1959) performed a
comprehensive investigation of the mineralogy and geology
of the middle Terliary rocks underlying west-central Florida,
which may explain some of the geochemical constituents
observed in this study. They suggest that extensive weathering
has occurred in the Hawthorn Group in the study area and that
leaching forms a weathering profile of downward increasing
solubility. The typical weathering sequence from top to bottom
includes quartz sand, iron-stained clayey sand with iron and
phosphatic hardpans, blue-green or iron-stained clays, a thin

Hydrogeologic Setting 19

sequence of slightly calcareous clay, and chert that passes
abruptly to a weathered limestone surface.

Some of the soluble byproducts found in this weathering
profile in the Hawthorn Group include iron, phosphorous, alu-
minum, silica, and calcium. Where clays are dominant in the
sequence, the abundance of aluminum oxide and iron oxide
proportionally increases. Calcium concentrations increase with
depth and are related to dissolution of weathered limestone
residuum and from the underlying limestone.

The surficial deposits overlying the limestone surface
and that were described from well cuttings collected in this
study range from about 6 to 15 m thick. Surficial deposits
were thinnest in the eastern boundary of the study area near
the Hillsborough River, and thickest along the western edge of
the study area, where a sand terrace is present. In general, the
sediments are composed of an upper fine-grained sand unit, a
sequence of clayey sand, and a lower sequence of sandy clay.

The uppermost surficial deposit is a well sorted, very fine
to fine quartz sand that generally is less than 3 m thick. The
sand is white to buff colored near the surface and contains a
mixture of organic matter and silt. Below the organic layer,
the sand was stained a pale yellow-orange color, which was
probably due to the influence of iron leaching in the shallow
ground-water system.

Grain-size analyses indicated that 95 percent of these
upper sediments consist of sand, with the remaining sedi-
ments composed of silts and clays. The mineralogy of this
unit indicates that quartz is the most abundant mineral with
lesser amounts of plagioclase, potassium feldspar, calcite, and
minimal amounts of total clays. Aluminum and iron were most
abundant, with lesser amounts of calcium. Ferrous iron, which
is produced during reducing conditions, was the dominant
form of iron present.

Below the sand and organic layer, the clay content
gradually increases, creating a sequence of clayey sand, which
generally is less than 11 m thick. Grain-size analysis of the
clayey sand sequence was variable, with the sand ranging
from 52 to 95 percent and the remaining sediments composed
of silt and clays. The clayey sand sequence also was the most
variable in terms of mineralogy, which is probably due to the
variability in the clay content.

Quartz, total clays, and potassium feldspar were the most
abundant minerals in the clayey sand sequence (table 4). The
clays that were encountered in decreasing order of abundance
include kaolinite, illite, smectite, and goethite (table 4). The
clay was calcareous in places, especially near the limestone
contact as indicated by increased calcium ions. Other domi-
nant elements include aluminum, iron, magnesium, and potas-
sium. The highest levels of arsenic, 1.4 mg/kg (milligrams
per kilogram), were found in the clayey sand unit but was far
below the levels of the most abundant major ions. Aluminum
oxide and iron oxide increased in relation to the proportion
of the clay content; ferrous iron, similar to the overlying unit,
was the dominant form of iron present (table 4).
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Below the clayey sand sequence where the clay content
continues to increase, a sequence of sandy clay is present.
This sequence corresponds to the intermediate confining
unit, which is composed of deposits of the Hawthorn Group.
This unit was the most difficult to interpret in the study area
because of the varying amounts of sands and discontinuous
clays and the absence of this unit due to subsidence, which
disrupted the continuity of the unit. Generally, this unit was
less than 1.5 m thick. Carr and Alverson (1959) and Sinclair
(1974) describe the clay in the intermediate confining unit as a
weathered residuum of the limestone in the underlying Tampa
Member of the Arcadia Formation. Elevated concentrations of
radium and radionuclides that are commonly associated with
clay minerals also are present in the intermediate confining
unit (Carr and Alverson, 1959).

The intermediate confining unit in the study area varied
in color, composition, and permeability. This unit has a dense
plastic consistency, a tan, greenish-gray or orange-red color,
and varying amounts of sand, chert, and carbonate mud. The
clay may be calcareous in places, particularly near the under-
lying limestone contact. Minerals in this sandy clay unit, in
decreasing order of abundance, are quartz, calcite, potassium
feldspar, and total clay. The most abundant clays were smec-
tite, illite, and kaolinite; calcium, iron, and aluminum were the
most abundant elements. The highest concentration of uranium
(8.9 mg/kg) was detected in the sandy clay unit and is proba-
bly related to the high clay mineral content. Concentrations of
aluminum oxide and iron oxide also were elevated due to high
clay content. Concentrations also were elevated for calcium
oxide, which reflects the calcareous nature of the clay. Ferrous
iron, similar to the overlying units, was the dominant form of
iron present.

The highly weathered limestone of the Tampa Member
underlies the intermediate confining unit and is identified as
the top of the Upper Floridan aquifer. The Tampa Member is
tan to white, soft to hard, usually sandy and fossiliferous, and
commonly contains clay lenses and cavities. The Tampa Mem-
ber is generally less than 30 m thick in this region; the depth to
the top of the Tampa Member ranges from 4.3 to 11.0 m above
NAVD 88 at RP-F77 and WP-F150, respectively (based on
well cuttings collected for 14 wells throughout the study area).

At two sites, sands and clays were present far below
the typical depth to the top of limestone found at other sites,
which indicates that infilling by overburden materials into
solution cavities has occurred. At wells LRP-H105 (index
no. 27; table 2) and 113RC-H50 (index no. 2; table 2), the
depth to limestone was about 6 and 18 m below NAVD 88,
respectively, which suggests the wells were drilled into paleo-
sinkholes. The infilling and raveling of the overburden materi-
als into limestone cavities increase the connection of overlying
units to the Upper Floridan aquifer.

The mineralogy indicates the weathered limestone of the
Tampa Member is relatively impure, and contains considerable
amounts of sand and clay. The minerals identified in the upper
sequence of the Tampa Member (index no. 7 and 27; table 4)
were calcite with lesser amounts of quartz and total clays. The

clays that were associated with the limestone were smectite,
illite, and kaolinite. Major elements that compose the rock
were calcium, magnesium, iron, and aluminum. Concentra-
tions of iron oxide and aluminum oxide in the upper sequence
of the Tampa Member were elevated compared to lower units,
which reflects the higher clay content associated with this
unit. Ferrous iron was the dominant form of iron present, but
at levels much lower than the overlying sand and clay layers.
The mineralogy of the lower sequence of the Tampa Member
(index no. 21 and 25; table 4) include calcite, halite, goethite,
and total clays. The clay minerals associated with the lower
limestone sequence were smectite and illite.

The Suwannee Limestone underlies the Tampa Member
with a thickness of about 60 to 76 m in the study area. The
limestone is white to light tan in color, soft and granular in
appearance, and contains abundant fossil detritus and organic
structures such as casts, molds, and borings of mollusks and
tests of foraminifera and bryozoa (Carr and Alverson, 1959).
Many fossil molds within this unit give it a high porosity.

The mineralogy of the Suwannee Limestone includes
calcite as the most abundant mineral, with trace amounts of
quartz and clays. The most abundant elements include calcium
and magnesium, with lesser amounts of iron and aluminum.
Amounts of iron oxide and aluminum oxide were considerably
lower than in the overlying material, which indicates a reduced
clay content. Ferrous iron was the dominant form of iron pres-
ent, but at levels much lower than in the overlying material.

Estimation of Aquifer Properties

Hydraulic properties (for example, hydraulic conductiv-
ity, vertical conductance, and effective porosity) were obtained
from previous hydrogeologic studies of the Upper Floridan
aquifer in the Tampa Bay area (Knochenmus and Robinson,
1996; J. Arthur, Florida Geological Survey, written commun.,
2003). Porosity and permeability of the limestone rock matrix
can be enhanced by dissolution and/or fracturing. Previous
studies have correlated fractures observed in limestone out-
crops in west-central Florida with the occurrence of fracture
traces and surface lineaments (Vernon, 1951). Using surface
geophysical methods, Culbreath (1988) found that the sur-
face lineaments with corresponding gravity anomalies had a
preferred orientation between 45 and 55 degrees east and west
of north (fig. 1). Geologic structures aligned in this preferred
orientation are believed to occur at the surface as lineaments
because they parallel the stress fields associated with earth
tides (Culbreath, 1988). Fracture zones typically are enlarged
by chemical dissolution in karstic aquifer systems. In a study
of Floridan aquifer system properties in west-central Florida,
Stewart and Wood (1984) found that the porosity can be 10
to 100 times that of the intergranular matrix in places where
vertical to near-vertical fractures have been enlarged by dis-
solution.

Information on particle-size distribution, bulk density,
and moisture content of core material were used to estimate



annual recharge (R. Healy, U.S. Geological Survey, written
commun., 2004). Recharge estimates were highly variable
and ranged from 0.8 to 43 cm/yr (centimeters per year), with a
median value of 13 cm/yr. Transmissivity values for the Upper
Floridan aquifer ranged from 2,700 to 12,100 m*d (meters
squared per day) based on data from an aquifer test conducted
in March 1975 for a public-supply well cased to 28 m with
an open hole to 146 m, with an average storage coefficient of
3.4 x 10 (Stewart and others, 1978). Effective porosity ranged
from 0.02 (Avon Park Formation) to 0.49 (Ocala Limestone).
Geophysical measurements were made in the open inter-
val of the Upper Floridan aquifer of the public-supply well
borehole (36-53 m below land surface) in October 2004 (J.H.
Williams, U.S. Geological Survey, written commun., 2007)

Geophysical logs
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to obtain detailed information on well construction, aquifer
properties, rock lithology and solution features, dominant flow
zones, permeability, and water quality. Logs include caliper,
gamma, spontaneous potential, fluid resistivity, temperature,
flow meter, and optical televiewer. Continuous data from the
various probes are displayed graphically in figure 6.

Based on the analysis of the flowmeter, fluid, and specific
conductance logs (fig. 6), the public-supply well penetrated
high-flow zones at 46.8 and 49.2 m below land surface. Bore-
hole flow was downward under ambient conditions from the
upper to the lower zone. Under pumping conditions, the lower
zone contributed 70 percent of the 1,020 L/min discharged
from the well. Flowmeter model analysis suggested that the

Geochemical data
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API-GR=American Petroleum Institute-gamma ray units

AMB=ambient conditions

PMP= pumped conditions

EM Flow=flow measurements made with an electromagnetic flowmeter placed

at selected depths, in liters per minute (L/min)

EM Flow, Troll=flow log made with an electromagnetic flowmeter as it is trolled
up or down borehole, in liters per minute (L/min)

SIM Flow=flow log simulated with Paillet's model (1998 and 2000), which has
been matched to measure ambient and pumped flows by trial-and-
error adjustment of flow zone transmissivity and head, in liters per
minute (L/min)

SPIN Flow=flow measurements made with a spinner flowmeter placed at
selected depths, in liters per minute (L/min)

Temp=temperature, in degrees celsius (Deg C)

SC=specific conductance, in microsiemens per centimeter (uS/cm)
DS=dissolved solids, in milligrams per liter (mg/L)

As=arsenic, in micrograms per liter (ng/L)

Sr=stronium, in micrograms per liter (ug/L)

NO,-N=nitrate as nitrogen, in milligrams per liter (mg/L)
CHCl,=trichloromethane, in micrograms per liter (pg/L)
Rn-222=radon-222, in picocuries per liter (pCi/L)

Figure 6. Geophysical logs of the public-supply well borehole at Temple Terrace, Florida.
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lower zone had a transmissivity about three times higher than
that of the upper zone, and there was about 0.09-m hydrau-
lic head difference between the zones. The fluid logs and
discrete-depth samples at 48.8 m under ambient and pumping
conditions indicated that the specific conductance of water
from the upper zone was about 10 percent less than that from
the lower zone. Caliper and televiewer logs revealed large
solution openings in the Upper Floridan aquifer limestone

at depths greater than 47 m. Specific conductance decreased
substantially in this interval indicating that lower conductance
water is entering the 45- to 53-m zone, possibly water moving
downward from the surficial aquifer system, which has lower
conductance than water from the Upper Floridan aquifer.
Temperature also showed a slight decrease (about 0.3 °C)
through this interval. Chemical data for water samples
collected from three overlapping depth intervals (38-53, 43-53,
and 49-53 m) are presented later in this report.

Ground-Water Flow Patterns

The water table in the surficial aquifer system follows
closely to the land surface and is affected by regional
discharge features and rainfall and recharge events. Ground-
water elevation is highest at well 62SRP-S34 with a median of
12.74 m above NAVD 88. Well 62SRP-S34 is one of the
westernmost monitoring wells tapping the surficial aquifer
system in the study area and where land-surface elevations are
relatively high. The water table is also higher at well WP-S64
(median of 8.37 m median) than at other surficial aquifer
system wells because of the higher elevation and location of
the well on the remnant marine terrace. Water-table elevations
generally are above the potentiometric surface of the Upper
Floridan aquifer (C.A. Crandall, U.S. Geological Survey, writ-
ten commun., 2007). The regional ground-water flow direction
in the Upper Floridan aquifer is generally from the north-
northeast to south-southwest in the study area (fig. 3). Pump-
ing affects ground-water levels in the Upper Floridan aquifer,
especially in those wells screened in the same zone as most of
the public-supply wells. Water levels in storm retention ponds
are generally above those of the surficial aquifer system and
the Upper Floridan aquifer and reflect input from stormwater
runoff during wet periods. As a result of likely hydraulic con-
nections between some retention ponds and the subsurface,
leakage of surface water can recharge the surficial aquifer
system and Upper Floridan aquifer. Parts of the Upper
Floridan aquifer are in direct hydraulic contact with the Hills-
borough River, although exchange of water between the river
and aquifer depends in part on operations at the downstream
reservoir on the Hillsborough River and on rainfall/recharge
events.

The size and orientation of the ground-water
contributing recharge area of the public-supply well has
evolved over time (C.A. Crandall, U.S. Geological Survey,
written commun., 2007). The first contributing recharge
area of the public-supply well was obtained using a regional

ground-water flow model, MODPATH (Harbaugh and oth-
ers, 2000), and was used to guide the siting of the first set of
monitoring wells installed in 2003. Next, probabilistic ground-
water flow models were used to incorporate uncertainty in the
delineation of the contributing recharge area, and to determine
locations for new monitoring wells installed in 2004. The
probabilistic flow models consisted of two separate methods,
with the first being a stochastic parameter uncertainty method
that was used by MODPATH to calculate time of travel for
various particles in the Upper Floridan aquifer to the public-
supply well. The second probabilistic method, referred to as
the fracture continuum method, incorporated karst information
such as sinkholes and fracture orientation into the contribut-
ing recharge area calculation. This information was used by
MODPATH to calculate time of travel for various particles to
the public-supply well (C.A. Crandall, U.S. Geological
Survey, written commun., 2007).

Ground-Water Chemistry

This section describes the general chemical
characteristics of waters from the surficial aquifer system,
intermediate confining unit, and Upper Floridan aquifer in the
Temple Terrace study area including water types, redox
conditions, pH, saturation indices with respect to selected
minerals, and stable isotope composition. Subsequent
sections describe the distribution of selected anthropogenic
and naturally occurring contaminants in the surficial
aquifer system, intermediate confining unit, and Upper
Floridan aquifer with special emphasis on the comparison
between water chemistry in public-supply well TTP-4 and
these three hydrogeologic units in the study area. Differences
in chemical signatures among the various hydrogeologic units
are used to better understand important ground-water flow
patterns and pathways, and to generate hypotheses for
processes controlling water quality in the public-supply well.

Chemical Composition and Mineral
Saturation Indexes

Water from 8 of 11 wells tapping the surficial aquifer
system had pH values below 7.0 (median values 5.0-6.9), and
water from three wells had pH values ranging from 7.1 to 7.5.
Two of the three wells (BBP-S45 and WP-S64) had depths
to water greater than 10 m. Water samples from wells in the
intermediate confining unit had median pH values that ranged
from 7.3 to 7.9. Water from the Upper Floridan aquifer had
median pH values that ranged from 7.2 to 7.9.

Water types for samples from the three hydrogeologic
units and surface waters were somewhat variable, although
dominated by calcium bicarbonate, calcium-bicarbonate-
sulfate, and calcium-sulfate-bicarbonate (fig. 7). Calcium was
the dominant cation in water from 10 of 11 wells in the surfi-
cial aquifer system, all four wells in the intermediate confining



unit, all wells in the Upper Floridan aquifer, the three retention
ponds, and Hillsborough River. The dominant anion in these
waters was more variable, and was either bicarbonate or sul-
fate. Deep wells in the Upper Floridan aquifer tended to have
sulfate as the dominant anion. Water from 9 of 13 wells in

the Upper Floridan aquifer had a calcium-sulfate-bicarbonate
water type, and four wells had a calcium-bicarbonate-sulfate
water type. Water from the remaining well had a calcium-
bicarbonate water type.

Variability in saturation indices with respect to calcite,
dolomite, and gypsum for water from the three hydrogeologic
units (table 5) reflect differences in their mineralogy
(table 4). Median saturation indices with respect to calcite
are -0.40, -0.16, and 0.08 for water samples from the surfi-
cial aquifer system, intermediate confining unit, and Upper
Floridan aquifer, respectively. Variable amounts of miner-
als containing calcium magnesium carbonate in the surficial
aquifer system and intermediate confining unit account for the
large variability in saturation indices with respect to calcite
and dolomite (table 5). As would be expected for water from
the carbonate Upper Floridan aquifer, samples are saturated
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with respect to calcite and slightly undersaturated with respect
to dolomite. Samples from deep wells in the Upper Floridan
aquifer (for example, GARC-F200) are saturated with respect
to dolomite. Water samples from the Upper Floridan aquifer
are slightly undersaturated with respect to gypsum, whereas
water samples from the intermediate confining unit and
surficial aquifer system are highly undersaturated with respect
to gypsum.

Dissolved Organic Carbon and
Dissolved Solids Concentrations

Dissolved organic carbon concentrations were highly
variable (0.6 to 18.1 mg/L) in water samples from the surficial
aquifer system (table 5). This large variation likely indicates
that some wells are located near recharge areas that receive
surface water with elevated concentrations of dissolved
organic carbon, such as retention ponds and the Hillsborough
River. Dissolved organic carbon concentrations in water
samples from stormwater retention ponds ranged from 3.7 to
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Figure 7. Major-ion chemistry for ground-water and surface-water samples from the Temple
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Table 5. Physical properties and chemistry of water samples from the surficial aquifer system (SAS), intermediate confining unit (ICU), and Upper

[Concentrations are in milligrams per liter (mg/L) unless otherwise noted; P, STORET parameter code; temperature, in degrees Celsius; specific conductance, in microsiemens per
meters below measuring point; SI, saturation index; PCO,, partial pressure of carbon dioxide in water sample]

Aquifer or P00010 P00095 P00300 P00400 P00453 P00608 P00613 P00631 P00671 P00681
nsalr:e g:rli(:;;c i desrll:;ier Date Time Temper- 32:::::: Dissolved Bicar- Amn.mnium N!trile as Ni.trate as 0::;':'::_ D::;::;:d
unit ature — oxygen bonate as nitrogen nitrogen  nitrogen phosphorus  carbon
BBP-S45 SAS 280228082231501 8/11/2004 1200 25.0 594 3.9 6.9 294 <0.04 <0.008 0.82 0.159 0.9
BBP-S45 SAS 280228082231501 12/9/2004 1300 25.5 475 3.8 7.1 253 E0.02 <0.008 0.21 0.334 0.6
BBP-S45 SAS 280228082231501 6/22/2005 1130 259 526 3.7 7.1 263 <0.04 <0.008 0.72 0.171 0.7
THC-F197 UFA 280241082224401 1/15/2004 1400 25.0 958 0.3 7.2 214 0.17 <0.008 <0.06 0.026 2.6
THC-F197 UFA 280241082224401 1/28/2004 1210
THC-F75 UFA 280241082224402 1/12/2004 1500 24.5 515 0.1 7.3 162 0.11 <0.008 <0.06 0.131 1.9
THC-F75 UFA 280241082224402 6/14/2005 1640 26.6 489 0.2 7.3 154
THC-S46 SAS 280241082224403 12/18/2003 1300 24.5 693 0.3 6.9 315 0.07 0.011 1.05 0.089 1.1
THC-S46 SAS 280241082224403 1/15/2004 1120
THC-S46 SAS 280241082224403 8/5/2004 1200 25.0 697 0.3 6.9 317 0.05 E0.004 0.81 0.092 0.8
THC-S46 SAS 280241082224403  11/17/2004 1600 25.7 705 6.7 343 E0.03 E0.004 0.59 0.048 0.7
THC-S46 SAS 280241082224403 6/14/2005 1700 27.0 707 0.3 6.8 316 E0.03 E0.007 1.55 0.15 0.7
62SRP-F160 UFA 280241082230701 11/2/2004 1200 28.7 596 0.1 7.2 200 <0.04 0.009 1.99 0.025 1
62SRP-F160 UFA 280241082230701 6/20/2005 1600 26.5 579 0.6 7.2 197
62SRP-H55 ICU 280241082230702 11/3/2004 1700 26.6 456 4.7 7.1 232 E0.02 <0.008 3.54 0.044 1040
62SRP-S34 SAS 280241082230703 8/12/2004 930 25.5 540 6.8 6.3 274 <0.04 E0.005 3.21 0.014 13.8
62SRP-POND POND 280242082230800 6/21/2005 1220 29.0 362 23 7.2 108 1.41 0.043 0.91 0.29 17.8
MAS-R-F160 UFA 280242082232401 11/3/2004 1200 26.7 546 0.7 7.4 224 E0.02 0.011 0.94 0.029 0.9
MAS-R-F160 UFA 280242082232401 6/16/2005 1040 27.0 548 0.5 7.2 211 <0.04 0.013 0.72 0.022 1.1
MAS-R-F64 UFA 280242082232403 2/16/2005 1300 25.5 262 1.8 7.7 105 <0.04 <0.008 1.2 0.017 0.5
MAS-R-F64 UFA 280242082232403 6/16/2005 1100 26.0 219 2 8 82 <0.04 <0.008 1.2 0.007 0.5
MAS-POND POND 280242082232900 6/21/2005 1100 28.5 172 29 7.1 72 <0.04 <0.008 <0.06 0.12 9.3
TTP-4 UFA No data 10/21/2002 1600 26.5 608 0.4 7.2 188 E0.04 0.02 0.72 0.03 0.9
TTP-4 UFA No data 1/28/2004 1600 24.0 603 0.2 7.3 189 E0.02 0.033 0.89 0.021 1.9
TTP-4 UFA No data 9/22/2004 1600 25.5 599 0.7 7.3
TTP-4 UFA No data 10/21/2004 1500 26.0 606 0.5 7.3 170 <0.04 0.008 1.4 0.018 0.9
TTP-4 UFA No data 2/16/2005 1600 25.0 584 0.4 7.3 184 E0.02 0.042 0.61 0.014 0.9
TTP-4 UFA No data 6/20/2005 1600 26.4 618 0.3 7.4 194 E0.02 0.048 0.72 0.016 1.2
WP-F299 UFA 280247082231901 1/22/2004 1600 26.0 1,000 0.2 7.2 225 0.17 <0.008 <0.06 0.036 24
WP-F299 UFA 280247082231901 8/3/2004 1400 26.0 1,000 0.3 7.1 215 22
WP-F150 UFA 280247082231902 1/28/2004 1300 252 569 0.2 7.4 158 0.17 <0.008 <0.06 0.034 1.2
WP-F150 UFA 280247082231902 8/4/2004 1100 26.0 584 0.3 74 156 0.18 <0.008 <0.06 0.028 1.2
WP-F150 UFA 280247082231902 6/14/2005 1110 26.9 576 0.6 7.4 157 <0.008
WP-S64 SAS 280247082231903 1/14/2004 1500 26.0 474 5.4 7.5 124 <0.04 <0.008 2.5 0.049 0.8
WP-S64 SAS 280247082231903 8/4/2004 1600 26.5 482 6.7 7.5 112 <0.04 <0.008 4.6 0.051 0.6
WP-S64 SAS 280247082231903 11/18/2004 1200 27.3 455 6 7.5 132 <0.04 <0.008 4.1 0.054 1.5
WP-S64 SAS 280247082231903 6/14/2005 1130 26.5 457 5.7 7.5 120 <0.04 <0.008 2.3 0.048 13.7
RP-F103 UFA 280249082220701 12/2/2003 1500 23.5 759 0.2 7.2 256 0.14 <0.008 <0.06 0.037 2
RP-F103 UFA 280249082220701 1/14/2004 1135 22.5 792 0.1 7.2
RP-F77 UFA 280249082220702 12/3/2003 1300 23.5 562 0.2 7.3 251 0.21 <0.008 <0.06 0.05 24
RP-F77 UFA 280249082220702 6/16/2005 1610 25.2 586 0.4 7 251
RP-S20 SAS 280249082220703 12/4/2003 1400 24.5 502 22 6.4 303 0.04 <0.008 <0.06 0.125 33

RP-S20 SAS 280249082220703 8/11/2004 1500 24.0 791 1.4 6.6 392 <0.04 <0.008 0.1 0.084 2.5



Floridan aquifer (UFA) in the study area.
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centimeter; E, estimated concentration, below reported laboratory reporting level; ROE-DS, residue on evaporation, dissolved solids, mg/L; DTW, depth to water in

P00915  PO0S25  P00930  P00935  PO09AD  P00S45  POO9SD  PO0SS5  P390B6  P70300  P99II8  P72019
. Dolomite lo
Calciom MM Sojiun Potssium Chioride  Sodium  Fluoride  Silica AWMt pop p Hydrogen - Caleite ST g T Gypsum SI chz
sium as CaCO, sulfide
94.2 3.85 25.8 0.82 10.8 53.8 0.5 7.46 241 293 8.84 -0.15 -1.33 -1.75 -1.45
83.5 2.49 17.6 0.58 7.54 314 0.6 8.52 207 274 0.002 9.64 -0.03 -1.24 -2.00 -1.71
9.2 285 159 0.82 991 309 0.4 9.37 215 300 0.004 10.0 003  -1.09  -198  -1.69
195 233 8.17 1.05 9.38 371 0.6 15.1 176 759 1.5 9.77 0.2 -0.19 -0.81 -1.91
96.7 8.11 8.21 0.74 7.11 137 0.3 14.2 133 365 0.6 9.70 -0.02 -0.79 -1.36 -2.12
126 0.533 9.52
130 6 16.5 1.16 36.5 44.4 0.3 14.7 262 405 0 9.61 0 -1.00 -1.75 -1.43
125 536 137 114 349 45.1 0.2 15 260 329 0.02 865  -000  -1.02 175  -142
133 6.3 17.3 1.26 42.7 439 0.2 16.4 281 426 0.008 8.94 -0.14 -1.25 -1.75 -1.18
131 5.86 14.6 1.15 42.5 44.6 0.2 16.5 259 452 0.013 9.50 -0.06 -1.10 -1.74 -1.31
95.5 10.8 12.3 1.35 279 89.7 0.2 13.6 164 353 0.002 14.5 0.03 -0.50 -1.55 -1.90
162 153
64.8 16.6 6.3 0.84 12.7 18.3 EO.1 31.9 190 281 0.008 13.6 -0.16 -0.54 -2.35 -1.74
81.7 14 17.3 2.14 289 12.8 0.2 9.18 224 272 8.31
532 4.13 10.4 2.7 22.7 44.5 0.3 9.13 89 260 -0.42 -1.57 -1.99 -2.15
85.9 5.94 19 8.36 18.5 63.4 0.1 12.6 184 326 0.004 13.5 0.22 -0.35 -1.71 -2.06
94.6 6.52 11.2 2.79 19.1 69.8 0.2 12.1 173 337 0.008 14.0 0.04 -0.71 -1.64 -1.88
36.2 1.73 13.6 0.5 154 12.8 0.1 159 86 164 0 13.6 -0.11 -1.19 -2.62 -2.68
349 1.82 4.88 0.46 152 9.2 EO.1 17.7 67 150 134 0.08 -0.78 -2.76 -3.09
25.5 091 7.34 2.03 11.9 3.9 EO.1 2.4 59 112 -0.95 -2.96 3.24 -2.21
106 9.52 10.3 0.94 17.8 129 0.3 12.7 154 390 0
110 1 10.9 L6 28 122 03 13.5 155 390 0.048 009 049 137 205
0.025
98.1 8.41 11.2 1.04 25 116 0.3 133 139 380 0.03 0.03 -0.65 -1.43 -2.08
103 8.51 11.3 1.08 26 112 0.3 124 151 369 0.005 0.07 -0.60 -1.42 -2.06
109 104 11.6 1.11 24 121 0.3 13.2 159 390 0.038 0.23 -0.20 -1.38 -2.13
195 23.6 9.01 1.4 9.41 355 0.6 153 185 760 1.88 18.4 0.23 -0.10 -0.83 -1.89
183 233 7.31 1.27 9.03 369 0.6 149 177 753 1.71 17.5 0.09 -0.36 -0.83 -1.80
102 11.5 10.7 1.09 19.1 139 0.5 13.9 130 386 0.018 18.4 0.09 -0.42 -1.35 -2.22
94.1 10.2 10.3 1.07 20.9 133 0.5 13.1 128 375 0.11 17.5 0.07 -0.47 -1.38 -2.22
128 0.103 18.2
77.6 6.39 12.2 1.79 21.3 87.2 0.2 8.43 102 294 0 16.2 0.02 -0.69 -1.60 -2.42
67.8 532 14.7 1.86 30.6 73 0.2 8.92 94 287 0.005 15.1 -0.05 -0.85 -1.71 -2.44
65.6 54 13.3 2.39 26.2 59 0.1 9.88 108 280 0.002 153 0.01 -0.69 -1.81 -2.38
70.4 5.76 10.6 1.58 20.8 86.3 0.4 8.13 98 283 16.3 -0.03 -0.78 -1.63 -2.43
151 15.8 6.24 0.74 8.59 227 0.4 15.8 210 578 0.51 4.90 0.2 -0.27 -1.05 -1.83
106 10.4 7.88 0.71 7.6 93.6 0.5 28.3 206 394 0.29 5.21 0.2 -0.29 -1.49 -1.93
206 0.48 4.71
114 2.8 9.32 0.29 18.8 30.5 0.2 16.2 248 355 0.007 4.85 -0.51 -2.25 -1.93 -0.92
147 2.72 16.5 0.21 20.3 80.3 0.4 12.5 322 343 0 2.63 -0.18 -1.76 -1.46 -1.04
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Table 5. Physical properties and chemistry of water samples from the surficial aquifer system (SAS), intermediate confining unit (ICU), and Upper

[Concentrations are in milligrams per liter (mg/L) unless otherwise noted; P, STORET parameter code; temperature, in degrees Celsius; specific conductance, in microsiemens per
meters below measuring point; SI, saturation index; PCO,, partial pressure of carbon dioxide in water sample]

Aquifer or P00010 P00095 P00300 P00400 P00453 P00608 P00613 P00631 P00671 P00681
nsaI:e g:‘t,)tll;;;c i desnlttil:ier Date Time Temper- ig::::: Dissolved H Bicar- Amnllonium Nitrite as Ni.trate as 0::;2"::- D::;:Lvizd
unit ature e oxygen bonate as nitrogen nitrogen nitrogen phosphorus ~ carbon

RP-S20 SAS 280249082220703 11/16/2004 1500 242 435 0.3 6.8 267 <0.04 <0.008 <0.06 0.124 2.6
RP-S20 SAS 280249082220703 6/16/2005 1500 25.0 613 1 6.6 373 <0.04 <0.008 <0.06 0.118 22
LRP-F160 UFA 280250082233001 11/4/2004 1300 27.8 458 0.5 7.8 153 0.47 <0.008 <0.06 0.018 1.7
LRP-H105 ICU 280250082233002 12/7/2004 1600 25.1 288 0.3 7.4 134 0.09 <0.008 0.27 0.051 1.7
LRP-H105 ICU 280250082233002 6/15/2005 1510 29.5 334 0.6 8.3 139

LRP-S25 SAS 280250082233003 8/10/2004 1100 26.0 447 0.5 7.5 154 0.09 0.014 0.72 0.068 1.6
LRP-S25 SAS 280250082233003 6/15/2005 1500 25.0 442 0.4 7.3 120 0.2 <0.008 E0.04 0.026 1.7
LRP-POND POND 280250082233200 6/21/2005 0915 27.5 400 8.4 8.8 100 <0.04 0.054 0.61 0.021 3.7
JARP-S40 SAS 280251082224201 6/27/2005 1030 29.0 236 2.3 6.7 89 <0.04 <0.008 <0.06 <0.006 1.5
GARC-F200 UFA 280253082223801 12/16/2003 1300 25.0 1,070 0.2 7.2 218 0.18 <0.008 <0.06 0.035 2.1
GARC-F75 UFA 280253082223802  12/15/2003 1400 20.5 852 0.2 7.3 215 0.22 <0.008 <0.06 0.048 0.5
GARC-F75 UFA 280253082223802 6/13/2005 1200 28.0 825 0.5 7.2 221

GARC-S23 SAS 280253082223803  12/17/2003 1200 25.0 515 2.5 6.3 193 <0.04 E0.007 4.81 0.006 0.7
GARC-S23 SAS 280253082223803 8/5/2004 1600 26.0 540 4.5 5.9 70 <0.04 <0.008 1.56 E0.003 0.9
GARC-S23 SAS 280253082223803 11/17/2004 1100 27.7 504 3 5.7 70 <0.04 <0.008 2.45 <0.006 18.1
GARC-S23 SAS 280253082223803 6/13/2005 1115 27.1 450 3.2 5.8 69 <0.04 <0.008 247 E0.003 0.7
113RC-F190 UFA 280301082222701 12/8/2003 1300 25.0 1,010 0.3 7.2 222 0.17 <0.008 <0.06 0.023 2.8
113RC-F190 UFA 280301082222701 6/15/2005 1130 27.1 1,040 0.3 7.1 226

113RC-H50 ICU 280301082222702 12/9/2003 1300 25.5 0 0.3 7.3 166 0.06 0.03 0.65 0.023 1.8
113RC-S35 SAS 280301082222703  12/11/2003 1300 26.0 379 2.5 6.8 157 <0.04 E0.007 351 0.019 0.6
113RC-S35 SAS 280301082222703 8/12/2004 1300 275 370 4 6.6 135 <0.04 E0.006 4.41 0.014 0.9
113RC-S35 SAS 280301082222703 11/16/2004 1300 273 316 22 6.6 141 <0.04 E0.004 2.36 0.019 23
113RC-S35 SAS 280301082222703 6/15/2005 1100 27.5 373 43 6.6 137 <0.04 <0.008 3.6 0.01 1.1
LP-H40 ICU 280303082230901 8/10/2004 1500 32.0 262 7.5 7.8 120 <0.04 E0.006 2.15 0.029 23
LP-H40 ICU 280303082230901 12/8/2004 1500 26.4 259 6.8 7.5 127 <0.04 <0.008 24 0.069 0.4
LP-S30 SAS 280303082230902 8/10/2004 1200 29.0 65 8 4.4 5 <0.04 <0.008 1.8 <0.006 0.3
LP-S30 SAS 280303082230902 11/1/2004 1600 282 92 6.2 5 5 <0.04 <0.008 2.7 <0.006 13.5
LP-S30 SAS 280303082230902 6/21/2005 1130 26.0 70 7 5.3 5 <0.04 <0.008 1.47 <0.006 0.4
QRP-S20 SAS 280311082223901 8/11/2004 1345 28.0 185 3.7 5.9 54 0.04 <0.008 2.55 0.019 5
QRP-S20 SAS 280311082223901 11/15/2004 1700 249 234 2.3 5.9 94 <0.04 <0.008 6.11 0.008 3.7
QRP-S20 SAS 280311082223901 6/21/2005 1630 24.5 166 2 6.2 58 0.16 E0.006 0.67 0.012 4.6
HRIV-WA River 280244082220100 1/30/2004 1410 14.0 281 6.6 7.2 116

HRIV-RR River 280248082220200 6/22/2005 0.027 0.004 0.102 0.323 19.8

8/30/2005 253 7.38

TTP-4-140-NP UFA No data 10/27/2004 1600 26.4 577 0.8 7.3 180 <0.04 0.039 2.29 0.022 1.1
TTP-4-160-NP UFA No data 10/27/2004 1800 26.2 537 0.8 7.3 170 <0.04 0.011 3.6 0.024 0.8
TTP-4-160-P UFA No data 10/28/2004 1100 24.1 567 1 7.3 182 <0.04 0.035 1.84 0.014 0.9
TTP-4-140-P UFA No data 10/28/2004 1400 25.8 586 0.6 7.3 183 <0.04 0.02 1.72 0.016 0.9
TTP-4-125-P UFA No data 10/28/2004 1600 259 583 0.6 7.3 182 <0.04 0.013 1.69 0.022 0.9

TTP-4-entire-P UFA No data 10/21/2004 1500 26.0 606 0.5 73 170 <0.04 0.008 1.44 0.018 0.9




Ground-Water Chemistry 29

Floridan aquifer (UFA) in the study area.—Continued

centimeter; E, estimated concentration, below reported laboratory reporting level; ROE-DS, residue on evaporation, dissolved solids, mg/L; DTW, depth to water in

P00915 P00925 P00930 P00935 P00940 P00945 P00950 P00955 P39086 P70300 P99118 P72019

. Dolomite log
Calcium M?gne- Sodium Potassium Chloride  Sodium  Fluoride Silica Alkalinity ROE-DS Hydr?gen DTW Calcite St sI L PCO,
sium as CaCO, sulfide
86.6 1.67 5.56 EO0.12 2.68 9.6 0.4 10.9 219 260 0.01 4.01 -0.30 -1.96 -2.48 -1.39
124 2.5 7.46 0.2 7.01 13.1 0.4 11.5 306 363 4.22 -0.22 -1.79 -2.27 -1.05
69.6 7.16 14.1 5.93 16.3 772 0.3 8.46 125 278 0.043 13.3 0.39 0.16 -1.69 -2.62
48.4 5.01 4.63 1.03 8.49 25.1 0.6 10.3 110 177 0 272 -0.21 -1.05 -2.25 -2.28
118 0.002 14.0
70.2 6.79 8.67 1.17 10.9 75.8 0.6 9.75 126 278 0 2.16 0.08 -0.50 -1.69 -2.32
69.1 7.32 8.95 1.09 16.3 94.2 0.5 8.14 98 275 0 3.03 -0.26 -1.14 -1.60 -2.23
66.3 7.46 8.44 1.35 15.1 92.7 0.5 11.1 82 262 1.09 1.61 -1.64 -3.88
25.6 3.46 16.5 1.12 11.3 23.5 EO.1 3.6 73 131 6.56 -1.28 -3.03 -2.50 -1.72
225 26.5 11.3 1.24 9.74 413 0.5 14.8 179 832 1.65 5.93 0.25 -0.09 -0.73 -1.91
170 19.7 7.87 0.93 8.72 296 0.3 15.2 176 1.02 6.25 0.26 -0.08 -0.92 -2.01
181 0.66 6.00
98.7 10.2 12.1 0.63 8.93 120 <0.2 12.6 159 346 0.006 6.00 -0.93 -2.50 -1.41 -1.03
89.8 8.86 6.62 0.42 6.2 191 0.2 9.16 58 364 0.005 4.83 -1.80 -4.25 -1.25 -1.06
78.2 10 5.97 0.34 4.74 171 0.3 8.79 58 343 0.005 5.27 -2.02 -4.57 -1.34 -0.84
68.7 8.76 6.91 0.42 6.64 138 <0.2 12.1 57 309 5.73 -1.97 -4.48 -1.46 -0.95
211 26.9 6.13 0.97 9.29 383 0.5 15.6 182 776 1.1 6.43 0.24 -0.07 -0.78 -1.90
185 0.66 6.25
117 9.28 8.04 0.97 13.2 151 0.3 13.9 136 395 0.15 6.55 0.07 -0.61 -1.27 -2.10
64.7 59 5.89 0.68 9.92 47.2 <0.2 8.72 129 234 0 6.49 -0.63 -1.94 -1.90 -1.61
46 3.78 10.5 3.24 2.03 26.6 <0.2 4.68 111 189 5.09 -0.99 -2.68 -2.24 -1.45
435 4.35 11.4 2.55 1.85 28.6 EO.1 4.88 115 177 0.002 5.81 -1.00 -2.62 -2.23 -1.44
54.9 5.41 12.1 2.98 6.75 47.6 <0.1 4.97 112 223 6.38 -0.93 -2.49 -1.95 -1.45
31.3 341 14.6 4.55 4.94 14.2 0.3 2.34 98 155 5.67 0.07 -0.41 -2.64 -2.68
39.8 4.11 6.18 1.08 8.36 6.7 0.3 6.05 104 144 0.007 8.40 -0.18 -0.98 -2.88 -2.39
2.9 2.19 2.77 1.08 5.7 7.3 <0.2 2.8 4 46 0 6.52 -5.52 -10.77 -3.80 -0.48
3.36 332 4.89 1.26 11.7 5.6 EO0.1 3.83 4 48 0.004 7.74 -5 -9.63 -3.87 -1.22
2.16 1.79 7.15 0.9 4.96 11.6 <0.1 2.46 4 41 0 8.20 -4.94 -9.61 -3.72 -1.56
26.5 0.767 6.45 2.75 9.05 17.5 <0.2 2.83 44 136 2.45 -2.27 -5.69 -2.58 -1.14
39.5 1.05 3.72 2.93 3.21 11 EO0.1 2.03 71 150 0.012 3.03 -1.92 -5.07 -2.65 -0.92
229 1.06 7.65 2.5 15.6 5 EO0.1 3.19 48 95 0.001 3.46 -2.04 -5.05 -3.16 -1.43
95
-0.7 -2.10 -2.69 -1.92
39.9 3.34 8.9 0.08 14.8 10.2 0.215 8.7 186
97.2 7.89 12.2 1.19 28.1 96.4 0.2 12.8 148 344 0 17.5 0.07 -0.60 -1.50 -2.05
90.1 7.71 12.9 1.18 31 78.7 0.1 12.8 140 333 0.001 17.5 0.02 -0.67 -1.60 -2.08
102 8.36 11.8 1.19 27.9 103 0.2 12.8 150 359 0.008 17.5 0.06 -0.64 -1.46 -2.06
101 8.23 11.6 1.15 26.9 106 0.2 12.8 150 361 0 17.5 0.07 -0.59 -1.45 -2.05
99.8 8.72 11.6 1.17 26.9 107 0.3 13.2 150 355 0.001 17.5 0.07 -0.56 -1.45 -2.05

98.1 8.41 11.2 1.04 25 116 0.3 133 139 380 0.03 0.03 -0.65 -1.42 -2.08
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17.8 mg/L (table 5) with a median concentration of 9.3 mg/L.
The range of dissolved organic carbon concentrations in water
from the intermediate confining unit and Upper Floridan aqui-
fer was substantially smaller than that from the surficial aqui-
fer system and retention ponds, with median concentrations
of 1.8 and 2.0, respectively. Dissolved solids concentrations
in water were less than 500 mg/L from the surficial aquifer
system, intermediate confining unit, and stormwater reten-
tion ponds. Dissolved solids concentrations were considerably
higher in most water samples from the Upper Floridan aquifer
with five wells that had concentrations in water ranging from
580 to 830 mg/L.

Redox Conditions

Redox conditions are important in controlling many
chemical processes in ground water, such as the speciation
of naturally occurring elements (for example, sulfur, arsenic,
and iron) and the transformation/biodegradation of anthropo-
genic compounds (for example, nitrate, trichloromethane, and
trichloroethene). A scheme was developed for the regional-
scale TANC studies using various chemical indicator species
to classify redox conditions in ground water (S.S. Paschke,
U.S. Geological Survey, written commun., 2007). This redox
classification scheme is presented in appendix A4. A redox
category was assigned to each ground-water sample; however,
the present study has modified this scheme based on data
that are available for hydrogen sulfide and methane. In some
instances, conflicting or overlapping indicators of redox condi-
tions occur and are related to mixtures of water with different
redox indicators. However, the detection of hydrogen sulfide
in water from most wells in the Upper Floridan aquifer
(table 5) allowed the classification of these waters as sulfate
reducing.

Distinct differences in redox conditions exist among
waters from the surficial aquifer system, intermediate confin-
ing unit, and Upper Floridan aquifer. Water samples from 9 of
11 monitoring wells screened in the surficial aquifer system
consistently had dissolved oxygen concentrations greater than
or equal to 1 mg/L (fig. 8). The depth to the water table at
those wells generally was greater than or equal to 4.5 m, and
the top of the screened interval generally was less than 1.5 m
below the water table. Water samples from wells RP-S20
and QRP-S20 are indicative of mixed redox conditions
because dissolved oxygen concentrations were greater than
or equal to 1 mg/L, but iron concentrations were greater than
300 ug/L (micrograms per liter). Water from wells with mixed
redox conditions or anoxic conditions likely are influenced by
surface features like sinkholes, retention ponds, or the Hills-
borough River. Water from LRP-S25 and THC-S46 had dis-
solved oxygen concentrations less than or equal to 0.5 mg/L.
The depth to the water table at those wells was less than or
equal to 3 m and greater than or equal to 7.6 m, respectively,
but the screen tops at both of those wells were farther below
the water table (about 1.5-2.5 m) than many of the other wells.

Water from well THC-S46 had low dissolved oxygen concen-
trations (less than 0.5 mg/L) and elevated iron and manganese
concentrations indicating anoxic conditions (iron-manganese
reducing conditions).

Water samples from two of the four wells in the
intermediate confining unit (62SRP-H55 and LP-H40) had
dissolved oxygen concentrations greater than 2 mg/L.
(dissolved oxygen-reducing conditions). These two wells have
screen tops that are generally less than or equal to 4 m below
the water table. The other two wells (113RC-H50 and
LRP-H105) had concentrations of dissolved oxygen less
than 0.5 mg/L. The suboxic water samples from these two
wells also had nitrate-N concentrations of about 0.5 mg/L
and methane concentrations greater than 0.1 mg/L, indicating
nitrate-iron reducing conditions. Water from 113RC-H50 had
manganese concentrations less than 50 ug/L and iron con-
centrations greater than 100 pg/L. Wells 113RC-H50 and
LRP-H105 had screen tops that were generally greater than
or equal to 6 m below the water table. These locally vari-
able redox conditions are related to differences in sediment
mineralogy and chemistry, depth below the water table, and
other factors such as residence time of water in the intermedi-
ate confining unit.

All but two monitoring wells in the Upper Floridan
aquifer (62SRP-F160 and MAS-R-F160) had dissolved oxy-
gen concentrations less than or equal to 0.5 mg/L and only
one well (MAS-R-F64) had a dissolved oxygen concentra-
tion greater than 1 mg/L. Most of these monitoring wells had
detectable (greater than 0.01 mg/L) sulfide concentrations
(fig. 8); water samples from only a few wells had manganese
concentrations greater than 50 ug/L or iron concentrations less
than 100 pg/L (sulfate-reducing conditions). Two of the wells
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Figure 8. Dissolved oxygen and hydrogen sulfide concentrations
with well depth from the surficial aquifer system, intermediate
confining unit, and Upper Floridan aquifer in the Temple Terrace,
Florida, study area.



had methane concentrations greater than 0.1 mg/L. Concentra-
tions of hydrogen gas ranged from 0.4 to 2.1 nM (nanomolar),
which are characteristic of iron-reducing or sulfate-reducing
conditions. Subtle differences in redox processes related to
dissolved oxygen/nitrate/iron/sulfate reduction and methano-
genesis could not be mapped spatially, but vary with depth and
are related to organic carbon content, ground-water residence
time, and hydraulic connections between the surficial aquifer
system and Upper Floridan aquifer.

Stable Isotopes of Water

Variations in the delta hydrogen-2 (6*°H) and delta
oxygen-18 (8'*0) composition of ground water, rainfall,
retention pond water, and river water were used to examine
sources of water, flow patterns, and mixing processes in the
ground-water system (table 6). The isotopic composition of
ground- and surface-water samples are plotted relative to the
global meteoric water line (Craig, 1961) and a local meteoric
water line determined from a previous study (Sacks, 2002)
(fig. 9). Differences in the slope and intercept of these two
meteoric water lines are related to several factors including
storm-track origin, rainfall amount and intensity, atmospheric
temperature, and the number of evaporation and condensation
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cycles. The isotopic composition of water from wells in the
surficial aquifer system, and from a shallow well in the Upper
Floridan aquifer (RP-F77) plot between these two lines, indi-
cating that these waters have not been affected by evaporation.
In contrast, water from other shallow monitoring wells in the
Upper Floridan aquifer and two retention ponds (MAS-POND
and LRP-POND) are slightly enriched relative to the global
meteoric water line. Further enrichment of the stable isotopic
composition is noted for the four deep monitoring wells in the
Upper Floridan aquifer and Hillsborough River. The higher
&°H and 8'%0 values for water from the Hillsborough River
water indicate that evaporative enrichment of these isotopes
has occurred. The isotopic composition of water from the
public-supply well is consistent with possible mixing of water
from the surficial aquifer system and Upper Floridan aquifer
as the 6'30 and &%H values plot between those for water from
both hydrogeologic units (fig. 9).

The enriched isotopic signature for the deep wells in the
Upper Floridan aquifer (GARC-F200, THC-F197, 113RC-
F190, and WP-F299) indicates that recharge water has under-
gone evaporation prior to recharging the aquifer. One possible
source for isotopically enriched waters is recharge water that
occurs in wetland areas located several kilometers upgradient
from the study area. The presence of higher amounts of
dissolved organic carbon in these waters also indicates a
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Figure 9. Oxygen and hydrogen isotopes in ground water and surface water from the surficial aquifer
system, intermediate confining unit, and Upper Floridan aquifer in the Temple Terrace, Florida, study

area.
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possible source of recharge from wetland areas to the north.
Other sources for the high sulfate waters include upwelling
of waters from deep flow paths in the Upper Floridan aquifer
and/or recharge during different climatic conditions (Sacks,
1996).

Ground-Water Age and
Age Distributions

Two age-dating methods were used to determine apparent
ages of ground water and age distributions by incorporating
various lumped parameter models. These two methods include
measurements of the concentrations of tritium (*H) and its
radioactive decay product helium-3 (*He) and measurements
of the concentrations of sulfur hexafluoride (SF,). Comparison
of the two independent ages from these methods can be used
as a verification for sampling and analytical methods and to
evaluate mixing and other processes in the flow system.

Apparent Sulfur Hexafluoride and Tritium/
Helium-3 Ground-Water Ages

The SF, and *H/°He apparent ages of ground water,
assuming a piston-flow model, generally were concordant
and ranged from young water (less than 1 year) to water more
than 60 years old (fig. 10). Apparent ages for water from the
surficial aquifer system were much younger than those from
the intermediate confining unit and Upper Floridan aquifer
(tables 7 and 8; fig. 10). The *H/°He and SF, apparent ages for
water from the public-supply well ranged from less than 1 year
to 8 years, respectively (tables 7 and 8; fig. 10). Also of note
is the relatively young apparent age of 12 years for water from
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Figure 10. Comparison of apparent ages based on the piston-flow
assumption and measured concentrations of sulfur hexafluoride,
tritium, and helium-3 in water samples from the surficial aquifer
system, intermediate confining unit, and Upper Floridan aquifer in
the Temple Terrace, Florida, study area.
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WP-F150, a 46-m-deep monitoring well in the Upper Floridan
aquifer near the public-supply well that likely is withdrawing
water from a highly transmissive zone similar to the 43- to
49-m zone identified using geophysical measurements of the
borehole for the public-supply well.

Differences in SF, and *H/°He apparent ages for water
from the surficial aquifer system are related to the thickness
of the unsaturated zone, depth below the water table, and the
presence of clays within the surficial material. For example,
water from LP-S30 had an apparent SF, age of 13 to 15 years,
whereas water from the slightly deeper well, 113RC-S35, had
an apparent age of 7 years. The unsaturated zone thickness
was greater at LP-S30 (8.5 m) than that at 113RC-S35
(6.7 m), and clay material was noted throughout a larger
interval for LP-S30 than for 113RC-S35, which may account
for a longer time of travel to LP-S30 than 113RC-S35. Even
though the unsaturated zone thickness for WP-S64 was 16 m,
the SF, apparent age for water from this well was only 3 to
4 years. The unsaturated zone at WP-S64 contains a greater
thickness of sand/silt material than at LP-S30 and 113RC-S35,
and the presumed higher permeability may account for the
younger water at WP-S64 than at LP-S30.

The *H/*He apparent age calculations are sensitive to the
amount of terrigenic helium-4 (*He) from decay of uranium-
series radionuclides and excess air. Terrigenic “He (relative
to the total “He) generally was less than 5 percent, but water
samples from two sites, 113RC-F190 and GARC-F200, had
values of 10 to 12 percent (table 8). Other studies reported a
highly variable distribution of uranium in sediments that com-
pose the Upper Floridan aquifer (Kaufman, 1968). Uranium
concentrations in water samples were highly variable, but
median uranium concentrations were higher for water samples
from the Upper Floridan aquifer than from the surficial aquifer
system and intermediate confining unit (see below for more
detailed information on uranium concentrations). With large
fractions of terrigenic helium (greater than 10 percent), the
SHe/*He ratio of the terrigenic helium (R,,,) needs to be known
accurately. Non-tritiogenic *He resulting from terrigenic
sources are adjusted using an R _of 2E-08 (Schlosser and
others, 1988). If this ratio is allowed to vary over two orders
of magnitude (somewhat unlikely, but useful for illustrating
estimates of age uncertainty) for an R _of 2E-07, apparent
ages would be younger by 8 years for 113RC-F190 and
6 years for GARC-F200. Using an R __of 2E-09, there would
be no appreciable differences in apparent ages.

The apparent lack of agreement between SF and *H/°He
apparent ages for the presumed older waters (greater than
60 years based on low tracer concentrations) from the Upper
Floridan aquifer could result from complex mixtures of water
from deep zones within the aquifer and the age dating limits of
the SF, method. Another possibility for the minor excess SF,
is that there is some natural background or low-level anthro-
pogenic SF, contamination in these water samples (GARC-
F200, WP-F299, and THC-F297) from deep parts of the Upper
Floridan aquifer. To assess and quantify possible ground-water
mixing scenarios, measured concentration data for SF, were
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compared to theoretical age-distribution curves generated
using lumped parameter models.

Assessing Ground-Water Age Distributions
using Lumped Parameter Models

Analytical procedures are capable of determining
extremely low concentrations of the tracers SFG, H, and *He in
ground water; however, the subsequent interpretation of age or
mean residence time of ground water in complex karstic aqui-
fer systems still is fraught with a high degree of uncertainty.
In many previous studies where SF, and *H/°He , (tritium/tri-
tiogenic helium-3) have been used to date ground water, flow
systems were relatively well characterized and water samples
typically were collected from discrete depth intervals. Extend-
ing tracer age-dating techniques to wells with large open inter-
vals in complex karstic systems requires an analysis of several
possible ground-water flow scenarios.

Lumped parameter models are used in this study to esti-
mate the mean residence time and age distribution of ground
water in the surficial aquifer system, intermediate confining
unit, and Upper Floridan aquifer systems. These models treat
an aquifer system as a homogeneous compartment in which
tracer input concentrations are converted to tracer output
concentrations according to the system response function
used (Maloszewski and Zuber, 1982; Zuber, 1986). By fitting
measured tracer concentrations to modeled output curves, the
response function accounts for the distribution of ages at a
sampled site (Zuber and others, 2001). No detailed informa-
tion is needed regarding the flow system, such as boundary
conditions, porosity, and hydraulic conductivity, all of which
are necessary for numerical models based on Darcy’s law.
Lumped parameter models assume a steady-state flow system
and assume that the selected tracers behave like a water mol-
ecule. Although this assumption typically is valid for tritium,
which is part of the water molecule, the gas tracer SF, may or
may not be transported in exactly the same way as the water.
The mean residence time of ground water at a given well
represents the time elapsed since recharge and isolation of the
tracer from the modern atmosphere. Flow system character-
istics are represented by two end-member lumped-parameter
models: piston flow and exponential flow. The piston-flow
model assumes that after a tracer is isolated from the atmo-
sphere at the time of ground-water recharge, it becomes
incorporated in a parcel of water that moves from the recharge
area with the mean velocity of ground water. All flow lines are
assumed to have similar velocities, and hydrodynamic disper-
sion and molecular diffusion of the tracer are assumed to be
negligible.

The exponential flow model represents an aquifer
system in which the mean residence time of ground water is
exponentially distributed. Ground-water flow is composed
of recharge from all past years. Ground-water contributions
to well discharge, however, decrease exponentially from the
most recent recharge to that which has occurred in the distant
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past. Although the exponential model may provide a reason-
able approximation of homogeneous unconsolidated aquifers,
it may not be as useful in karst systems where ground water
moves slowly through small openings in the carbonate matrix,
fractures or fissures, and much more rapidly through large
conduits or caverns. Dye tracer studies have indicated that
flow through conduits can be fast, on the order of 3,000 to
23,000 m/d (meter per day) (Wilson and Skiles, 1988).

Other lumped parameter models that account for mixing
include the combined exponential and piston-flow model. The
exponential flow model and the combined flow model have
one fitted parameter in common (total mean transit time or
mean-tracer age). The combined flow model has an additional
fitting parameter (x), the ratio of tPFM/tEM. This fitting
parameter (x) is slightly different than the parameter (n),
which represents the total volume to the volume with the expo-
nential distribution of ages (Maloszewski and Zuber, 1996).

In addition to the above models, simple binary mixing
models and combined binary models and exponential models
are used to evaluate mixing scenarios that involve relatively
young water (recharged within the past 7 years) with older
water (decades), presumably from deeper parts of the Upper
Floridan aquifer. In principle, both end members of a binary
mixture can be of any age, but the calculation is greatly sim-
plified if it is assumed that one or both end members is either
“young” (assumed to represent recharge that occurred after
1995) or “old” (recharged before 1950 with undetectable SF,
concentrations). Ground-water ages were determined using
combinations of tracers including SF, and *H, and SF, and
SH/AH(0). The *H(0) tracer represents the initial tritium con-
centration at the time of recharge and is the sum of the mea-
sured concentrations of *H and *He . The ratio of *H/°H(0)
is a surrogate for the relative age of water, in that values near
zero represent old waters, and conversely, values near 1.0 rep-
resent young waters (Bohlke, 2002). The computer program
TRACERMODELI (Bohlke, 2006) was used in this study to
calculate theoretical curves for the different lumped parameter
models using atmospheric input data for the various tracers.

All samples from the surficial aquifer system and the
public-supply well TTP-4 have SF concentrations greater
than 3.0 pptv (parts per trillion by volume) and *H concentra-
tions greater than 2 tritium units as shown in figure 11. These
sample concentrations plot along the modeled curve for piston
flow for young waters, and/or a binary mixing curve domi-
nated by young water (less than 6 years in age). In contrast,
water samples from three deep wells in the Upper Floridan
aquifer (THC-F197, GARC-F200, and 113RC-F190) have low
concentrations of *H and SF,. These samples plot on the lower
left-hand side of the lumped-parameter modeled curves
(fig. 11) and likely represent waters that are considerably older
than 60 years. These waters also contain high concentrations
of sulfate, indicating a deep flow path through the aquifer.
These findings are consistent with a study by Swancar and
Hutchinson (1995) that found higher *H concentrations in
isotopically light waters compared to isotopically heavier
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Figure 11. Measured concentrations of sulfur hexafluoride and tritium in water samples from wells, and lumped-parameter modeled
curves for various ground-water age distributions from the surficial aquifer system, intermediate confining unit, and Upper Floridan

aquifer in the Temple Terrace, Florida, study area.

waters that had low *H concentrations (old waters), high sul-
fate concentrations, and were anoxic.

Water samples from shallow wells in the Upper Floridan
aquifer (GARC-F75, RP-F77, THC-F75, and RP-F103) had
slightly higher *H and SF, concentrations than water samples
from deep wells, and these samples likely represent mixtures
of about 75- to 80-percent old water (greater than 60 years)
with 20- to 25-percent young water (recharged within the past
6 years). Water samples from wells WP-F150 and 113RC-H50
plot near the midpoint of the binary mixing curve and likely
represent 50/50 mixtures of old and young waters. Water from
the 43- to 46-m open zone, which WP-F150 taps, contains a
higher proportion of young water than shallower wells in the
Upper Floridan aquifer. This zone might be connected to the
highly transmissive zone identified in the public-supply well
borehole from geophysical measurements.

A plot of SF, and *H/’H(0) shows similar results for
samples from the deep wells, which represent old waters
(fig. 12). Again, concentrations of SF, and *H/*H(0) for the
shallower Upper Floridan aquifer wells plot to the right of

the deep wells along the binary mixing-exponential mixing
modeled curves showing mixtures of young and old waters.
The SF, and *H/°H(0) concentrations in water from WP-F150
plot close to those for 113RC-S35 and 113-RC-HS50, indicat-
ing the higher fraction of young water at this site. Although
the tracer concentrations for most samples from the surficial
aquifer system and the public-supply well TTP-4 plot in the
upper right-hand side of figure 12 and represent young waters,
they plot below all lumped-parameter mixing curves, which
could result from several possible scenarios. First, *He and/

or SF, may have been lost due to degassing during sampling.
Loss of *He could result in an age that is biased younger than
the true age. Degassing of SF, is less likely, but would result in
an age that is biased older than the true age. However, based
on the relatively higher *H and SF, concentrations for these
waters, they likely contain mostly young recharge waters
(within the past 6 years). Second, preferential loss of *He due
to diffusion into the Teflon sampling line would result in a
higher *H/H(0) value than expected without *He degassing,
and a shift to the right of the modeled curves. Finally, confine-
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ment of *He , can be one of the problems of *H/*He dating of
very shallow water-table environments (L.N. Plummer, U.S.
Geological Survey, written commun., 2007). The *H/*He clock
starts at the seasonal low in the water table in wet climates
(Cook and Solomon, 1997), and as the water table rises during
wet-season recharge, the 3Hetrit becomes confined in the aqui-
fer. The *He , subsequently could be lost from these samples
during seasonal lows in the water table, as was reported for
water-table springs in Shenandoah National Park (Plummer
and others, 2001). Results from sampling for additional age-
dating tracers may help to resolve some of these issues.

Occurrence of Anthropogenic and
Naturally Occurring Contaminants in
Ground-Water Samples

This section presents information on selected

anthropogenic and naturally occurring contaminants in water
from monitoring wells, public-supply well TTP-4, storm-

Ly

water retention ponds, and the Hillsborough River. Emphasis
is placed on comparisons between the occurrence of contami-
nants in water from the public-supply well relative to water
samples from the surficial aquifer system, intermediate confin-
ing unit and Upper Floridan aquifer. Important factors affect-
ing contaminant occurrence, concentrations, and fate also are
presented.

Nitrate-N Concentrations and
Isotopes and Dissolved Gases

Nitrate-N concentrations generally were highest in water
samples from the oxic surficial aquifer system compared to
those from the intermediate confining unit, the Upper Floridan
aquifer, stormwater retention ponds, and the Hillsborough
River (table 5; fig. 13). Nitrate-N concentrations did not
exceed the U.S. Environmental Protection Agency (1993)
maximum contaminant level of 10 mg/L for drinking water in
any water samples collected in this study. Nitrate-N concen-
trations in the surficial aquifer system ranged from less than
0.06 to 6.1 mg/L, with a median value of 1.6 mg/L. Nitrate-N
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Figure 12. Measured concentrations of sulfur hexafluoride, tritium, the ratio of tritium to the sum of helium-3 and tritium in water
samples from wells, and lumped-parameter modeled curves for ground-water age distributions from the surficial aquifer system
intermediate confining unit, and Upper Floridan aquifer in the in the Temple Terrace, Florida, study area.
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concentrations above the background levels of 0.1 mg/L
(Maddox and others, 1992) in the surficial aquifer system
likely result from past agricultural practices, fertilizer applica-
tion to lawns, leakage from septic tanks prior to sewering of
the area, and possibly leaky sewer lines. Nitrogen isotope
values for these waters generally were less than 5 per mil, indi-
cating that nitrate likely originated from an inorganic fertilizer
source. Water samples from three wells had delta nitrogen-15
(8N) values greater than 6 per mil at sites RP-S20 (10.0 per
mil), LRP-H105 (8.1 per mil) and THC-S46 (6.4 per mil) as
noted in table 6. The higher 8"°N values may represent deni-
trification in these waters because methane gas was measured
in these water samples (0.3-0.9 mg/L), and excess nitrogen
gas was estimated at 0.4 and 3 cm*/L (cubic centimeters per
liter) for RP-S20 and LRP-S25, respectively. Excess nitrogen
gas was estimated by comparing measured argon and nitrogen
gas concentrations to those expected at equilibrium with a
recharge temperature of 23 °C. Water from RP-S20 likely is

a mixture of surface water from the Hillsborough River and
reduced ground water, as indicated by the combined presence
of dissolved oxygen (2.2 mg/L), methane (0.9 mg/L), and
dissolved organic carbon (3.3 mg/L).

Nitrate-N concentrations were variable in water from the
intermediate confining unit and ranged from 0.27 to 3.5 mg/L,
with a median concentration of 2.2 mg/L (table 5). Nitrate-N
concentrations in water were lower in LRP-H105 (0.27 mg/L)
and 113RC-H50 (0.65 mg/L) compared with concentrations in
62SRP-HS55 (3.5 mg/L) and LP-H40 (2.4 mg/L). Water from
wells LRP-H105 and 113RC-H50 also had higher 8N values
and lower dissolved oxygen concentrations than wells
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Figure 13. Nitrate-N concentrations with well depth in the Temple
Terrace, Florida, study area.

62SRP-H55 and LP-H40, indicating that denitrification likely
occurs in parts of the intermediate confining unit. The
dissolved methane concentration in water from 113RC-H50
(0.2 mg/L) and an estimated excess nitrogen gas of 1.5 cm*/L
also are consistent with denitrification.

Nitrate-N concentrations in water from the Upper
Floridan aquifer generally were less than the method reporting
level of 0.06 mg/L. Water from the Upper Floridan aquifer,
which generally is anoxic in this area, had dissolved oxygen
concentrations less than 0.5 mg/L and contained measurable
amounts of hydrogen sulfide. Methane concentrations gener-
ally were less than 0.1 mg/L, with the exception of LRP-F160
(0.43 mg/L). In addition, there are several other notable excep-
tions. Water from the shallowest Upper Floridan aquifer well,
MAS-F64, had an elevated nitrate-N concentration of
1.2 mg/L. Likewise, elevated nitrate-N concentrations were
found in water samples from 62SRP-F160 (2.0 mg/L), MAS-
R-F160 (0.94 mg/L), and public-supply well TTP-4 (0.61-

3.6 mg/L). These wells likely withdraw some water from a
transmissive zone in the Upper Floridan aquifer that is
hydraulically connected to the surficial aquifer system.

The 8N values for water samples from the Upper
Floridan aquifer ranged from 4.2 to 21 per mil and were higher
than those for the surficial aquifer system and intermediate
confining unit (table 6). Denitrification likely occurs in parts
of the Upper Floridan aquifer, as indicated by estimated
excess nitrogen gas values (table 9) that ranged from 1.5 to
4 cm?¥/L for water from a depth interval of between 43 and
49 m below land surface (62SRP-F160, MAS-R-F160, LRP-
F160, WP-F150). Also, the ratio of enrichment of 3'0 to 6"°N
of the residual nitrate-N was close to 0.5 (points plot along
dashed trend lines with slope of 0.5 in fig. 14) for samples
from the anoxic Upper Floridan aquifer. Previous studies also
have shown that the enrichment of oxygen to nitrogen was
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Figure 14. Plot showing values for delta nitrogen-15 and delta
oxygen-18 of nitrate in water from wells in the Temple Terrace,
Florida, study area.
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close to 1:2; thus, denitrification produces a slope of about

0.5 on plots of 3N and 8'30 of residual nitrate (Kendall and
Aravena, 1999). Some denitrification also could be occurring
in parts of the surficial aquifer system and Upper Floridan
aquifer as 5'30 and 8N of residual nitrate plot along the trend
lines with 0.5 slope. This may indicate that denitrification is
likely occurring in parts of the ground-water system farther
from the water table that contain lower amounts of oxygen
than present near the water table.

In most water samples from the surficial aquifer system
and intermediate confining unit and some parts of the Upper
Floridan aquifer, concentrations of nitrogen gas and argon
are consistent with atmospheric equilibration during ground-
water recharge with minor amounts of excess air added either
during recharge or as a result of sampling methods (table 9).

The apparent recharge temperatures are 24 + 2 °C (assuming
a 15-m elevation for recharge and 100-percent humidity at
the water table) with about 0 to 5 cm*/L of excess air during
recharge. This calculated recharge temperature agrees closely
with a mean annual air temperature of 22.8 °C (Owenby and
Ezell, 1992).

Volatile Organic Compounds

A total of 20 out of 85 volatile organic compounds were
detected at measurable concentrations in one or more water
samples (table 10; fig. 15). Concentrations generally were
below 1 ug/L and well below U.S. Environmental Protection
Agency (1993) maximum contaminant levels where available.
More volatile organic compounds were detected in water from

100 \ \ \ \ \ \
[ Upper Floridan aquifer (23 samples)
I Intermediate confining unit (4 samples)
[ Surficial aquifer system (28 samples)
1 Retention ponds (3 samples)
80 — —
NOTE: Underlined compounds were detected
E in public-supply well TTP-4. Compounds
L shown in red correspond to the 15 most
&) . )
o frequently detected volatile organic -
L RN .
o compounds in drinking-water wells in the
= 60—  United States (Zogorski and others, 2006) —
>
(&)
=
L
>
a
]
oc
[N
= 40 — —
=
|_
5 _ u _ _ _ _ _
o
'_
L
(=
20— 1

Figure 15. Detection frequency of volatile organic compounds in ground water from the surficial aquifer system, intermediate confining
unit, Upper Floridan aquifer, and stormwater retention ponds in the Temple Terrace, Florida, study area.
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the surficial aquifer system (16) than in the underlying inter-
mediate confining unit (8) and Upper Floridan aquifer (10). A
total of 11 volatile organic compounds were detected in water
samples from retention ponds (table 10; fig. 15). Trichloro-
methane (commonly known as chloroform) was the most
frequently detected compound in water from all three hydro-
geologic units. Concentrations of volatile organic compounds
generally were below 0.1 pug/L, with the exception of trichloro-
methane, which ranged from 0.01 to 2.6 ug/L in the surficial
aquifer system (fig. 16). Trichloromethane was detected more
frequently in oxic water samples (dissolved oxygen concentra-
tions greater than 0.5 mg/L) than from anoxic water samples
(fig. 17). In contrast, dichloromethane (commonly known as
methylene chloride) was detected more frequently in anoxic
waters. The higher detection frequency in anoxic waters likely
is related to reductive dehalogenation under anaerobic condi-
tions (Vogel and others, 1987; Suflita and others, 1988).

Of the 20 volatile organic compounds detected in ground-
water samples, high median concentrations were found in
the water from the surficial aquifer system for 12 of these
compounds. High median concentrations of carbon disulfide,
trichloroethene, and cis-1,2 dichloroethene were found in
the anoxic water samples from the Upper Floridan aquifer.
Slightly higher median concentrations of benzene and

Chemical Characteristics, Water Sources and Pathways, and Age Distribution of Ground Water
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Figure 17. A comparison of trichloromethane (chloroform) and
dichloromethane (methylene chloride) concentrations in water
samples collected from the oxic surficial aquifer system and the
anoxic Upper Floridan aquifer in the Temple Terrace, Florida, study
area.
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Figure 16. Concentrations of selected volatile organic compounds detected in water samples from the surficial aquifer system,
intermediate confining unit, Upper Floridan aquifer, and public-supply well in the Temple Terrace, Florida, study area.
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trichloromethane were found in water samples from the inter-
mediate confining unit than the surficial aquifer system. All
detected concentrations of volatile organic compounds in the
public-supply well and in monitoring wells were below any
levels for health advisories or maximum contaminant levels
(Toccalino and others, 2004). Six volatile organic compounds
were detected in water from the public-supply well: trichloro-
methane, cis-1,2-dichloroethene, trichloroethene, tetrachloro-
ethene, methyl tert-butyl ether (MTBE), and carbon disulfide.
Water samples were collected from TTP-4 on seven different
dates (between October 2002 and June 2005) and analyzed
for volatile organic compounds. Tetrachloroethene and carbon
disulfide were detected in only two samples. MTBE and cis-
1,2-dichloroethene were detected in low concentrations in only
one sample collected in October 2002. Trace concentrations of
tetrachloroethene were detected in all samples, and trichloro-
methane was detected in all but one sample. Median concen-
trations of MTBE, trichloroethene, and cis-1,2-dichloro-
ethene in the public-supply well were similar to median con-
centrations in water from the Upper Floridan aquifer. Median
concentrations of carbon disulfide, tetrachloroethene, and
trichloromethane were higher in water from the public-supply
well than from water samples from Upper Floridan aquifer
monitoring wells. Median concentrations of trichloromethane
were similar in water (0.17 ug/L) from the public-supply
well to monitoring wells in the surficial aquifer system
(fig. 16). Similar concentrations of compounds detected in
water samples from the public-supply well and from surficial
aquifer system monitoring wells indicate that water from the
surficial aquifer system likely is entering the public-supply
well.

The high detection frequency of trichloromethane in this
study is consistent with other ground-water quality studies
in the Tampa Bay area (Metz and others, 2007), but higher
than that found in the Nation’s drinking-water supply wells
where the detection frequency was 11.4 percent using an
assessment level of 0.2 ug/L (Zogorski and others, 2006;
Schaap and Zogorski, 2006; Ivahnenko and Zogorski, 2006).
Several potential sources of trichloromethane in ground water
include recharge of chlorinated water, direct releases such as
spills and leaking underground storage tanks, dehalogenation
of tetrachloroethane, and some natural sources (Ivahnenko
and Barbash, 2004). Trichloromethane also is a disinfection
byproduct that is produced during the chlorination of drinking
water and wastewater that contains naturally occurring organic
material. In the Tampa Bay area study, the high occurrence
of trichloromethane was attributed to disinfection byprod-
ucts produced during chlorination because other disinfection
byproducts (bromodichloromethane and bromoform) also
were detected (Metz and others, 2007). Furthermore, trichloro-
methane was found only in residential and commercial areas
and not in undeveloped areas. Recharge of chlorinated waters
is a likely source of trichloromethane in the Temple Terrace
area, as other disinfection byproducts commonly were found
in water samples from the surficial aquifer system such as
dibromochloromethane and bromodichloromethane (fig. 16).

Carbon disulfide, a solvent, also was detected frequently in
both the present study and in the community supply well study
in the northern Tampa Bay area (Metz and others, 2007).

Pesticides

Five pesticides were detected in low concentrations in
ground-water samples: atrazine, deethylatrazine (an atrazine
breakdown product or degradate), prometon, simazine, and
dieldrin (fig. 18; table 11). Concentrations of atrazine in
ground water were less than 3 pug/L, which is the U.S.
Environmental Protection Agency (1993) maximum
contaminant level for drinking water. The highest atrazine
concentration (0.12 ug/L) in ground water was found in a
water sample from well THC-S46 in the surficial aquifer
system. An atrazine concentration of 1.58 ug/L was found
in water from a nearby retention pond (62SRP-POND) and
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Figure 18. Pesticides detected in ground-water samples and
surface-water samples from the Temple Terrace, Florida, study
area.
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Table 11. Concentrations of pesticides detected in ground-water and surface-water samples.

[Concentrations are in micrograms per liter (ng/L). Blank cell denotes compound not detected; E, estimated
concentration, below laboratory reporting level]

Sample

Site date Atrazine Deethylatrazine Prometon Simazine Dieldrin
name

TTP-4 10/21/02 0.010 E0.009 E0.003

TTP-4 01/28/04 0.007 E0.005 E0.004

TTP-4 09/22/04 E0.004

TTP-4 10/21/04 0.014 E0.012 E0.004

THC-S46 12/18/03 0.120 E0.051

WP-S64 01/14/04 0.009 E0.011 E0.003 E0.007

WP-S64 08/04/04 0.031 E0.033 0.0076 .00700 0.0500

WP-F150 08/04/04 0.008

113RC-S35 12/11/03 0.004

113RC-H50 12/9/03 E0.002

62SRP-POND 06/21/05 1.580 E0.184 0.0190

MAS-POND 06/21/05 0.530 E0.020

LRP-POND 06/21/05 0.031 E0.013

HRIV-RR 06/22/05 0.038 E0.008 E0.007

could be a source for the elevated concentration in the shallow
surficial aquifer system water sample (THC-S46). Focused
recharge beneath stormwater retention ponds may contribute
pesticides and other organic contaminants to water in the
surficial aquifer system, which ultimately could move down-
ward to the Upper Floridan aquifer under natural gradients
or during pumping stresses. Low concentrations of atrazine,
deethylatrazine, and prometon were found in water from
public-supply well TTP-4. Atrazine was detected in four
samples from TTP-4, whereas deethylatrazine and prometon
were detected in three of four samples. Prometon was the only
pesticide detected in any monitoring well in the Upper Flori-
dan aquifer (WP-F150), which is open to a similar interval as
TTP-4. Water from WP-F150 is younger than that from other
Upper Floridan aquifer monitoring wells, indicating that there
could be a connection between this zone in the aquifer and
the overlying surficial material. This possibility is explored in
more detail in the subsequent discussion of water chemistry
from depth-interval sampling. Similar detections of pesticides
in water from TTP-4 and from surficial aquifer system wells
indicate the likely contribution of water in the surficial aquifer
system to water withdrawn during pumping by TTP-4.
Dieldrin, a known carcinogen, has a risk specific dose
(RSD4) level of 0.2 ug/L at the 10 (one in 10,000) cancer risk
level (U.S. Environmental Protection Agency, 1993; Tocca-
lino and others, 2004). Trace concentrations of dieldrin were
detected in water from WP-S64 and 62SRP-S34 (0.007 and

0.049 pg/L), but were less than a factor of 4 lower than the
RSDA4 level.

Most pesticide detections in water from community
supply wells in the northern Tampa Bay area included atra-
zine and deethylatrazine (Metz and others, 2007). Atrazine is
highly mobile in sandy soils and widely used as an herbicide
along road rights-of-way and lawns. Several studies have
shown that atrazine can persist in ground water for long
periods of time (Denver and Sandstrom, 1991; Barbash and
others, 1999).

Sulfur Species and Hydrogen Sulfide

Differences in sulfate concentrations and delta sulfur-34
(6*S) of sulfate were useful in distinguishing sources of water
and solutes in monitoring wells and the public-supply well.
Concentrations of 6*S values for ground-water samples were
highly variable, ranging from +5.7 per mil in water from the
surficial aquifer system to +26.2 per mil for the Upper Flori-
dan aquifer (fig. 19; table 6). This large range likely reflects
the sulfur isotopic composition of various possible sources of
sulfate, including dissolution of terrestrial evaporite miner-
als (gypsum and anhydrite), oxidation of sulfide minerals or
organic sulfides, atmospheric precipitation of ocean-derived
aerosols, and atmospheric precipitation of windblown sulfate
dust from soils. Localized anthropogenic sources (that is,
industrial emissions and fertilizers) could result in isotopically
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light sulfate (Sacks, 1996). The 3*S content of oceanic sulfate
(and hence evaporite minerals that precipitate from the ocean)
at any given time in the geologic past is related to several
processes including the composition of sulfate in

rivers that enters the ocean, sulfate reduction, and removal
from the ocean (Pearson and Rightmire, 1980). Sulfate in
modern ocean water has a 8**S value of +20 per mil. All
waters in this study show increasing sulfate to chloride ratios
with increasing sulfate concentration (fig. 20). Solution of
evaporite minerals (gypsum and anhydrite) would produce this
water composition.

A plot of 6*S values of dissolved sulfate relative to
sulfate concentrations indicates two distinct groups of waters
from the Upper Floridan aquifer (fig. 19). Group 1 has &*S
values that range from about +21 to 426 per mil with
variable sulfate concentrations (less than 1 to 400 mg/L).
Group 2 has much lower 6*S values (+5 to 16.8 per mil) and
sulfate concentrations (generally less than 120 mg/L), and are
isotopically similar to water from the surficial aquifer system
and intermediate confining unit. Differences in median chemi-
cal composition are consistent with the sulfur isotopic com-
position and sulfate concentrations between these two groups
(tables 5 and 6). The higher median saturation index with
respect to gypsum for Group 1 (-0.92) compared to Group 2
(-1.49) is consistent with the higher 8*S values that reflect
dissolution of sulfate evaporite minerals. The &*S values for
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Group 1 waters are slightly higher than those of samples of
sulfate evaporite minerals from the Upper Floridan aquifer that
range from +19 to +22 per mil (Pearson and Rightmire, 1980).
Group 1 waters also have higher median concentrations of
hydrogen sulfide and dissolved organic carbon and lower dis-
solved oxygen, which indicate sulfate reduction reactions and
isotope fractionation that could result in enrichment of the §*S
in the aqueous phase. Waters from the surficial aquifer system,
intermediate confining unit, and Floridan aquifer system with
lower sulfate concentrations and lower 6*S likely represent
values typical of rainfall with some excess sulfate (Pearson
and Rightmire, 1980). Water samples from public-supply

well TTP-4 have 6*S values and sulfate concentrations that
are midway between the two end member values, and likely
indicate a mixture of water from these two different groups
(fig. 19).

High sulfate concentrations could be related to upwelling
that likely is enhanced by preferential vertical flow through
fractures and faults that connect deep and shallow parts of the
Upper Floridan aquifer (Sacks, 1996). Fractures and faults are
associated with the structural high of the Ocala Platform that is
present throughout the northern and central parts of peninsular
Florida (Faulkner, 1973). Diffusion also may account for
the transport of sulfate-rich ground water within the more
stagnant deeper part of the Upper Floridan aquifer in west-
central Florida (Sacks, 1996).

Radon-222 and Uranium

Concentrations of radon-222 were highly variable in
the surficial aquifer system, intermediate confining unit, and
Upper Floridan aquifer, but were generally higher in water
samples from the surficial aquifer system and intermediate
confining unit than from the Upper Floridan aquifer (table 6;
fig. 21). Median concentrations were 2,440, 2,100, and
645 pCi/L (picocuries per liter) for water samples from the
surficial aquifer system, intermediate confining unit, and
Upper Floridan aquifer system, respectively. Water from
public-supply well TTP-4 had a radon-222 concentration of
780 pCi/L, which is slightly higher than the median concentra-
tion in water from monitoring wells tapping the Upper Flori-
dan aquifer. In response to human health concerns regarding
ingestion of radon in drinking water, the U.S. Environmental
Protection Agency has proposed new regulations to protect
people from exposure to radon. The proposed maximum
contaminant level for community water systems using ground
water is 300 pCi/L, and the proposed alternative maximum
contaminant level is 4,000 pCi/L. The U.S. Environmental
Protection Agency (1999) expects that community water
systems serving 10,000 persons or less would meet the alterna-
tive maximum contaminant level of 4,000 pCi/L; however,
radon-222 concentrations in water from the public-supply well
and most monitoring wells would exceed the lower 300 pCi/L
maximum contaminant level. Sowerby and others (2000)
estimated that 44 +6 percent of the community water systems

in Florida using ground water would exceed the 300-pCi/L
maximum contaminant level for radon.

Uranium concentrations also were variable in water sam-
ples from the three hydrogeologic units, and median uranium
concentrations in water samples were 0.96, 0.85, and 2.4 ug/L
from the surficial aquifer system, intermediate confining unit,
and Floridan aquifer, respectively (table 12; fig. 22). Uranium
concentrations in water from the public-supply well and from
monitoring wells in the three hydrogeologic units were below
the U.S. Environmental Protection Agency maximum con-
taminant level of 30 ug/L for drinking water. Higher median
uranium concentrations were found in water samples from
the Upper Floridan aquifer compared to samples from the
surficial aquifer system or intermediate confining unit, which
was unexpected given that redox conditions are anoxic in the
Upper Floridan aquifer and the mobility of uranium is lower
in reducing conditions. However, the formation of uranyl
di- and tri-carbonate complexes in neutral and alkaline solu-
tions (Langmuir, 1978) may account for the higher uranium
concentrations found in the Upper Floridan aquifer compared
to the surficial aquifer system and intermediate confining
unit. Speciation calculations using the geochemical computer
modeling program PHREEQC (Parkhurst and Appelo, 1999)
indicate that uranium (IV) is present as the U(OH), complex
and uranium (VI) is present as the tri-carbonate complex
carbon anhydrase/uranium dioxide/carbon ion, Ca,UO,(CO,),,
in water from the Upper Floridan aquifer. The microbially
mediated reduction of uranium (VI) in anoxic waters has been
shown to decrease substantially when Ca-UO,-CO, complexes
are present (Brooks and others, 2003).
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Figure 21. Radon-222 concentrations with well depth below land
surface for the surficial aquifer system, intermediate confining
unit, and Upper Floridan aquifer in the Temple Terrace, Florida,
study area.
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The dominant uranium species in all ground-water
samples from the Upper Floridan aquifer is the neutral com-
plex, Ca,UO,(CO,),. However, at two surficial aquifer system
sites (LP-S30 and QRP-S20) where calcium concentrations
and saturation indices with respect to calcite were relatively
low, the dominant uranium species included uranyl mono- and
di-carbonate complexes (UO,CO,, UO,(CO,),?) and UO,*.
Uranium concentrations are higher in acid leachates of solid-
phase material from the surficial aquifer system and intermedi-
ate confining unit compared to Floridan aquifer system mate-
rial (table 4) based on acid extractions using 10-percent nitric
acid and 6 N hydrochloric acid. Uranium concentrations in
6 N hydrochloric acid leachates of solid-phase material were

higher in samples of the Upper Floridan aquifer limestone
(3.4-5.0 mg/kg) and from the LP site (7.7 mg/kg) compared to
the milder acid extraction using 10-percent nitric acid

(table 4).

No correlation was found between radon-222 and
uranium concentrations, even though radon-222 is a daugh-
ter product of the decay series for uranium-238. Different
mechanisms of radon-222 emanation from clastic sediments
and solid limestone (Cecil and Green, 2000) and chemical
factors affecting uranium solubility (Langmuir, 1978; Osmond
and Cowart, 2000) may account for the lack of a correlation
between these two radiochemicals.
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Figure 22. Median concentrations of radon-222, arsenic, uranium, hydrogen sulfide, iron, and dissolved organic carbon in oxic and
anoxic water from monitoring wells and the public-supply well in the Temple Terrace, Florida, study area.
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Arsenic Concentrations and Speciation

Water samples from wells in the surficial aquifer system
and intermediate confining unit had arsenic concentrations less
than 8 png/L (fig. 23A). Most water samples from monitoring
wells in the Upper Floridan aquifer were less than the 10-ug/L
maximum contaminant level for drinking water; however,
water samples from WP-F299, WP-F150, and RP-F77 had
arsenic concentrations that ranged from 12.6 to 16.5 ug/L.
Higher median arsenic concentrations were found in water
samples from the Upper Floridan aquifer (4.6 ug/L) compared
to samples from the intermediate confining unit (0.9 ug/L)
and the surficial aquifer system (0.4 ug/L). The slightly higher
arsenic concentrations in the water samples from the surficial
aquifer system and intermediate confining unit generally were
associated with higher concentrations of iron, which indicate
the likely association of arsenic with iron oxyhydroxide coat-
ings on sands and clay material (Pichler and others, 1999).
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Figure 23. Arsenic concentrations with well depth and arsenic
species (arsenic (Ill) and arsenic (V) concentrations) in water
samples from wells in the surficial aquifer system, intermediate
confining unit, and Upper Floridan aquifer in the Temple Terrace,
Florida, study area, October 2004.

Arsenic concentrations in water samples from the public-
supply well ranged from 3.2 to 3.5 ug/L when collected using
the in-line turbine pump; however, during depth-interval
sampling of the public-supply well borehole, concentrations
ranged from 4.2 to 18.9 ug/L. These variations in arsenic
concentrations with depth in the public-supply wells were
observed during different pumping conditions and are dis-
cussed in more detail in the following section on sources and
mixing of water in the public-supply well.

Under reducing conditions in the Upper Floridan aquifer
and for water from 113-RC-H50 in the intermediate confining
unit, most water samples had higher arsenic (III) concentra-
tions than arsenic (V) concentrations (fig. 23B). In contrast,
water samples from the public-supply well had arsenic (V)
concentrations that tended to be higher than arsenic (IIT) con-
centrations, which most likely indicates different redox condi-
tions due to the downward movement of oxygenated water
from the surficial aquifer system through a highly transmissive
zone in the limestone of the Upper Floridan aquifer. Mobi-
lization of arsenic may result from the formation of arseno-
carbonate complexes under anaerobic conditions (Kim and
others, 2000) and/or oxidation of finely disseminated pyrite
in the limestone that composes the Upper Floridan aquifer
(Price and Pichler, 2006). Concentrations of both arsenic (IIT)
and arsenic (V) in water from the oxic surficial aquifer system
generally were near the method reporting level for both arsenic
species (table 12). Arsenic concentrations in water from moni-
toring wells in the three hydrogeologic units generally were
less than the 10-ug/L maximum contaminant level for drinking
water (table 12).

Temporal Variability in Water
Chemistry from Surficial Aquifer Wells
and the Public-Supply Well

Selected monitoring wells were sampled several times
during 2003-05 during different hydrologic conditions to
obtain information about temporal variability in water quality.
Temporal variations in water quality are presented for three
monitoring wells in the surficial aquifer system (RP-S20,
WP-S64, and GARC-S23) that were sampled four times
before and after three tropical cyclones that passed through
the area in summer 2004 (fig. 24). Additionally, water-quality
variations were evaluated for TTP-4 based on five samples
collected during 2002-05. Near or slightly below normal
amounts of monthly rainfall were recorded prior to the earliest
samples collected from the surficial aquifer system wells in
December 2003 and the public-supply well in October 2002.
During June through September 2004, however, about 109 cm
of rainfall were recorded at the NOAA station at the Tampa
airport, which was about 43 cm above normal rainfall for
these 4 months. Ground-water levels increased substantially
during and after this period. Water levels increased more than
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Figure 24. Temporal variability of chloride, nitrate-N, dissolved organic carbon, and ground-water levels in water samples collected
from wells RP-S20, WP-S64, GARC-S23, and TTP-4 in the Temple Terrace, Florida, study area.

3 m in well GARC-S23 (fig. 24), and it is assumed that water
levels increased about the same amount in wells RP-S20 and
WP-S64, although data are missing where peak water levels
would be expected to occur (fig. 24). No water-level data were
available for TTP-4.

Substantial variations in some chemical constituents
were observed in water from monitoring wells in the surficial
aquifer system in response to this increased recharge. Chloride
concentrations in water samples from three wells decreased
from summer 2004 to winter 2004-05 following the recharge
pulse from high rainfall and corresponding peak in water-level
elevation in October 2004. Nitrate-N concentrations increased
in WP-S64 from January to August 2004, but concentrations
decreased at GARC-S23 during the same period. Nitrate-N
concentrations in water samples from two other monitor-
ing wells in the surficial aquifer system, 113RC-S35 and
BBP-S45, also increased from January to August 2004,
but decreased in subsequent samples from these two wells.
Nitrate-N concentrations in RP-S20, located near the Hills-

borough River, remained below the detection limit, as reduc-
ing conditions persisted during December 2003 to July 2005.
Dissolved organic carbon concentrations were constant in
WP-S64 through December 2004 and increased substantially
in the June 2005 sample. Nitrate-N concentrations decreased
during this same period in water samples from WP-S64.
Dissolved oxygen concentrations increased in water sam-
ples from GARC-S23 (2.5 to 4.5 mg/L), WP-S64 (5.4 to 6.7
mg/L), and TTP-4 (0.2 to 0.7 mg/L) in August and September
2004 during and following the above-normal rainfall in June
through September (table 5). The increase in dissolved oxygen
concentrations likely resulted from recent recharge of water
containing elevated levels of oxygen compared to lower levels
in ground water prior to the excess rainfall period. Dissolved
oxygen concentrations decreased in water from RP-S20 (2.2 to
0.3 mg/L) in fall 2004, which may indicate the influx of river
water with elevated dissolved organic carbon and subsequent
consumption of oxygen as water moves toward this well.
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As seen from the temporal chemical variations described
herein, hydrologic conditions greatly affect the occurrence and
movement of anthropogenic and naturally occurring contami-
nants in ground water from the study area, particularly the
surficial aquifer system. These variations in chemistry among
monitoring wells in the surficial aquifer system are related
in part to differences in unsaturated zone thickness, depth of
well below the water table, possible interactions with surface
water (such as the Hillsborough River or stormwater retention
ponds), but also to source loading of anthropogenic contami-
nants from various land-use activities. Chemical constituents
in water in surficial aquifer system wells show rapid responses
to rainfall and recharge, but water from TTP-4 does not show
similar fluctuations even though TTP-4 is withdrawing some
water from the surficial aquifer system (see subsequent sec-
tion). Additional studies would be helpful in separating out
effects of pumping of TTP-4 and seasonal changes in recharge
on water quality of the public-supply well in this dynamic
system.

Sources and Mixing of Water in the
Public-Supply Well

Based on the aforementioned differences in chemical and
isotopic signatures in water from public-supply well TP-4 and
monitoring wells in the three hydrogeologic units, the public-
supply well receives mixtures of water from both the surficial
aquifer system and Upper Floridan aquifer. For example, six
volatile organic compounds and four pesticides were detected
in trace concentrations in water from the public-supply well,
and these contaminants were detected more frequently in
water samples from monitoring wells in the overlying surficial
aquifer system than in water from monitoring wells in the
Upper Floridan aquifer in the study area. Likewise, nitrate-N
concentrations in the public-supply well were more similar to
median concentrations in the surficial aquifer system than very
low nitrate-N concentrations in the anoxic Upper Floridan
aquifer (sulfate-reducing conditions). This section presents
information about differences in water chemistry with depth in
the open-hole interval of the public-supply well, and quan-
tification of mixing proportions of water from the surficial
aquifer system and Upper Floridan aquifer.

Chemical Variations with Depth during
Ambient and Pumping Conditions

Water samples were collected from three overlapping
depth intervals in the public-supply well during ambient (non-
stressed) and pumping (stressed) conditions to assess the effect
of pumping on water quality. A low-flow submersible pump
(Grundfos®) at a pumping rate of about 3.8 L/min was used
to collect water-quality samples at three depth intervals under
ambient and pumping conditions. A large-capacity submers-

ible pump, used to simulate pumping conditions in the well,
was lowered to 38 m (same depth as turbine pump), and water
was pumped at 1,320 L/min (compared to about 2,650 L/min
for the turbine pump). For ambient conditions, only the low-
capacity submersible pump was used to collect water samples
(3.8 L/min). Samples were taken from the lowermost depth
interval by placing the low-flow submersible pump at a depth
of 48.8 m below land surface, which represents an interval
(49.8-53.9 m) that includes the previously described high-
flow zones in the borehole. A second depth interval (43-53 m)
was sampled by placing the pump at a depth of 43 m. A third
depth interval (38-53 m) was sampled by placing the low-flow
submersible pump at a depth of 38 m. Samples from this depth
interval presumably represent water quality for the entire 38-
to 53-m open-hole interval, and should have similar chemistry
as water samples collected from the public-supply well bore-
hole under regular pumping conditions using the in-line
turbine pump (on October 21, 2004). Differences in water
quality among the three overlapping intervals provide an
indication of the contribution of water entering the open
interval above the two high-flow zones. Samples from discrete
zones would have been preferable; however, packers were

not used due to the large variations in the diameter of the
borehole; therefore, discrete zones could not be isolated for
sampling.

Water samples collected from the three depth intervals
were analyzed for multiple chemical and isotopic constituents
(table 13). Field measurements also were made for pH,
dissolved oxygen, specific conductance, temperature, alkalin-
ity, and depth to water. There were substantial differences in
the concentrations of chemical constituents at the three
sampled depth intervals (table 13). For example, water
samples from the 49- to 53-m zone collected during ambi-
ent conditions contained higher concentrations of nitrate-N,
orthophosphate, radon-222, atrazine, and trichloromethane
(chloroform) than water collected from the other depth zones
during ambient conditions, and for the entire 38- to 53-m
interval during pumping conditions. Additionally, lower
concentrations were found in the 49- to 53-m interval for
strontium, iron, manganese, and dissolved solids as well as
lower values of delta nitrogen-15 (8'°N) of nitrate and delta
sulfur-34 (8*S) of sulfate during ambient conditions compared
to samples from the entire 35- to 53-m interval during pump-
ing conditions (with a turbine pump on October 21, 2004).

During normal pumping conditions for the public-supply
well (with the turbine pump), arsenic concentrations were 3.2
to 3.5 ug/L in water samples collected in October 2002 and
January 2004 and on October 21, 2004. The arsenic
concentration in water from the lowermost (49-53 m)
depth interval was 4.2 ug/L during ambient conditions on
October 27, 2004. On the following day, however, and under
pumping conditions, the arsenic concentration in water from
this same interval was 19 pg/L. Similarly, higher arsenic
concentrations were measured in water from the 43- to 53-m
interval during pumping conditions (16 ug/L) compared to
ambient conditions (12 ug/L). This indicates that arsenic
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movement to the public-supply wells was enhanced during
pumping from a transmissive (high-flow) zone in the Upper
Floridan aquifer that was identified from geophysical logging
of the public-supply well borehole. This enhanced transport of
arsenic is consistent with a study of arsenic release from pyrite
in the Suwannee Limestone, which tends to be most abundant
in high porosity zones (Price and Pichler, 2006). That study
found an average of 3.5 ppm (parts per million) of arsenic

in samples from the Suwannee Limestone, which was about
one third higher than the reported global average of 2.5 ppm
for arsenic in limestone (Baur and Onishi, 1969). Price and
Pichler (2006) also conclude that arsenic in excess of 2 ppm is
associated with impurities in the Suwannee Limestone, such
as trace minerals and organic matter. Furthermore, they found
that framboidal pyrite in the Suwannee Limestone contains
arsenic concentrations between 100 and 11,200 ppm, with an
average concentration of 2,300 ppm from 25 samples.

In the present study, low arsenic concentrations (0.06 to

0.37 ppm) were found in acid extractions (10-percent nitric
acid) of limestone rock samples from cores collected during
well drilling at the Water Plant (WP) site. Higher concentra-
tions of arsenic (0.13-1.4 mg/kg) were found in acid extrac-
tions of clayey sand samples from cores collected during
drilling in the surficial aquifer system and intermediate
confining unit (table 4). Kim and others (2000) found that
carbonation of arsenic sulfide minerals results in the formation
of arseno-carbonate complexes under anaerobic conditions,
which may account for elevated levels of arsenic in carbonate
rock aquifers.

Further information about the behavior and mobility
of arsenic in ground water can be ascertained from arsenic
speciation data. Arsenic (V) concentrations tended to be
higher than arsenic (IIT) concentrations in the 49- to 53-m
depth interval (table 13). This interval tended to have slightly
higher concentrations of dissolved oxygen compared to the
zones in the Upper Floridan aquifer and lower concentrations
of hydrogen sulfide (table 5). Water in this zone likely is a
mixture of oxygenated water from the surficial aquifer system
and/or intermediate confining unit with anoxic water in the
Upper Floridan aquifer. Slight increases in dissolved oxygen
could enhance pyrite dissolution as seen on a larger scale dur-
ing cycle testing at an aquifer storage and recovery facility in
Tampa, Florida. Oxygen-rich recharge water was injected into
the Suwannee Limestone, and water recovered during vari-
ous cycle tests contained up to 130 pg/L of arsenic, although
no arsenic speciation data were collected (Arthur and others,
2002).

Concentration differences for arsenic and other chemical
constituents between the 49- to 53-m zone and the other zones
are consistent with water that moves downward from the surfi-
cial material into the highly transmissive zone in the Upper
Floridan aquifer. Water from monitoring wells in the surficial
aquifer system and intermediate confining unit in the contrib-
uting recharge area of the public-supply well contains higher
concentrations of nitrate-N, trichloromethane, atrazine, and
orthophosphate than water from monitoring wells in the Upper

Floridan aquifer. Conversely, water from the surficial aquifer
system and intermediate confining unit contains lower concen-
trations of dissolved solids, strontium, iron, and manganese
than water from the Upper Floridan aquifer. The lower values
of 3N in water from the surficial aquifer system and from the
49- to 53-m zone likely are related to little or no denitrification
in the oxic surficial aquifer system material compared to that
in the anoxic Upper Floridan aquifer. The lower 6*S in this
zone also is more similar to lower median sulfur isotope val-
ues for water from the surficial aquifer system than from the
Upper Floridan aquifer. Thus, it is likely that the transmissive
zone at 49 to 53 m (high-flow rate) is hydraulically connected
to the surficial aquifer system and receives a mixture of water
from the surficial aquifer system and Upper Floridan aquifer.
During pumping conditions, water from the 49- to 53-m zone
is blended with water from other depth-interval zones, and
concentrations are more similar to the other depth intervals
(sampled during ambient and pumping conditions).

Estimating Mixing Proportions of Water Using
Geochemical Mass-Balance Modeling

Chemical and isotopic tracer data consistently indicate
that the public-supply well withdraws water containing mix-
tures of the surficial aquifer system and the Upper Floridan
aquifer. Concentrations of anthropogenic compounds, such as
nitrate, volatile organic compounds, and pesticides are closer
to those found in water from monitoring wells in the surficial
aquifer system than from wells in the Upper Floridan aquifer.
Likewise, concentrations of naturally occurring compounds
in water from the public-supply well, such as radon-222,
uranium, arsenic, dissolved organic carbon, and hydrogen
sulfide, generally fall between those concentrations for water
from the surficial aquifer system and Upper Floridan aquifer.
Geochemical mass-balance modeling techniques (NETPATH;
Plummer and others, 1994) were used to quantify mixing
proportions of water in the public-supply well with water from
the different hydrogeologic units and to calculate mass transfer
associated with sources and sinks of major dissolved constitu-
ents. Input data to NETPATH includes solute concentrations
in possible end members; that is, water samples from wells in
the surficial aquifer system, intermediate confining unit, and
Floridan aquifer sytsem and the mixture represented by the
public-supply well. Information for the isotopic composition
of soil gases and minerals also are included in the modeling
(Plummer and others, 1994). The mass-transfer models are
constrained by the concentration of the following dissolved
constituents in end-member and mixed waters: carbon, sulfur,
calcium, magnesium, and iron. In addition to these chemi-
cal constraints, an electron balance is included to account for
conservation of electrons under redox conditions. The mod-
els contain the following phases: calcite, dolomite, gypsum,
carbon dioxide, pyrite, amorphous iron oxide (represented by
FeOOH), and organic matter (represented stoichiometrically
by CH,0). Plausible mixing reaction models are valid within



the constraints of available thermodynamic data and agree-
ment between calculated and observed isotopic values.

For a two-component mixture containing end-member
waters from the surficial aquifer system and Upper Floridan

aquifer, the fraction of surficial aquifer system water (F, ) in
the mixture is defined as:
FSAS= (Ym - YUFA)/(YSAS_ YUFA)’ 3)

where Y , Y, and Y _ denote the concentrations of a
selected constituent in the mixture, surficial aquifer system
water, and Upper Floridan aquifer water, respectively. The
chemical and isotopic composition of the two end members
are represented by WP-S64 (surficial aquifer system water)
and WP-F150 (Upper Floridan aquifer water), which are
located within 1 km of the public-supply well. The mixing
calculations are based on two principal assumptions: (1) the
concentrations of constituent Y in the end members mix to
produce the concentration of Y in the mixed public-supply
well water during pumping conditions; and (2) the concentra-
tion of constituent Y is not modified by reactions after mixing
has occurred. Calculations of mixing proportions were con-
strained using concentrations of SF,, nitrate-N, and chloride.
The calculated mixing proportions of surficial aquifer
system water that mix with Upper Floridan aquifer water
ranged from 30 to 62 percent for four plausible models
(table 14). Mixing proportions were similar for models
constrained using SF, and chloride, both of which are consid-
ered to be nonreactive (conservative) tracers. These mass-
balance model mixing proportions are consistent with
mixtures dominated by young waters (less than 8 years) in
the public-supply well. Water from the public-supply well
contains elevated concentrations of SF, and *H compared to
monitoring wells in the Upper Floridan aquifer that contain
mixtures dominated by older waters (greater than 60 years).
These mass-transfer mixing models also indicated reactions
involving dissolution of variable amounts of calcite, dolo-
mite, and gypsum, degradation (oxidation) of organic carbon
(CH,0), and carbon dioxide (carbonic acid) produced from
microbial reactions (respiration and fermentation). The follow-
ing equation is an example of the geochemical mass-balance
reaction obtained using SF_concentrations to determine the
mixing proportions of waters from the surficial aquifer system
(SAS) and Upper Floridan aquifer (UFA):

55 percent (SAS water) + 45 percent (UFA water)
+0.32CaCoO, + 0.10CaMg(CO,),

+0.12 CaSO,-2H,0 +0.003FeOOH

+0.36CO, — TTP-4 water, 4

where the coefficients in front of the various phases represent
chemical mass transfer in millimoles per kilogram of solution.
Dissolution of the limestone matrix of the Upper Floridan
aquifer in the study area is consistent with water from WP-S64
and WP-F150, which is slightly under or at saturation with
respect to calcite and undersaturated with respect to dolomite.
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The sensitivity of the mass-transfer coefficients in
table 14 is about 0.05 mmol/kg (millimoles per kilogram),
based on consideration of laboratory analytical errors, vari-
ability in mineral stoichiometry, and temporal variability in
the concentration of major ions in ground water. Results are
reported to the nearest 0.01 mmol/kg. As a means of checking
the sensitivity of the models to uncertainties in data, com-
parisons were made of the modeled 3"°C . composition of
dissolved inorganic carbon (DIC) and &*S of sulfate with the
measured (observed) concentration data for these two isotopes.
Model-calculated values of 8"°C . and &S typically agreed
with observed values within +0.3 per mil. The following 6"*C
values were used in the models for various carbon sources and
sinks: calcite, 0 £1 per mil; dolomite, O per mil (Plummer and
others, 1994); and carbon dioxide and CH, O, -25 £ 5 per mil
(Rightmire and Hanshaw, 1973; Burchardt and Fritz, 1980).

Mass-transfer coefficients calculated from the mixing
models are consistent with all chemical and isotopic measure-
ments in ground water from the study area. The results should
be considered non-unique because it cannot be ruled out that
other mineral phases could be present in trace amounts and
may contribute substantial amounts of dissolved constituents
to water withdrawn by the public-supply well. Other recharge
or mixing scenarios could produce mass-balance models that
are consistent with these data. The likelihood of this possi-
bility is small, given that the chemical composition of other
end-member wells representing the surficial aquifer system
and Upper Floridan aquifer were tested in many other mixing
models. There was less agreement, however, between mea-
sured and calculated isotopic compositions than in the four
models presented in table 14.

Movement of Contaminants to the
Public-Supply Well

Isotopic and other chemical signatures in multiple water
samples collected from the public-supply well during 2002-05
consistently indicated a mixture of water from the surficial
aquifer system and Upper Floridan aquifer. Concentrations of
anthropogenic contaminants (nitrate-N and trichloromethane)
and naturally occurring contaminants (arsenic and radon-
222) are higher during pumping conditions. Public-supply
well TTP-4 is located in a well field with other public-supply
wells. This study could not evaluate the effects of pump-
age from other wells on water quality in TTP-4. Based on
extensive geochemical indicators measured in water samples
and information obtained during geophysical logging of the
borehole for TTP-4, a highly transmissive zone in the Upper
Floridan aquifer likely is hydraulically connected to the
surficial aquifer system and parts of the intermediate confin-
ing unit. Large solution features were observed in televiewer
images of the borehole at depths greater than 43 m. The areal
and vertical extent of this transmissive zone, however, is not
known. It would be useful to collect additional water samples
from monitoring wells in the Upper Floridan aquifer in the
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Table 14. Chemical mass transfer associated with various mixing scenarios and comparison of observed and modeled isotopic compaosition.
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[mmol/kg, millimoles per kilogram; FeOOH, iron oxyhydroxide; CHZO, dissolved organic matter; 8'*C, delta carbon-13 of dissolved inorganic carbon; 5**S-SO " delta sulfur-34 of sulfate; Cl, Chloride;

N, nitrogen; SF, sulfur hexafluoride; DIC, dissolved inorganic carbon; SAS, surficial aquifer system; UFA, Upper Floridan aquifer]

Isotopic composition, per mil

Phases, mass transfer,
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mixing percentage

5%8-S0,

513cl]l(:

mmol/kg

Measured Computed Measured

Computed
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kg

HO0O0?4

wnsdAg

ajwojoq
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UFA

49-53 meter
zone

UFA
WP-F150

SAS
WP-S64

Mixing
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16.7

5.6

6.5
16.1
1

1
1

-12.9
-12.9
-12.9
-12.5

-13.1
-13.3
-13.2
-14.2

0.32
0.36
0.32
0.33

0.05
0.1

0.35

0.32

0.34
-0.004

0.12
0.17
0.13
0.11

67
45

33
55

16.7

0.003
0.01

0.12

2 (SF,)
3(N)
4 (Cl)

16.7

-0.01

0.04
0.06

70

30
62

154

0.33

38

study area that are open to the 45- to 50-m interval to deter-
mine if similar mixtures dominated by young water are present
throughout other parts of the study area.

Focused recharge beneath stormwater retention ponds
may contribute contaminants to the surficial aquifer system.
The highest atrazine concentration in ground water (0.12 ug/L)
was found in a water sample from the surficial aquifer system,
well THC-S46 (table 11). A higher atrazine concentration of
1.58 ug/L was found in water from the nearby retention pond
(62SRP-POND) and likely is a source for the elevated con-
centration of atrazine and dissolved organic carbon in water
from THC-S46. Water from the surficial aquifer system moves
downward into the Upper Floridan aquifer under natural
gradients that can be enhanced as a result of pumping stresses.
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Figure 25. Relation between the sulfur hexafluoride

apparent recharge year and concentrations of nitrate-N, and
trichloromethane in water samples from the surficial aquifer
system, intermediate confining unit, Upper Floridan aquifer, and
public-supply well in the Temple Terrace, Florida, study area.



The vulnerability of the public-supply well to contamina-
tion is further indicated by age-dating tracer concentrations
that show a young water component, generally less than
10 years. Nitrate-N and trichloromethane concentrations show
a relation with age of water from monitoring wells in the study
area, with higher concentrations of these two anthropogenic
contaminants found in increasingly younger waters (fig. 25).
This trend is influenced by young waters occurring in the oxic
surficial aquifer system where well depths are shallow and
where contaminant loading is high from certain urban land-use
activities. Pumping of ground water by the public-supply well
and other wells in the immediate area can enhance the down-
ward movement of these and other contaminants.

Although the effect of the degree of confinement was not
evaluated in this study, in another study more than three times
as many detections of volatile organic compounds were found
in unconfined parts of the Upper Floridan aquifer compared
to areas where the aquifer is semiconfined (Metz and others,
2007). That study also found 16 detections of disinfection
byproducts in unconfined areas, but only two detections in
semiconfined areas of the Upper Floridan aquifer. Public-
supply well TTP-4 is in an unconfined part of the aquifer,
and unknown sinkholes also may further enhance downward
transport of contaminants.

A three-dimensional calibrated ground-water flow
model with particle tracking has been used to simulate the age
distribution of water to the public-supply well and to monitor-
ing wells in the surficial aquifer system and Upper Floridan
aquifer (C.A. Crandall, U.S. Geological Survey, written com-
mun., 2007). This calibrated flow model also is being used to
simulate the arrival of contaminants to these wells from the
release of potential contaminant sources at the land surface.
Results of this flow model agree with the geochemical obser-
vations presented herein.

Summary

The vulnerability of a public-supply well to
anthropogenic and naturally occurring contaminants was
studied near Tampa, Florida, as part of a the U.S. Geologi-
cal Survey National Water-Quality Assessment (NAWQA)
Program. Water samples were collected during 2003-05 from
the public-supply well and from 29 monitoring wells that tap
the unconfined or poorly confined Upper Floridan aquifer and
the overlying surficial aquifer system and intermediate confin-
ing unit. The karstic Upper Floridan aquifer is particularly
vulnerable to contamination from a variety of sources due to
the presence of sinkholes and other solution features that can
provide a direct hydraulic connection between the aquifer and
the surface. Sands and clayey sands that compose the overly-
ing surficial aquifer system are highly permeable and allow
for rapid downward movement of water to the water table and
eventually into the Upper Floridan aquifer.
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Multiple isotopic and other chemical tracers were ana-
lyzed in water samples from the public-supply well,

12 monitoring wells that tap the Upper Floridan aquifer, and
from 15 monitoring wells in the overlying surficial aquifer
system and intermediate confining unit. All monitoring wells
were located along ground-water flow paths within the
modeled ground-water contributing recharge area of the
public-supply well. Geophysical logging of the public-supply
well borehole revealed large solution features near the bottom
of the open interval of the well (46-53 m below land surface)
and two zones of high ground-water flow in the limestone rock
matrix.

Water samples were collected under different pumping
(stressed) conditions from three overlapping depth intervals
in the public-supply well following removal of the turbine
pump. First, a low-capacity submersible pump (less than
3.8 L/min) was placed at the top of each interval and samples
were collected during ambient (non-stressed) conditions.
Second, a large-capacity portable submersible pump
(1,320 L/min) was placed near the top of the open interval
(38 m below land surface) while water-chemistry samples
were collected using the low-capacity submersible pump to
represent pumping conditions in the public-supply well.

The lowermost 49- to 53-m depth interval had distinctly
different chemistry compared with the two other sampled
intervals. Water samples collected from this depth interval
during ambient conditions contained higher concentrations of
nitrate-N, orthophosphate, radon-222, atrazine, and trichloro-
methane than water collected from the other depth zones dur-
ing ambient conditions, and for the entire 38- to 53-m interval
during pumping conditions. Additionally, low concentrations
were found in the 49- to 53-m interval for strontium, iron,
manganese, and dissolved solids as well as low values of delta
nitrogen-15 (8'°N) of nitrate and delta sulfur-34 (6*S) of
sulfate. Arsenic concentrations were high in the 49- to 53-m
zone during pumping conditions along with high ratios of
arsenic (V)/arsenic (III). Mixing of waters with variable
redox conditions occurs during pumping conditions and likely
accounts for differences in the concentrations of arsenic
species (arsenic (V) and arsenic (III)) between samples
collected from the lowermost depth interval (49-53 m) and the
entire open interval (38-53 m). Considerably higher concentra-
tions of the more oxidized arsenic species (arsenic (V)) were
measured in water samples from the lowermost depth interval
than in water from the entire open interval. Movement of
water likely occurs from the overlying sands and clays of the
oxic surficial aquifer system and the discontinuous interme-
diate confining unit, which contains elevated radon-222 and
nitrate-N concentrations, into the anoxic Upper Floridan aqui-
fer (lower radon-222 and nitrate-N concentrations). Differ-
ences in arsenic concentrations in water from the various depth
intervals in the public-supply well (3.2-19 ug/L) were related
to pumping conditions. Arsenic concentrations exceeded the
U.S. Environmental Protection Agency maximum contaminant
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level of 10 ug/L in water samples from specific depth intervals
in the public-supply well borehole, but arsenic concentrations
did not exceed the maximum contaminant level in the well-
head sample.

Concentrations of age-dating tracers sulfur
hexafluoride (SF,), tritium (*H), and helium-3 (*He) in
samples from the public-supply well during low- and high-
rate pumping conditions were consistent with binary mixtures
dominated by young water (less than 7 years). Similarly,
water samples from monitoring wells in the surficial aquifer
system had SF, and *H concentrations that indicate a substan-
tial proportion of young water (less than 7 years). In contrast,
most water samples from monitoring wells in the Upper
Floridan aquifer system had lower SF, and *H concentrations
than water from the public-supply well and indicated mixtures
containing higher proportions of old waters (greater than
60 years).

Six volatile organic compounds and four pesticides
were detected in trace concentrations (well below drinking-
water standards and other health-based screening levels) in
water from the public-supply well. These contaminants were
detected more frequently in water samples from monitoring
wells in the overlying surficial aquifer system than in water
from monitoring wells in the Upper Floridan aquifer in the
study area. Likewise, nitrate-N concentrations in the public-
supply well (0.72-3.6 mg/L) were more similar to median
concentrations in the oxic surficial aquifer system (2.1 mg/L)
than median nitrate-N concentrations (0.06 mg/L) in the
anoxic Upper Floridan aquifer (sulfate-reducing conditions).
Denitrification likely occurs in the deeper parts of surficial
aquifer system and in the Upper Floridan aquifer based on
excess nitrogen gas concentrations and highly enriched
nitrogen- and oxygen-isotopic composition of nitrate.

Focused recharge beneath stormwater retention ponds
and unknown sinkholes may contribute contaminants to the
surficial aquifer system and the Upper Floridan aquifer. The
highest atrazine concentration (0.12 ug/L) in ground water
was found in a sample from the surficial aquifer system at
well THC-S46. A high atrazine concentration of 1.58 ug/L
was found in water from the nearby stormwater retention pond
(62SRP-POND) and likely is a source for the elevated con-
centration of atrazine and dissolved organic carbon in water
from THC-S46. Water from the surficial aquifer system moves
downward into the Upper Floridan aquifer under natural
gradients and can be enhanced due to pumping stresses.

Geochemical mass-balance mixing models for the
public-supply well indicate that 50 to 70 percent of water
withdrawn from the public-supply well is contributed from
the surficial aquifer system, and 30 to 50 percent from the
Upper Floridan aquifer. Geochemical models also indicate the
dissolution of small amounts of calcite, gypsum, and dolomite
as water moves toward the public-supply well. Even though
mass-transfer coefficients calculated from the mixing models
were consistent with all chemical and isotopic measurements
in ground water from the study area, results should be con-
sidered non-unique because it cannot be ruled out that other

mineral phases could be present in trace amounts and may
contribute substantial amounts of dissolved constituents to
water withdrawn by the public-supply well. Other recharge or
mixing scenarios could produce mass-balance models that are
consistent with these data. The likelihood of this possibility

is small, given that the chemical composition of other end-
member wells representing the surficial aquifer system and
Upper Floridan aquifer were tested in other mixing models.
The presence of a large component of water from the surfi-
cial aquifer system that is withdrawn during pumping of the
studied public-supply well demonstrates the vulnerability of
public-supply wells in this area to contamination.

Selected monitoring wells in the surficial aquifer system
were sampled several times during 2003-05 to evaluate tempo-
ral variability in water quality in response to changing hydro-
logic conditions. These wells were sampled four times before
and after three tropical cyclones passed through the area in
summer 2004. Water-quality variations also were evaluated
for public-supply well TTP-4 based on five samples col-
lected during 2002-05. The dynamic nature of the hydrologic
response to recharge in this karst setting was observed by large
fluctuations in chemistry. Chloride concentrations decreased
from summer 2004 water samples to winter 2004-05 samples
from all three monitoring wells following the recharge pulse
from high rainfall and corresponding peak in water-level
elevation in October 2004. Nitrate-N concentrations increased
in water from one well from January to August 2004, but
decreased in water from another monitoring well during the
same period. Nitrate-N concentrations also increased in water
samples from two other monitoring wells in the surficial
aquifer system, from January to August 2004, but decreased in
subsequent samples from these two wells. Nitrate-N concen-
trations in water from a well located near the Hillsborough
River remained below the detection limit, as reducing condi-
tions persisted during December 2003 to July 2005. Dissolved
oxygen concentrations increased in water samples from two
wells in the surficial aquifer system, and the public-supply
well in August and September 2004 during and following the
above-normal rainfall in June through September 2004. The
increase in dissolved oxygen concentrations likely results from
recent recharge of water containing elevated levels of oxygen
compared to lower levels in ground water prior to the excess
rainfall period. Dissolved oxygen concentrations decreased
in water from a well near the Hillsborough River in fall 2004,
which may indicate the influx of river water with elevated
dissolved organic carbon and subsequent consumption of
oxygen as water moves toward this well.

A hydrologic flow model of the contributing recharge
area of the public-supply well is consistent with the observed
geochemical conditions and can be used to evaluate changes
in hydrologic conditions. Further information about flow path-
ways and the extent of high transmissive zones in the Upper
Floridan aquifer that are directly connected to the surficial
aquifer system would be helpful in better understanding the
movement of contaminants to other public-supply wells that
tap the Upper Floridan aquifer.
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Appendixes 19

Appendix A1. Summary of quality-assurance results for organic compounds in blanks and replicates.

[Concentrations are in micrograms per liter (ug/L); NR, not reported; P code, U.S. Environmental Protection Agency STORET code; E, estimated concentration,
below method reporting level; VOC, volatile organic compound; yyyymmdd, year, month, day]

Diazinon-d10,
surrogate,

Station identifier Site name s::‘tZ!e Saml.)le Schedule Ztl]03, Cafb‘;::/'f;‘“'de chhh()::]l;:jthane T"Chl'(’:l‘;'/';-*)’tha“e
start time percen
yyyymmdd recovery

P99994 P77041 P34423 P32106

Blanks
280247082231903  WP-S64 20040114 1200 NR <.04 EO0.1
280247082231903  WP-S64 20040114 1205 NR <.04 0.1
280253082223802  GARC-F75 20031215 0915 NR <.04 0.4
280253082223802  GARC-F75 20031218 0940 NR <.04 0.6 E0.09

Replicates
280247082231901 WP-F299 20040122 1600 80.2 E0.77 0.8
280247082231901  WP-F299 20040122 1601 69.5 E0.42 0.7
280301082222703  113RC-S35 20031211 1300 88.8 <.04 2.0
280301082222703  113RC-S35 20031211 1305 78.4 <.04 3.2
Isobutyl alcohol-d6, 1,2-Dichloroethane- 1-Bromo-4-fluoroben-
Sample surrogate, water, d4, surrogate, Sched- zene, surrogate, VOC
Station identifier GiteIname date, Sa_mple unfiltered, percent  ule 2090, percent schedules, percent
yyyymmdd time recovery recovery recovery
P62835 P99832 P99834
Blanks

280241082224403  THC-S46 20031218 0935 75.5 110 83.8
280241082224403  THC-S46 20050614 1415 NR 120 78.4
280241082224403  THC-S46 20050614 1430 NR 121 77.0
280247082231902  WP-F150 20040128 0915 91.4 127 91.9
280247082231902  WP-F150 20040128 0945 107 132 87.8
280249082220701  RP-F103 20031015 1515 109 120 97.5
280249082220701  RP-F103 20031015 1715 108 120 96.2
280253082223802  GARC-F75 20031215 1000 81 110 58.3
280253082223802  GARC-F75 20031218 0940 82.3 113 77.1
280303082230902  LP-S30 20050621 1000 NR 131 93.8

280303082230902  LP-S30 20050621 1001 NR 130 92.8
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Appendix A2. Summary of quality-assurance results for selected chemical constituents in field blank and replicate samples.

[E, estimated concentration, reported below method reporting level; P code, U.S. Environmental Protection Agency STORET code; cm, centimeter; mg/L, milligrams per liter;

Absorbance, Absorbance, .
. Sulfide,
UV, 254 nm, UV, organic water, Organic Manga-
. . Sample 1 cm pathlength, constituents, Calcium, Sodium, Silica, il ‘em; ca!:bon Chromium, Cobalt, Copper, nes?a
Station Site date Sample  \yater, filtered, 280nm,1cm  mg/L mg/L  mg/L L ! pg/L pg/L pg/L !
identifier name ’ time s e thlenath field, mg/L Hg/L
yyyymmdd pe pathlength,
. " mg/L
centimeter  water, filtered
P50624 P61726 P00915  P00930 P00955 P99118 P00681 P01030  P01035 P01040  P01056
Blanks
280241082224403 THC-S46 20050614 1430 <0.004 <0.004 0.08 0.29 1.42 E0.2 <0.6
280247082231902 WP-F150 20040128 0945 1.9
280247082231902 WP-F150 20040128 0955 <0.8 0.871 <0.4 EO0.1
280247082231903 WP-S64 20040114 1210 <0.8 <0.014 <04 <0.2
280249082220701 RP-F103 20031015 1715 E0.4 0.788  E0.4 <0.2
280250082233001 LP-F160 20041104 1050 <0.004 <0.004 0.05 <0.20 0.04 13 <0.8 0324 <04 <0.2
280303082230902 LP-S30 20050621 1000 0.005 0.004 0.4
Absorbance, Absorbance, Dissolved Total nitrogen
UV, 254 nm,1 UV, organic  oxygen, Potas- (nitrate + Organic Arsenite
Sample cm pathlength, constituents, water, sium Bromide, nitrite + a?bon Arsenic, (H3As03), Boron, Cadmium,
Station Site date Sample water, 280nm, 1cm unfiltered, /I.' mg/L  ammonia + 1 " pglt pg/Las  pg/L pg/L
identifier name yyyymmdd time filtered, units  pathlength, mg/L & organic-N), g arsenic
per centimeter water, filtered water, filtered
P50624 P61726 P00300  P00935 P71870 P62854 P00681 P01000  P62452 P01020  P01025
Replicates
280241082224402 THC-F75 20040112 1500 0.1 0.74 E.01 0.14 1.9 1.1 <1.0 19 <0.04
280241082224402 THC-F75 20040112 1501 0.72 0.02 0.14 1 <1.0 18 <0.04
280241082230701 RP-F103 20041102 1200 0.022 0.017 0.1 1.35 0.11 1.95 1 3.1 <1.0 28 0.21
280241082230701 RP-F103 20041102 1205 0.023 0.017 0.8 0.9
280244082232001 TTP-4 20050620 1601 0.028 0.02 1.2
280244082232001 TTP-4 20050620 1600 0.027 0.018 0.3 1.11 0.78 1.2
280247082231901 WP-F299 20040122 1600 0.2 1.4 0.03 0.22 24 12.6 5.6 25 0.17
280247082231901 WP-F299 20040122 1601 24 12.3 31 0.17
280247082231903 WP-S64 20050614 1131 0.011 0.008 1.61 222 1.1
280247082231903 WP-S64 20050614 1130 0.01 0.007 5.7 1.58 2.35 13.7
280253082223801 GARC-F200 20031216 1300 0.2 1.24 0.03 0.24 2.1 1.7 1.1 22 <0.04
280253082223801 GARC-F200 20031216 1306 <1.0
280301082222703 113RC-S35 20031211 1300 2.5 0.68 0.05 3.7 0.6 E.2 <1.0 15 0.11
280301082222703 113RC-S35 20031211 1305 0.5 0.2 16 0.11
280303082230901 LP-H40 20041208 1500 0.007 0.006 6.8 1.08 0.05 243 0.4 0.3 <1.0 22 0.16
280303082230901 LP-H40 20041208 1505 0.007 0.005 6.8 1.16 0.04 2.44 0.4 0.3 22 0.17
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pg/L, micrograms per liter, UV, ultraviolet; nm, nanometers; yyyymmdd, year, month, day; <, less than; Th-230, Thorium-230; Cs-137, Cesium-137]

Molyb-
denum,
ng/L

Nickel, Strontium, Zinc,
na/L pg/L pg/L

P01060 P01065 P01080 P01090

E0.2 043 1.36 <0.6
<04 0.06 <0.40 1.1
<04 043 <0.40 <0.6
<04 0.16 0.4 E0.4
Alpha/ .
radioactivity AI.pITa Ll . Gr.oss h.et.a Radium-226,
2-sigma activity, water,  Deuterium/ radioactivity, water, filtered
Chromium,  Copper, Lead, Lithium, Manganese, Molybdenum, Nickel, Selenium, Vanadium, g_ filtered, Protium ratio, water, filtered, ! '
L i n L L n L n o combined o o curve,  waterunfil-  Cs-137 curve, '20on Method.
Hg kg Hg kg Hg Hg kg Hg kg uncertainty, . . ! ! . . . ' picocuries per
picocuries per tered, per mil picocuries per .
water, liter liter liter
filtered, Th-230 ! '
P01030 P01040 P01049 P01130 P01056 P01060 P01065  P01145 P01085 P75987 P04126 P82082 P03515 P09511
<0.8 0.6 <0.08 1 85.7 3 1.76 1.4 2 2 1 -17.6 2.1 0.52
<0.8 0.5 <0.08 1 84.7 3 1.44 1.2 1.8 2.4 33 -15.7 22 0.59
<0.8 0.7 <0.08 1.9 2.8 16.4 244 7.8 12.6
34
<0.8 2 <0.08 4.1 7 86.7 441 0.6 0.8
<0.8 2 0.09 3.7 6.9 91.1 3.62 0.8 0.9
<0.6
<0.6
<0.8 1.4 <0.08 3.8 70.1 6.4 2.95 1.3 1.5
E.5 0.9 <0.08 E4 5.1 0.9 1 0.8 3.7
E.6 1.1 <0.08 E4 55 0.9 0.9 0.8 3.9
1.6 1.1 <0.08 E.5 0.3 4 0.65 0.7 5.1

1.5 1 <0.08 E5 0.3 39 0.59 0.6 52
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